1
|
Liu HK, Hao HL, You H, Feng F, Qi XH, Huang XY, Hou B, Tian CG, Wang H, Yang HM, Wang J, Wu R, Fang H, Zhou JN, Zhang JG, Zhang ZX. A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex. Neurosci Bull 2024; 40:1489-1501. [PMID: 38869703 PMCID: PMC11422396 DOI: 10.1007/s12264-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/22/2023] [Indexed: 06/14/2024] Open
Abstract
This study aimed to identify possible pathogenic genes in a 90-member family with a rare combination of multiple neurodegenerative disease phenotypes, which has not been depicted by the known neurodegenerative disease. We performed physical and neurological examinations with International Rating Scales to assess signs of ataxia, Parkinsonism, and cognitive function, as well as brain magnetic resonance imaging scans with seven sequences. We searched for co-segregations of abnormal repeat-expansion loci, pathogenic variants in known spinocerebellar ataxia-related genes, and novel rare mutations via whole-genome sequencing and linkage analysis. A rare co-segregating missense mutation in the CARS gene was validated by Sanger sequencing and the aminoacylation activity of mutant CARS was measured by spectrophotometric assay. This pedigree presented novel late-onset core characteristics including cerebellar ataxia, Parkinsonism, and pyramidal signs in all nine affected members. Brain magnetic resonance imaging showed cerebellar/pons atrophy, pontine-midline linear hyperintensity, decreased rCBF in the bilateral basal ganglia and cerebellar dentate nucleus, and hypo-intensities of the cerebellar dentate nuclei, basal ganglia, mesencephalic red nuclei, and substantia nigra, all of which suggested neurodegeneration. Whole-genome sequencing identified a novel pathogenic heterozygous mutation (E795V) in the CARS gene, meanwhile, exhibited none of the known repeat-expansions or point mutations in pathogenic genes. Remarkably, this CARS mutation causes a 20% decrease in aminoacylation activity to charge tRNACys with L-cysteine in protein synthesis compared with that of the wild type. All family members carrying a heterozygous mutation CARS (E795V) had the same clinical manifestations and neuropathological changes of Parkinsonism and spinocerebellar-ataxia. These findings identify novel pathogenesis of Parkinsonism-spinocerebellar ataxia and provide insights into its genetic architecture.
Collapse
Affiliation(s)
- Han-Kui Liu
- BGI Genomics and BGI Research, Shenzhen, 518083, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China
| | - Hong-Lin Hao
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hui You
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Feng Feng
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiu-Hong Qi
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | | | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Han Wang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | | | - Jian Wang
- BGI Genomics and BGI Research, Shenzhen, 518083, China
| | - Rui Wu
- Department of Pathology, Beijing Key Laboratory of Biomarker Research and Transformation for Neurodegenerative Diseases, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hui Fang
- Anhui Provincial Children's Hospital, Children's Hospital of Fudan University, Hefei, 230051, China
| | - Jiang-Ning Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian-Guo Zhang
- BGI Genomics and BGI Research, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050011, China.
| | - Zhen-Xin Zhang
- Department of Neurology, Clinical Epidemiology Unit, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Mohamed Ibrahim N, Lin CH. Early Onset Parkinsonism: Differential diagnosis and what not to miss. Parkinsonism Relat Disord 2024:107100. [PMID: 39183141 DOI: 10.1016/j.parkreldis.2024.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Early Onset Parkinsonism (EOP) refers to parkinsonism occurring before the age of 50 years. The causes are diverse and include secondary and genetic causes. Secondary causes related to medications, inflammatory and infective disorders are mostly treatable and well recognized as they usually present with a relatively more rapid clinical course compared to idiopathic Parkinson's disease. Genetic causes of EOP are more challenging to diagnose especially as more of the non-PARK genes are recognized to present with typical and atypical parkinsonism. Some of the genetic disorders such as Spinocerebellar ataxia 2 (SCA2) and Spinocerebellar ataxia 3 (SCA3) may present with levodopa-responsive parkinsonism, indistinguishable from idiopathic Parkinson's disease. Additionally, some of the genetic disorders, including Wilson's disease and cerebrotendinous xanthomatosis (CTX), are potentially treatable and should not be missed. Due to the advent of next generating sequencing techniques, genetic analyses facilitate early identification and proper treatment of diverse causes of EOP. In this review, we outline the clinical approach of EOP highlighting the key clinical features of some of the non-PARK genetic causes of EOP and related investigations, which could assist in clinical diagnosis. This review also encompass genetic diagnostic approaches, emphasizing the significance of pretest counseling and the principles of bioinformatics analysis strategies.
