1
|
Cao M, Wu K, Halperin JM, Li X. Abnormal structural and functional network topological properties associated with left prefrontal, parietal, and occipital cortices significantly predict childhood TBI-related attention deficits: A semi-supervised deep learning study. Front Neurosci 2023; 17:1128646. [PMID: 36937671 PMCID: PMC10017753 DOI: 10.3389/fnins.2023.1128646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is a major public health concern in children. Children with TBI have elevated risk in developing attention deficits. Existing studies have found that structural and functional alterations in multiple brain regions were linked to TBI-related attention deficits in children. Most of these existing studies have utilized conventional parametric models for group comparisons, which have limited capacity in dealing with large-scale and high dimensional neuroimaging measures that have unknown nonlinear relationships. Nevertheless, none of these existing findings have been successfully implemented to clinical practice for guiding diagnoses and interventions of TBI-related attention problems. Machine learning techniques, especially deep learning techniques, are able to handle the multi-dimensional and nonlinear information to generate more robust predictions. Therefore, the current research proposed to construct a deep learning model, semi-supervised autoencoder, to investigate the topological alterations in both structural and functional brain networks in children with TBI and their predictive power for post-TBI attention deficits. Methods Functional magnetic resonance imaging data during sustained attention processing task and diffusion tensor imaging data from 110 subjects (55 children with TBI and 55 group-matched controls) were used to construct the functional and structural brain networks, respectively. A total of 60 topological properties were selected as brain features for building the model. Results The model was able to differentiate children with TBI and controls with an average accuracy of 82.86%. Functional and structural nodal topological properties associated with left frontal, inferior temporal, postcentral, and medial occipitotemporal regions served as the most important brain features for accurate classification of the two subject groups. Post hoc regression-based machine learning analyses in the whole study sample showed that among these most important neuroimaging features, those associated with left postcentral area, superior frontal region, and medial occipitotemporal regions had significant value for predicting the elevated inattentive and hyperactive/impulsive symptoms. Discussion Findings of this study suggested that deep learning techniques may have the potential to help identifying robust neurobiological markers for post-TBI attention deficits; and the left superior frontal, postcentral, and medial occipitotemporal regions may serve as reliable targets for diagnosis and interventions of TBI-related attention problems in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Jeffery M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
2
|
Cao M, Halperin JM, Li X. Abnormal Functional Network Topology and Its Dynamics during Sustained Attention Processing Significantly Implicate Post-TBI Attention Deficits in Children. Brain Sci 2021; 11:brainsci11101348. [PMID: 34679412 PMCID: PMC8533973 DOI: 10.3390/brainsci11101348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022] Open
Abstract
Traumatic brain injury (TBI) is highly prevalent in children. Attention deficits are among the most common and persistent post-TBI cognitive and behavioral sequalae that can contribute to adverse outcomes. This study investigated the topological properties of the functional brain network for sustained attention processing and their dynamics in 42 children with severe post-TBI attention deficits (TBI-A) and 47 matched healthy controls. Functional MRI data during a block-designed sustained attention task was collected for each subject, with each full task block further divided into the pre-, early, late-, and post-stimulation stages. The task-related functional brain network was constructed using the graph theoretic technique. Then, the sliding-window-based method was utilized to assess the dynamics of the topological properties in each stimulation stage. Relative to the controls, the TBI-A group had significantly reduced nodal efficiency and/or degree of left postcentral, inferior parietal, inferior temporal, and fusiform gyri and their decreased stability during the early and late-stimulation stages. The left postcentral inferior parietal network anomalies were found to be significantly associated with elevated inattentive symptoms in children with TBI-A. These results suggest that abnormal functional network characteristics and their dynamics associated with the left parietal lobe may significantly link to the onset of the severe post-TBI attention deficits in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Jeffery M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA;
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA;
- Correspondence: ; Tel.: +1-973-596-5880
| |
Collapse
|
3
|
Cao M, Luo Y, Wu Z, Mazzola CA, Catania L, Alvarez TL, Halperin JM, Biswal B, Li X. Topological Aberrance of Structural Brain Network Provides Quantitative Substrates of Post-Traumatic Brain Injury Attention Deficits in Children. Brain Connect 2021; 11:651-662. [PMID: 33765837 DOI: 10.1089/brain.2020.0866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Traumatic brain injury (TBI)-induced attention deficits are among the most common long-term cognitive consequences in children. Most of the existing studies attempting to understand the neuropathological underpinnings of cognitive and behavioral impairments in TBI have utilized heterogeneous samples and resulted in inconsistent findings. The current research proposed to investigate topological properties of the structural brain network in children with TBI and their relationship with post-TBI attention problems in a more homogeneous subgroup of children who had severe post-TBI attention deficits (TBI-A). Materials and Methods: A total of 31 children with TBI-A and 35 group-matched controls were involved in the study. Diffusion tensor imaging-based probabilistic tractography and graph theoretical techniques were used to construct the structural brain network in each subject. Network topological properties were calculated in both global level and regional (nodal) level. Between-group comparisons among the topological network measures and analyses for searching brain-behavioral were all corrected for multiple comparisons using Bonferroni method. Results: Compared with controls, the TBI-A group showed significantly higher nodal local efficiency and nodal clustering coefficient in left inferior frontal gyrus and right transverse temporal gyrus, whereas significantly lower nodal clustering coefficient in left supramarginal gyrus and lower nodal local efficiency in left parahippocampal gyrus. The temporal lobe topological alterations were significantly associated with the post-TBI inattentive and hyperactive symptoms in the TBI-A group. Conclusion: The results suggest that TBI-related structural re-modularity in the white matter subnetworks associated with temporal lobe may play a critical role in the onset of severe post-TBI attention deficits in children. These findings provide valuable input for understanding the neurobiological substrates of post-TBI attention deficits, and have the potential to serve as quantitatively measurable criteria guiding the development of more timely and tailored strategies for diagnoses and treatments to the affected individuals. Impact statement This study provides a new insight into the neurobiological substrates associated with post-traumatic brain injury attention deficits (TBI-A) in children, by evaluating topological alterations of the structural brain network. The results demonstrated that relative to group-matched controls, the children with TBI-A had significantly altered nodal local efficiency and nodal clustering coefficient in temporal lobe, which strongly linked to elevated inattentive and hyperactive symptoms in the TBI-A group. These findings suggested that white matter structural re-modularity in subnetworks associated with temporal lobe may serve as quantitatively measurable biomarkers for early prediction and diagnosis of post-TBI attention deficits in children.