Collapse
Affiliation(s)
- Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Chin Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Jao CW, Wu HM, Wang TY, Duan CA, Wang PS, Wu YT. Morphological changes of cerebral gray matter in spinocerebellar ataxia type 3 using fractal dimension analysis. PROGRESS IN BRAIN RESEARCH 2024; 290:1-21. [PMID: 39448107 DOI: 10.1016/bs.pbr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease, presents as a cerebellar cognitive affective syndrome (CCAS) and represents the predominant SCA genotype in Taiwan. Beyond cerebellar involvement, SCA3 patients exhibit cerebral atrophy. While prior neurodegenerative disease studies relied on voxel-based morphometry (VBM) for brain atrophy assessment, its qualitative nature limits individual and region-specific evaluations. To address this, we employed fractal dimension (FD) analysis to quantify cortical complexity changes in SCA3 patients. We examined 50 SCA3 patients and 50 age- and sex-matched healthy controls (HC), dividing MRI cerebral gray matter (GM) into 68 auto-anatomical subregions. Using three-dimensional FD analysis, we identified GM atrophy manifestations in SCA3 patients. Results revealed lateral atrophy symptoms in the left frontal, parietal, and occipital lobes, and fewer symptoms in the right hemisphere's parietal and occipital lobes. Focal areas of atrophy included regions previously identified in SCA3 studies, alongside additional regions with decreased FD values. Bilateral postcentral gyrus and inferior parietal gyrus exhibited pronounced atrophy, correlating with Scale for the Assessment and Rating of Ataxia (SARA) scores and disease duration. Notably, the most notable focal areas were the bilateral postcentral gyrus and the left superior temporal gyrus, serving as imaging biomarkers for SCA3. Our study enhances understanding of regional brain atrophy in SCA3, corroborating known clinical features while offering new insights into disease progression.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Quanta Computer, Taipei, Taiwan
| | - Chien-An Duan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Henriques C, Lopes MM, Silva AC, Lobo DD, Badin RA, Hantraye P, Pereira de Almeida L, Nobre RJ. Viral-based animal models in polyglutamine disorders. Brain 2024; 147:1166-1189. [PMID: 38284949 DOI: 10.1093/brain/awae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/26/2023] [Accepted: 12/30/2023] [Indexed: 01/30/2024] Open
Abstract
Polyglutamine disorders are a complex group of incurable neurodegenerative disorders caused by an abnormal expansion in the trinucleotide cytosine-adenine-guanine tract of the affected gene. To better understand these disorders, our dependence on animal models persists, primarily relying on transgenic models. In an effort to complement and deepen our knowledge, researchers have also developed animal models of polyglutamine disorders employing viral vectors. Viral vectors have been extensively used to deliver genes to the brain, not only for therapeutic purposes but also for the development of animal models, given their remarkable flexibility. In a time- and cost-effective manner, it is possible to use different transgenes, at varying doses, in diverse targeted tissues, at different ages, and in different species, to recreate polyglutamine pathology. This paper aims to showcase the utility of viral vectors in disease modelling, share essential considerations for developing animal models with viral vectors, and provide a comprehensive review of existing viral-based animal models for polyglutamine disorders.
Collapse
Affiliation(s)
- Carina Henriques
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel M Lopes
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana C Silva
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Diana D Lobo
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Romina Aron Badin
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- CEA, DRF, Institute of Biology François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- CNRS, CEA, Paris-Sud University, Université Paris-Saclay, Neurodegenerative Diseases Laboratory (UMR9199), 92265 Fontenay-aux-Roses, France
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Jorge Nobre
- Center for Neuroscience and Cell Biology (CNC), Gene and Stem Cell Therapies for the Brain Group, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Vectors, Gene and Cell Therapy Group, University of Coimbra, 3004-504 Coimbra, Portugal
- ViraVector-Viral Vector for Gene Transfer Core Facility, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
5
|
Anghel L, Ciubară A, Nechita A, Nechita L, Manole C, Baroiu L, Ciubară AB, Mușat CL. Sleep Disorders Associated with Neurodegenerative Diseases. Diagnostics (Basel) 2023; 13:2898. [PMID: 37761265 PMCID: PMC10527657 DOI: 10.3390/diagnostics13182898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep disturbances are common in various neurological pathologies, including amyotrophic lateral sclerosis (ALS), multiple system atrophy (MSA), hereditary ataxias, Huntington's disease (HD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). This article reviews the prevalence and characteristics of sleep disorders in these conditions, highlighting their impact on patients' quality of life and disease progression. Sleep-related breathing disorders, insomnia, restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and rapid eye movement sleep behavior disorder (RBD) are among the common sleep disturbances reported. Both pharmacological and non-pharmacological interventions play crucial roles in managing sleep disturbances and enhancing overall patient care.
Collapse
Affiliation(s)
- Lucreția Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Anamaria Ciubară
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Corina Manole
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Alexandru Bogdan Ciubară
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| | - Carmina Liana Mușat
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| |
Collapse
|
6
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
7
|
Wang H, Wang LS, Schellenberg G, Lee WP. The role of structural variations in Alzheimer's disease and other neurodegenerative diseases. Front Aging Neurosci 2023; 14:1073905. [PMID: 36846102 PMCID: PMC9944073 DOI: 10.3389/fnagi.2022.1073905] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
Dozens of single nucleotide polymorphisms (SNPs) related to Alzheimer's disease (AD) have been discovered by large scale genome-wide association studies (GWASs). However, only a small portion of the genetic component of AD can be explained by SNPs observed from GWAS. Structural variation (SV) can be a major contributor to the missing heritability of AD; while SV in AD remains largely unexplored as the accurate detection of SVs from the widely used array-based and short-read technology are still far from perfect. Here, we briefly summarized the strengths and weaknesses of available SV detection methods. We reviewed the current landscape of SV analysis in AD and SVs that have been found associated with AD. Particularly, the importance of currently less explored SVs, including insertions, inversions, short tandem repeats, and transposable elements in neurodegenerative diseases were highlighted.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gerard Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Zhang W, Jasinarachchi M, Seiderer L, Szmulewicz DJ, Roberts LJ. The Electrophysiological Findings in Spinocerebellar Ataxia Type 6: Evidence From 24 Patients. J Clin Neurophysiol 2023; 40:86-90. [PMID: 34038931 DOI: 10.1097/wnp.0000000000000855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Peripheral neuropathy has been reported commonly in several spinocerebellar ataxia (SCA) types. To date, there is a lack of robust evidence for neuropathy or neuronopathy in SCA type 6 (SCA6). Here, we aim to evaluate the presence of neuropathy or neuronopathy in a cohort of SCA6 patients. METHODS Twenty-four individuals with genetically confirmed SCA6 underwent detailed neurophysiological assessment. This included nerve conduction studies, and in some, cutaneous silent periods, blink reflexes, tilt table tests, quantitative sudomotor axon reflex tests, and somatosensory (median and tibial) evoked potentials. RESULTS Mean age was 56.1 years (range, 22-94 years) at the time of testing. Four patients were presymptomatic of SCA6 at recruitment. The mean disease duration of symptomatic patients was 11.9 years (range, 1-40 years). Most patients (79.2%, 19/24) had no neurophysiological evidence of a peripheral neuropathy. One with impaired glucose tolerance had mild, large, and small fiber sensorimotor polyneuropathy. One elderly patient had length-dependent axonal sensorimotor polyneuropathy. Two had minor sensory abnormalities (one had type II diabetes and previous chemotherapy). One other had minor small fiber abnormalities. Ten patients (41.7%) had median neuropathies at the wrist. All somatosensory evoked potential (15/15), and most autonomic function tests (13/14) were normal. CONCLUSIONS A large proportion of subjects (79.2%) in our cohort had no evidence of large or small fiber neuropathy. This study does not support the presence of neuropathy or neuronopathy as a common finding in SCA6 and confirms the importance of considering comorbidities as the cause of neurophysiological abnormalities.
Collapse
Affiliation(s)
- WenWen Zhang
- Department of Neurology, Alfred Hospital, Melbourne, Australia
| | - Mahi Jasinarachchi
- Department of Neurology and Neurological Research, St. Vincent's Hospital Melbourne, Melbourne, Australia; and
| | - Linda Seiderer
- Department of Neurology and Neurological Research, St. Vincent's Hospital Melbourne, Melbourne, Australia; and
| | - David J Szmulewicz
- Balance Disorders and Ataxia Service, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Leslie J Roberts
- Department of Neurology and Neurological Research, St. Vincent's Hospital Melbourne, Melbourne, Australia; and
| |
Collapse
|
9
|
Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N, Twala B. Imperative Role of Machine Learning Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations. Diagnostics (Basel) 2022; 12:diagnostics12082003. [PMID: 36010353 PMCID: PMC9407112 DOI: 10.3390/diagnostics12082003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that affects the neural, behavioral, and physiological systems of the brain. This disease is also known as tremor. The common symptoms of this disease are a slowness of movement known as ‘bradykinesia’, loss of automatic movements, speech/writing changes, and difficulty with walking at early stages. To solve these issues and to enhance the diagnostic process of PD, machine learning (ML) algorithms have been implemented for the categorization of subjective disease and healthy controls (HC) with comparable medical appearances. To provide a far-reaching outline of data modalities and artificial intelligence techniques that have been utilized in the analysis and diagnosis of PD, we conducted a literature analysis of research papers published up until 2022. A total of 112 research papers were included in this study, with an examination of their targets, data sources and different types of datasets, ML algorithms, and associated outcomes. The results showed that ML approaches and new biomarkers have a lot of promise for being used in clinical decision-making, resulting in a more systematic and informed diagnosis of PD. In this study, some major challenges were addressed along with a future recommendation.
Collapse
Affiliation(s)
- Arti Rana
- Computer Science & Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| | - Ankur Dumka
- Department of Computer Science and Engineering, Women Institute of Technology, Uttarakhand Technical University (UTU), Dehradun 248007, Uttarakhand, India
| | - Rajesh Singh
- Division of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico
| | - Manoj Kumar Panda
- Department of Electrical Engineering, G.B. Pant Institute of Engineering and Technology, Pauri 246194, Uttarakhand, India
| | - Neeraj Priyadarshi
- Department of Electrical Engineering, JIS College of Engineering, Kolkata 741235, West Bengal, India
| | - Bhekisipho Twala
- Digital Transformation Portfolio, Tshwane University of Technology, Staatsartillerie Rd, Pretoria West, Pretoria 0183, South Africa
- Correspondence:
| |
Collapse
|
10
|