Collapse
Affiliation(s)
- Meng Cao
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuyang Luo
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ziyan Wu
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | | | - Lori Catania
- North Jersey Neurodevelopmental Center, North Haledon, New Jersey, USA
| | - Tara L Alvarez
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jeffrey M Halperin
- Department of Psychology, Queens College, City University of New York, New York, New York, USA
| | - Bharat Biswal
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Xiaobo Li
- Department of Biomedical Engineering and New Jersey Institute of Technology, Newark, New Jersey, USA.,Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
4
|
Morandini HA, Silk TJ, Griffiths K, Rao P, Hood SD, Zepf FD. Meta-analysis of the neural correlates of vigilant attention in children and adolescents. Cortex 2020; 132:374-385. [DOI: 10.1016/j.cortex.2020.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 07/10/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
|
5
|
Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test. Brain Sci 2020; 10:brainsci10100699. [PMID: 33019772 PMCID: PMC7600451 DOI: 10.3390/brainsci10100699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
This review aimed at providing a brief and comprehensive summary of recent research regarding the use of the Wisconsin Card-Sorting Test (WCST) to assess executive function in patients with traumatic brain injury (TBI). A bibliographical search, performed in PubMed, Web of Science, Scopus, Cochrane Library, and PsycInfo, targeted publications from 2010 to 2020, in English or Spanish. Information regarding the studies’ designs, sample features and use of the WCST scores was recorded. An initial search eliciting 387 citations was reduced to 47 relevant papers. The highest proportion of publications came from the United States of America (34.0%) and included adult patients (95.7%). Observational designs were the most frequent (85.1%), the highest proportion being cross-sectional or case series studies. The average time after the occurrence of the TBI ranged from 4 to 62 years in single case studies, and from 6 weeks up to 23.5 years in the studies with more than one patient. Four studies compared groups of patients with TBI according to the severity (mild, moderate and/or severe), and in two cases, the studies compared TBI patients with healthy controls. Randomized control trials were seven in total. The noncomputerized WCST version including 128 cards was the most frequently used (78.7%). Characterization of the clinical profile of participants was the most frequent purpose (34.0%). The WCST is a common measure of executive function in patients with TBI. Although shorter and/or computerized versions are available, the original WCST with 128 cards is still used most often. The WCST is a useful tool for research and clinical purposes, yet a common practice is to report only one or a few of the possible scores, which prevents further valid comparisons across studies. Results might be useful to professionals in the clinical and research fields to guide them in assessment planning and proper interpretation of the WCST scores.