Kuo MC, Tai CH, Tseng SH, Wu RM. Long-term efficacy of bilateral subthalamic deep brain stimulation in the parkinsonism of SCA 3: A rare case report. Eur J Neurol 2022; 29:2544-2547. [PMID: 35837753 DOI: 10.1111/ene.15339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant inherited disorder that manifests as a mixture of cerebellar ataxia, parkinsonism, and polyneuropathy; in type IV SCA3, pure parkinsonism is the only symptom. Currently, no disease-modifying treatment is available, but variable responses to antiparkinsonism agents have been reported. However, the benefits of deep brain stimulation (DBS) for treating parkinsonism in this subtype of SCA3 remain unclear. METHODS A 39-year-old male patient with a rare disorder of type IV SCA3 presented with pure parkinsonism including unilateral resting tremor, rigidity, and bradykinesia at the age of 30 years. Young-onset Parkinson disease was diagnosed at the age of 32 years. His family history revealed a mild ataxia in his father since the age of 55 years. Genetic testing confirmed an expanded CAG repeated number, with 66 in this case and 63 in his father for SCA3 mutation. Excellent response to levodopa and dopamine agonists in the first 3 years was noted, but wearing-off phenomena, levodopa-induced dyskinesia, and severe impulse control disorders later developed. To alleviate drug-induced complications, he received bilateral subthalamic nucleus deep brain stimulation (STN-DBS) in the absence of cerebellar signs, depression, and cognitive impairment. RESULTS As of 2019, no impulsive control disorders, motor fluctuations, or DBS-related complications were observed during a 4-year follow-up, with 66% Unified Parkinson's Disease Rating Scale Part III reduction at medication OFF state noted, whereas levodopa equivalent daily dosage decreased by almost half. CONCLUSIONS STN-DBS may be considered as adjunct treatment for severe dopa-related motor/nonmotor complications in patients with parkinsonian phenotype of SCA 3.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Neurosurgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2022; 41:21-44. [DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|
13
|
Chen Y, Liu P, Cen Z, Liao Y, Lin Z, Luo W. Early-onset Parkinson's disease with atypical molecular imaging abnormalities in a patient carrying the de novo PRKCG mutation. Parkinsonism Relat Disord 2022; 95:100-102. [DOI: 10.1016/j.parkreldis.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/01/2022]
|
14
|
Rounds JC, Corgiat EB, Ye C, Behnke JA, Kelly SM, Corbett AH, Moberg KH. The disease-associated proteins Drosophila Nab2 and Ataxin-2 interact with shared RNAs and coregulate neuronal morphology. Genetics 2022; 220:iyab175. [PMID: 34791182 PMCID: PMC8733473 DOI: 10.1093/genetics/iyab175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nab2 encodes the Drosophila melanogaster member of a conserved family of zinc finger polyadenosine RNA-binding proteins (RBPs) linked to multiple steps in post-transcriptional regulation. Mutation of the Nab2 human ortholog ZC3H14 gives rise to an autosomal recessive intellectual disability but understanding of Nab2/ZC3H14 function in metazoan nervous systems is limited, in part because no comprehensive identification of metazoan Nab2/ZC3H14-associated RNA transcripts has yet been conducted. Moreover, many Nab2/ZC3H14 functional protein partnerships remain unidentified. Here, we present evidence that Nab2 genetically interacts with Ataxin-2 (Atx2), which encodes a neuronal translational regulator, and that these factors coordinately regulate neuronal morphology, circadian behavior, and adult viability. We then present the first high-throughput identifications of Nab2- and Atx2-associated RNAs in Drosophila brain neurons using RNA immunoprecipitation-sequencing (RIP-Seq). Critically, the RNA interactomes of each RBP overlap, and Nab2 exhibits high specificity in its RNA associations in neurons in vivo, associating with a small fraction of all polyadenylated RNAs. The identities of shared associated transcripts (e.g., drk, me31B, stai) and of transcripts specific to Nab2 or Atx2 (e.g., Arpc2 and tea) promise insight into neuronal functions of, and genetic interactions between, each RBP. Consistent with prior biochemical studies, Nab2-associated neuronal RNAs are overrepresented for internal A-rich motifs, suggesting these sequences may partially mediate Nab2 target selection. These data support a model where Nab2 functionally opposes Atx2 in neurons, demonstrate Nab2 shares associated neuronal RNAs with Atx2, and reveal Drosophila Nab2 associates with a more specific subset of polyadenylated mRNAs than its polyadenosine affinity alone may suggest.
Collapse
Affiliation(s)
- J Christopher Rounds
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edwin B Corgiat
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph A Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seth M Kelly
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Morales-Briceno H, Fung VSC, Bhatia KP, Balint B. Parkinsonism and dystonia: Clinical spectrum and diagnostic clues. J Neurol Sci 2021; 433:120016. [PMID: 34642024 DOI: 10.1016/j.jns.2021.120016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/20/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The links between the two archetypical basal ganglia disorders, dystonia and parkinsonism, are manifold and stem from clinical observations, imaging studies, animal models and genetics. The combination of both, i.e. the syndrome of dystonia-parkinsonism, is not uncommonly seen in movement disorders clinics and has a myriad of different underlying aetiologies, upon which treatment and prognosis depend. Based on a comprehensive literature review, we delineate the clinical spectrum of disorders presenting with dystonia-parkinsonism. The clinical approach depends primarily on the age at onset, associated neurological or systemic symptoms and neuroimaging. The tempo of disease progression, and the response to L-dopa are further important clues to tailor diagnostic approaches that may encompass dopamine transporter imaging, CSF analysis and, last but not least, genetic testing. Later in life, sporadic neurodegenerative conditions are the most frequent cause, but the younger the patient, the more likely the cause is unravelled by the recent advances of molecular genetics that are focus of this review. Here, knowledge of the associated phenotypic spectrum is key to guide genetic testing and interpretation of test results. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Hugo Morales-Briceno
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Victor S C Fung
- Neurology Department, Movement Disorders Unit, Westmead Hospital, NSW, Sydney, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Kailash P Bhatia
- UCL Queen Square Institute of Neurology Department of Clinical and Movement Neurosciences, Queen Square, London WC1N 3BG, United Kingdom
| | - Bettina Balint
- Department of Neurology, University Hospital Heidelberg, Germany.
| |
Collapse
|
16
|
Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Fonzo AD. A Practical Approach to Early-Onset Parkinsonism. JOURNAL OF PARKINSONS DISEASE 2021; 12:1-26. [PMID: 34569973 PMCID: PMC8842790 DOI: 10.3233/jpd-212815] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early-onset parkinsonism (EO parkinsonism), defined as subjects with disease onset before the age of 40 or 50 years, can be the main clinical presentation of a variety of conditions that are important to differentiate. Although rarer than classical late-onset Parkinson’s disease (PD) and not infrequently overlapping with forms of juvenile onset PD, a correct diagnosis of the specific cause of EO parkinsonism is critical for offering appropriate counseling to patients, for family and work planning, and to select the most appropriate symptomatic or etiopathogenic treatments. Clinical features, radiological and laboratory findings are crucial for guiding the differential diagnosis. Here we summarize the most important conditions associated with primary and secondary EO parkinsonism. We also proposed a practical approach based on the current literature and expert opinion to help movement disorders specialists and neurologists navigate this complex and challenging landscape.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Emanuele Frattini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Alessio Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
17
|
Siddique U, Choudhury S, Chatterjee K, Rahman S, Bhansali S, Mondal B, Basu P, Kumar H. A longitudinal quantitative analysis of gait in patients with SCA-12. Clin Park Relat Disord 2021; 5:100102. [PMID: 34988426 PMCID: PMC8710409 DOI: 10.1016/j.prdoa.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Spinocerebellar ataxia type 12 (SCA 12) is characterized by late onset tremor, ataxia and pyramidal signs. Parkinsonism and cognitive decline may appear with time. It is considered as slowly progressive but temporal evolution of symptoms has not been reported. METHOD We report the evolution of symptoms in three SCA12 patients followed over a range of 5-6 years. We focused on the evolution of gait abnormality as it becomes the most disabling symptom as disease advances. Two-dimensional gait parameters were studied using an electronic walkway at various time points to measure objective changes in gait. RESULT All patients presented with tremor in the upper extremity at baseline which progressed non-uniformly over the years. Progression of gait variability measures of step length, stance time and step time were also observed. CONCLUSION Gait characteristics such as variability may precede clinical gait abnormality and could serve as a sensitive marker for disease progression for better therapeutic intervention in disease management. Future studies with larger sample size should be undertaken to conclusively validate this observation.
Collapse
Affiliation(s)
- Ummatul Siddique
- Department of Neurology, Institute of Neurosciences Kolkata, India
| | | | | | - Simin Rahman
- Department of Neurology, Institute of Neurosciences Kolkata, India
| | - Sakhi Bhansali
- Department of Neurology, Institute of Neurosciences Kolkata, India
| | - Banashree Mondal
- Department of Neurology, Institute of Neurosciences Kolkata, India
| | - Purba Basu
- Department of Neurology, Institute of Neurosciences Kolkata, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, India
| |
Collapse
|
18
|
Borbolla-Jiménez FV, Del Prado-Audelo ML, Cisneros B, Caballero-Florán IH, Leyva-Gómez G, Magaña JJ. New Perspectives of Gene Therapy on Polyglutamine Spinocerebellar Ataxias: From Molecular Targets to Novel Nanovectors. Pharmaceutics 2021; 13:1018. [PMID: 34371710 PMCID: PMC8309146 DOI: 10.3390/pharmaceutics13071018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Seven of the most frequent spinocerebellar ataxias (SCAs) are caused by a pathological expansion of a cytosine, adenine and guanine (CAG) trinucleotide repeat located in exonic regions of unrelated genes, which in turn leads to the synthesis of polyglutamine (polyQ) proteins. PolyQ proteins are prone to aggregate and form intracellular inclusions, which alter diverse cellular pathways, including transcriptional regulation, protein clearance, calcium homeostasis and apoptosis, ultimately leading to neurodegeneration. At present, treatment for SCAs is limited to symptomatic intervention, and there is no therapeutic approach to prevent or reverse disease progression. This review provides a compilation of the experimental advances obtained in cell-based and animal models toward the development of gene therapy strategies against polyQ SCAs, providing a discussion of their potential application in clinical trials. In the second part, we describe the promising potential of nanotechnology developments to treat polyQ SCA diseases. We describe, in detail, how the design of nanoparticle (NP) systems with different physicochemical and functionalization characteristics has been approached, in order to determine their ability to evade the immune system response and to enhance brain delivery of molecular tools. In the final part of this review, the imminent application of NP-based strategies in clinical trials for the treatment of polyQ SCA diseases is discussed.
Collapse
Affiliation(s)
- Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Programa de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Departamento de Farmacia, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México 07360, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de México 14380, Mexico;
| |
Collapse
|
19
|
Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol Commun 2021; 9:98. [PMID: 34034831 PMCID: PMC8145836 DOI: 10.1186/s40478-021-01201-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Short tandem repeat (STR) expansion disorders are an important cause of human neurological disease. They have an established role in more than 40 different phenotypes including the myotonic dystrophies, Fragile X syndrome, Huntington's disease, the hereditary cerebellar ataxias, amyotrophic lateral sclerosis and frontotemporal dementia. MAIN BODY STR expansions are difficult to detect and may explain unsolved diseases, as highlighted by recent findings including: the discovery of a biallelic intronic 'AAGGG' repeat in RFC1 as the cause of cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS); and the finding of 'CGG' repeat expansions in NOTCH2NLC as the cause of neuronal intranuclear inclusion disease and a range of clinical phenotypes. However, established laboratory techniques for diagnosis of repeat expansions (repeat-primed PCR and Southern blot) are cumbersome, low-throughput and poorly suited to parallel analysis of multiple gene regions. While next generation sequencing (NGS) has been increasingly used, established short-read NGS platforms (e.g., Illumina) are unable to genotype large and/or complex repeat expansions. Long-read sequencing platforms recently developed by Oxford Nanopore Technology and Pacific Biosciences promise to overcome these limitations to deliver enhanced diagnosis of repeat expansion disorders in a rapid and cost-effective fashion. CONCLUSION We anticipate that long-read sequencing will rapidly transform the detection of short tandem repeat expansion disorders for both clinical diagnosis and gene discovery.