Collapse
|
6
|
Olsen A, Babikian T, Dennis EL, Ellis-Blied MU, Giza C, Marion SD, Mink R, Johnson J, Babbitt CJ, Thompson PM, Asarnow RF. Functional Brain Hyperactivations Are Linked to an Electrophysiological Measure of Slow Interhemispheric Transfer Time after Pediatric Moderate/Severe Traumatic Brain Injury. J Neurotrauma 2019; 37:397-409. [PMID: 31469049 PMCID: PMC6964811 DOI: 10.1089/neu.2019.6532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased task-related blood oxygen level dependent (BOLD) activation is commonly observed in functional magnetic resonance imaging (fMRI) studies of moderate/severe traumatic brain injury (msTBI), but the functional relevance of these hyperactivations and how they are linked to more direct measures of neuronal function remain largely unknown. Here, we investigated how working memory load (WML)-dependent BOLD activation was related to an electrophysiological measure of interhemispheric transfer time (IHTT) in a sample of 18 msTBI patients and 26 demographically matched controls from the UCLA RAPBI (Recovery after Pediatric Brain Injury) study. In the context of highly similar fMRI task performance, a subgroup of TBI patients with slow IHTT had greater BOLD activation with higher WML than both healthy control children and a subgroup of msTBI patients with normal IHTT. Slower IHTT treated as a continuous variable was also associated with BOLD hyperactivation in the full TBI sample and in controls. Higher WML-dependent BOLD activation was related to better performance on a clinical cognitive performance index, an association that was more pronounced within the patient group with slow IHTT. Our previous work has shown that a subgroup of children with slow IHTT after pediatric msTBI has increased risk for poor white matter organization, long-term neurodegeneration, and poor cognitive outcome. BOLD hyperactivations after msTBI may reflect neuronal compensatory processes supporting higher-order capacity demanding cognitive functions in the context of inefficient neuronal transfer of information. The link between BOLD hyperactivations and slow IHTT adds to the multi-modal validation of this electrophysiological measure as a promising biomarker.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Department of Psychology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,UCLA Steve Tisch BrainSPORT Program, Los Angeles, California
| | - Emily L Dennis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts.,Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, California.,Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Monica U Ellis-Blied
- Fuller Theological Seminary School of Psychology, Pasadena, California.,Loma Linda VA Healthcare System, Loma Linda, California
| | - Christopher Giza
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, California.,UCLA Mattel Children's Hospital, Los Angeles, California.,Departments of Pediatrics and Neurosurgery, David Geffen School of Medicine at UCLA, UCLA, Los Angeles, California
| | - Sarah DeBoard Marion
- Department of Psychology, Northwest Nazarene University, Nampa, Idaho.,Elk's Rehabilitation Hospital, St. Luke's Health System, Boise, Idaho
| | - Richard Mink
- Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, California
| | - Jeffrey Johnson
- Department of Pediatrics LAC+USC Medical Center and Keck School of Medicine, Los Angeles, California
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California.,Department of Psychology, UCLA, Los Angeles, California.,Brain Research Institute, UCLA, Los Angeles, California
| |
Collapse
|
7
|
Dennis EL, Babikian T, Giza CC, Thompson PM, Asarnow RF. Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons. Neuroscientist 2018; 24:652-670. [PMID: 29488436 DOI: 10.1177/1073858418759489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.
Collapse
Affiliation(s)
- Emily L Dennis
- 1 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University Southern California, Marina del Rey, CA, USA
| | - Talin Babikian
- 2 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.,3 UCLA Brain Injury Research Center, Department of Neurosurgery and Division of Pediatric Neurology, Mattel Children's Hospital, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Christopher C Giza
- 3 UCLA Brain Injury Research Center, Department of Neurosurgery and Division of Pediatric Neurology, Mattel Children's Hospital, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.,5 Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Paul M Thompson
- 1 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University Southern California, Marina del Rey, CA, USA.,6 Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Robert F Asarnow
- 2 Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA.,4 UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA.,5 Brain Research Institute, University of California, Los Angeles, CA, USA.,7 Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
De Meo E, Moiola L, Ghezzi A, Veggiotti P, Capra R, Amato MP, Pagani E, Fiorino A, Pippolo L, Pera MC, Comi G, Falini A, Filippi M, Rocca MA. MRI substrates of sustained attention system and cognitive impairment in pediatric MS patients. Neurology 2017; 89:1265-1273. [DOI: 10.1212/wnl.0000000000004388] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 02/02/2023] Open
Abstract
Objective:To explore the structural and functional integrity of the sustained attention system in patients with pediatric multiple sclerosis (MS) and its effect on cognitive impairment.Methods:We enrolled 57 patients with pediatric MS and 14 age- and sex-matched healthy controls (HCs). Patients with >3 abnormal tests at neuropsychological evaluation were classified as cognitively impaired (CI). Sustained attention system activity was studied with fMRI during the Conners Continuous Performance Test (CCPT). Structural integrity of attention network connections was quantified with diffusion tensor (DT) MRI.Results:Within-group analysis showed similar patterns of recruitment of the attention network in HCs and patients with pediatric MS. Diffuse network DT MRI structural abnormalities were found in patients with MS. During CCPT, with increasing task demand, patients with pediatric MS showed increased activation of the left thalamus, anterior insula, and anterior cingulate cortex (ACC) and decreased recruitment of the right precuneus compared to HCs. Thirteen patients (23%) were classified as CI. Compared to cognitively preserved patients, CI patients with pediatric MS had decreased recruitment of several areas located mainly in parietal and occipital lobes and cerebellum and increased deactivation of the ACC, combined with more severe structural damage of white matter tracts connecting these regions.Conclusions:Our results suggest that the age-expected level of sustained attention system functional competence is achieved in patients with pediatric MS. Inefficient regulation of the functional interaction between different areas of this system, due to abnormal white matter integrity, may result in global cognitive impairment in these patients.
Collapse
|
9
|
Raghubar KP, Mahone EM, Yeates KO, Ris MD. Performance-based and parent ratings of attention in children treated for a brain tumor: The significance of radiation therapy and tumor location on outcome. Child Neuropsychol 2017; 24:413-425. [DOI: 10.1080/09297049.2017.1280144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kimberly P. Raghubar
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| | - E. Mark Mahone
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children’s Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Canada
| | - M. Douglas Ris
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|