Collapse
Affiliation(s)
- Sanjog R. Chintalaphani
- School of Medicine, University of New South Wales, Sydney, 2052 Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050 Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010 Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010 Australia
- Molecular Medicine Laboratory and Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW 2137 Australia
| |
Collapse
|
20
|
Kim DH, Kim R, Lee JY, Lee KM. Clinical, Imaging, and Laboratory Markers of Premanifest Spinocerebellar Ataxia 1, 2, 3, and 6: A Systematic Review. J Clin Neurol 2021; 17:187-199. [PMID: 33835738 PMCID: PMC8053554 DOI: 10.3988/jcn.2021.17.2.187] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Premanifest mutation carriers with spinocerebellar ataxia (SCA) can exhibit subtle abnormalities before developing ataxia. We summarized the preataxic manifestations of SCA1, -2, -3, and -6, and their associations with ataxia onset. Methods We included studies of the premanifest carriers of SCA published between January 1998 and December 2019 identified in Scopus and PubMed by searching for terms including ‘spinocerebellar ataxia’ and several synonyms of ‘preataxic manifestation’. We systematically reviewed the results obtained in studies categorized based on clinical, imaging, and laboratory markers. Results We finally performed a qualitative analysis of 48 papers. Common preataxic manifestations appearing in multiple SCA subtypes were muscle cramps, abnormal muscle reflexes, instability in gait and posture, lower Composite Cerebellar Functional Severity scores, abnormalities in video-oculography and transcranial magnetic stimulation, and gray-matter loss and volume reduction in the brainstem and cerebellar structures. Also, decreased sensory amplitudes in nerve conduction studies were observed in SCA2. Eotaxin and neurofilament light-chain levels were revealed as sensitive blood biomarkers in SCA3. Concerning potential predictive markers, hyporeflexia and abnormalities of somatosensory evoked potentials showed correlations with the time to ataxia onset in SCA2 carriers. However, no longitudinal data were found for the other SCA gene carriers. Conclusions Our results suggest that preataxic manifestations vary among SCA1, -2, -3, and -6, with some subtypes sharing specific features. Combining various markers into a standardized index for premanifest carriers may be useful for early screening and assessing the risk of disease progression in SCA carriers.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Jee Young Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Kyoung Min Lee
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Ganguly J, Jog M. Tauopathy and Movement Disorders-Unveiling the Chameleons and Mimics. Front Neurol 2020; 11:599384. [PMID: 33250855 PMCID: PMC7674803 DOI: 10.3389/fneur.2020.599384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spectrum of tauopathy encompasses heterogenous group of neurodegenerative disorders characterized by neural or glial deposition of pathological protein tau. Clinically they can present as cognitive syndromes, movement disorders, motor neuron disease, or mixed. The heterogeneity in clinical presentation, genetic background, and underlying pathology make it difficult to classify and clinically approach tauopathy. In the literature, tauopathies are thus mostly highlighted from pathological perspective. From clinical standpoint, cognitive syndromes are often been focussed while reviewing tauopathies. However, the spectrum of tauopathy has also evolved significantly in the domain of movement disorders and has transgressed beyond the domain of primary tauopathies. Secondary tauopathies from neuroinflammation or autoimmune insults and some other "novel" tauopathies are increasingly being reported in the current literature, while some of them are geographically isolated. Because of the overlapping clinical phenotypes, it often becomes difficult for the clinician to diagnose them clinically and have to wait for the pathological confirmation by autopsy. However, each of these tauopathies has some clinical and radiological signatures those can help in clinical diagnosis and targeted genetic testing. In this review, we have exposed the heterogeneity of tauopathy from a movement disorder perspective and have provided a clinical approach to diagnose them ante mortem before confirmatory autopsy. Additionally, phenotypic variability of these disorders (chameleons) and the look-alikes (mimics) have been discussed with potential clinical pointers for each of them. The review provides a framework within which new and as yet undiscovered entities can be classified in the future.
Collapse
Affiliation(s)
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| |
Collapse
|
23
|
KCND3-Related Neurological Disorders: From Old to Emerging Clinical Phenotypes. Int J Mol Sci 2020; 21:ijms21165802. [PMID: 32823520 PMCID: PMC7461103 DOI: 10.3390/ijms21165802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
KCND3 encodes the voltage-gated potassium ion channel subfamily D member 3, a six trans-membrane protein (Kv4.3), involved in the transient outward K+ current. KCND3 defect causes both cardiological and neurological syndromes. From a neurological perspective, Kv4.3 defect has been associated to SCA type 19/22, a complex neurological disorder encompassing a wide spectrum of clinical features beside ataxia. To better define the phenotypic spectrum and course of KCND3-related neurological disorder, we review the clinical presentation and evolution in 68 reported cases. We delineated two main clinical phenotypes according to the age of onset. Neurodevelopmental disorder with epilepsy and/or movement disorders with ataxia later in the disease course characterized the early onset forms, while a prominent ataxic syndrome with possible cognitive decline, movement disorders, and peripheral neuropathy were observed in the late onset forms. Furthermore, we described a 37-year-old patient with a de novo KCND3 variant [c.901T>C (p.Ser301Pro)], previously reported in dbSNP as rs79821338, and a clinical phenotype paradigmatic of the early onset forms with neurodevelopmental disorder, epilepsy, parkinsonism-dystonia, and ataxia in adulthood, further expanding the clinical spectrum of this condition.
Collapse
|
24
|
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 2020; 134:104635. [PMID: 31669734 PMCID: PMC6980715 DOI: 10.1016/j.nbd.2019.104635] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Collapse
Affiliation(s)
| | - Lauren R Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
26
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
27
|
How to approach a patient with parkinsonism - red flags for atypical parkinsonism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:1-34. [PMID: 31779810 DOI: 10.1016/bs.irn.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinsonism is a clinical syndrome defined by bradykinesia plus rigidity or tremor. Though most commonly encountered in the setting of idiopathic Parkinson's disease, a number of neurodegenerative, structural, metabolic and toxic neurological disorders can result in parkinsonism. Accurately diagnosing the underlying cause of parkinsonism is of both therapeutic and prognostic relevance, especially as we enter the era of disease-modifying treatment trials for neurodegenerative disorders. Being aware of the wide array of potential causes of parkinsonism is of paramount importance for clinicians. In this chapter, we present a pragmatic clinical approach to patients with parkinsonism, specifically focusing on 'red flags', which should alert one to consider diagnoses other than idiopathic Parkinson's disease.
Collapse
|
28
|
Chen SJ, Lee NC, Chien YH, Hwu WL, Lin CH. Heterogeneous nonataxic phenotypes of spinocerebellar ataxia in a Taiwanese population. Brain Behav 2019; 9:e01414. [PMID: 31523939 PMCID: PMC6790309 DOI: 10.1002/brb3.1414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/10/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) presents with variable clinical presentations in addition to ataxia. The aim of this study was to reappraise the diverse nonataxic clinical characteristics of the five most common SCA subtypes in the Asian population. METHODS The clinical presentations of 90 patients with genetically confirmed SCA1, SCA2, SCA3, SCA6, or SCA17 were assessed retrospectively between November 2008 and September 2018 at a tertiary referral center in Taiwan. RESULTS Parkinsonism was the most common nonataxic phenotype (21.1%), with a greater prevalence than Caucasian and other Asian SCA carriers. Patients with parkinsonism feature had fewer CAG repeats in SCA2 (31.0 ± 4.5 vs. 36.9 ± 6.0, p = .03) and SCA3 (65.6 ± 7.9 vs. 70.0 ± 4.2, p = .02) compared to those with pure ataxia presentation. The average age of symptom onset was significantly higher in the parkinsonism group of SCA2 (51.5 ± 8.9 vs. 35.3 ± 12.6 years, p = .007) than those with pure ataxia. Focal or segmental dystonia was identified in 4.4% of SCA patients (n = 2 each SCA2 and SCA3). Nonmotor symptoms, including impaired cognition (6.1% of SCA2 and 8.3% of SCA3 patients) and depression (9.1% of SCA2 and 8.3% of SCA3 patients), were also common nonataxic features in our SCA patients. CONCLUSIONS Parkinsonism, dystonia, and cognitive-psychiatric symptoms are common features in patients with SCA mutations in our population. Our study identifies a different clinical spectrum of SCA1, SCA2, SCA3, SCA6, and SCA17 compared to Caucasians.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
29
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Lin CH, Chen PL, Tai CH, Lin HI, Chen CS, Chen ML, Wu RM. A clinical and genetic study of early-onset and familial parkinsonism in taiwan: An integrated approach combining gene dosage analysis and next-generation sequencing. Mov Disord 2019; 34:506-515. [PMID: 30788857 PMCID: PMC6594087 DOI: 10.1002/mds.27633] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
Background Recent genetic progress has allowed for the molecular diagnosis of Parkinson's disease. However, genetic causes of PD vary widely in different ethnicities. Mutational frequencies and clinical phenotypes of genes associated with PD in Asian populations are largely unknown. The objective of this study was to identify the mutational frequencies and clinical spectrums of multiple PD‐causative genes in a Taiwanese PD cohort. Methods A total of 571 participants including 324 patients with early‐onset parkinsonism (onset age, <50 years) and 247 parkinsonism pedigrees were recruited at a tertiary referral center in Taiwan from 2002 to 2017. Genetic causes were identified by an integrated approach including gene dosage analysis, a targeted next‐generation sequencing panel containing 40 known PD‐causative genes, repeat‐primed polymerase chain reaction, and whole‐exome sequencing analysis. Results Thirty of the 324 patients with early‐onset parkinsonism (9.3%) were found to carry mutations in Parkin, PINK1, or PLA2G6 or had increased trinucleotide repeats in SCA8. Twenty‐nine of 109 probands with autosomal‐recessive inheritance of parkinsonism (26.6%) were found to carry mutations in Parkin, PINK1, GBA, or HTRA2. The genetic causes for the 138 probands with an autosomal‐dominant inheritance pattern of parkinsonism were more heterogeneous. Seventeen probands (12.3%) carried pathogenic mutations in LRRK2, VPS35, MAPT, GBA, DNAJC13, C9orf72, SCA3, or SCA17. A novel missense mutation in the UQCRC1 gene was found in a family with autosomal‐dominant inheritance parkinsonism via whole‐exome sequencing analysis. Conclusions Our findings provide a better understanding of the genetic architecture of PD in eastern Asia and broaden the clinical spectrum of PD‐causing mutations. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Lung Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hang-I Lin
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Shan Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Ling Chen
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, Centre of Parkinson and Movement Disorders, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Converging pathways in neurodegeneration, from genetics to mechanisms. Nat Neurosci 2018; 21:1300-1309. [PMID: 30258237 DOI: 10.1038/s41593-018-0237-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases cause progressive loss of cognitive and/or motor function and pose major challenges for societies with rapidly aging populations. Human genetics studies have shown that disease-causing rare mutations and risk-associated common alleles overlap in different neurodegenerative disorders. Here we review the intricate genotype-phenotype relationships and common cellular pathways emerging from recent genetic and mechanistic studies. Shared pathological mechanisms include defective protein quality-control and degradation pathways, dysfunctional mitochondrial homeostasis, stress granules, and maladaptive innate immune responses. Research efforts have started to bear fruit, as shown by recent treatment successes and an encouraging therapeutic outlook.
Collapse
|
32
|
Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson's disease. Rev Neurol (Paris) 2018; 174:628-643. [PMID: 30245141 DOI: 10.1016/j.neurol.2018.08.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023]
Abstract
The cause of Parkinson's disease (PD) remains unknown in most patients. Since 1997, with the first genetic mutation known to cause PD described in SNCA gene, many other genes with Mendelian inheritance have been identified. We summarize genetic, clinical and neuropathological findings related to the 27 genes reported in the literature since 1997, associated either with autosomal dominant (AD): LRRK2, SNCA, VPS35, GCH1, ATXN2, DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, CHCHD2, and GBA; or autosomal recessive (AR) inheritance: PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SPG11, VPS13C, PODXL, and PTRHD1; or an X-linked transmission: RAB39B. Clinical and neuropathological variability among genes is great. LRRK2 mutation carriers present a phenotype similar to those with idiopathic PD whereas, depending on the SNCA mutations, the phenotype ranges from early onset typical PD to dementia with Lewy bodies, including many other atypical forms. DNAJC6 nonsense mutations lead to a very severe phenotype whereas DNAJC6 missense mutations cause a more typical form. PRKN, PINK1 and DJ1 cases present with typical early onset PD with slow progression, whereas other AR genes present severe atypical Parkinsonism. RAB39B is responsible for a typical phenotype in women and a variable phenotype in men. GBA is a major PD risk factor often associated with dementia. A growing number of reported genes described as causal genes (DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, and CHCHD2) are still awaiting replication or indeed have not been replicated, thus raising questions as to their pathogenicity. Phenotypic data collection and next generation sequencing of large numbers of cases and controls are needed to differentiate pathogenic dominant mutations with incomplete penetrance from rare, non-pathogenic variants. Although known genes cause a minority of PD cases, their identification will lead to a better understanding their pathological mechanisms, and may contribute to patient care, genetic counselling, prognosis determination and finding new therapeutic targets.
Collapse
Affiliation(s)
- A Lunati
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - S Lesage
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - A Brice
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France; Département de génétique, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| |
Collapse
|
33
|
Cheng N, Wied HM, Gaul JJ, Doyle LE, Reich SG. SCA2 presenting as a focal dystonia. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2018; 5:6. [PMID: 30123518 PMCID: PMC6090825 DOI: 10.1186/s40734-018-0073-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 11/14/2022]
Abstract
BACKGROUND Spinocerebellar ataxia 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG repeat expansions in ATXN2 on chromosome 12q24. Patients present with adult-onset progressive gait ataxia, slow saccades, nystagmus, dysarthria and peripheral neuropathy. Dystonia is known to occur as SCA2 advances, but is rarely the presenting symptom. CASE PRESENTATION A 43-year-old right handed woman presented with focal dystonia of the right hand which started two years earlier with difficulty writing. There were only mild cerebellar signs. Her mother was reported to have a progressive gait disorder and we subsequently learned that she had SCA2. A total of 10 maternal family members were similarly affected. Over the course of 10 years, the patient's cerebellar signs progressed only mildly however the dystonia worsened to the extent of inability to use her right hand. Dystonia did not improve significantly with botulinum toxin, levodopa or trihexyphenidyl, but has shown marked improvement since DBS implantation in the GPi. CONCLUSIONS We describe a patient with SCA2 who presented with focal dystonia of the right upper extremity. Subtle cerebellar signs as well as the family history became especially important given the absence of predominant gait ataxia. Our case emphasizes that focal dystonia is not only a feature of SCA2, but can also rarely be the presenting sign as well as the most prominent feature during the disease course.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Heather M. Wied
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | | | - Lauren E. Doyle
- Department of Genetic Counseling, University of North Carolina Greensboro School of Health and Human Sciences, Greensboro, NC USA
| | - Stephen G. Reich
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
34
|
Lee WW, Jeon B, Kim R. Expanding the Spectrum of Dopa-Responsive Dystonia (DRD) and Proposal for New Definition: DRD, DRD-plus, and DRD Look-alike. J Korean Med Sci 2018; 33:e184. [PMID: 29983692 PMCID: PMC6033101 DOI: 10.3346/jkms.2018.33.e184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022] Open
Abstract
Previously, we defined DRD as a syndrome of selective nigrostriatal dopamine deficiency caused by genetic defects in the dopamine synthetic pathway without nigral cell loss. DRD-plus also has the same etiologic background with DRD, but DRD-plus patients have more severe features that are not seen in DRD because of the severity of the genetic defect. However, there have been many reports of dystonia responsive to dopaminergic drugs that do not fit into DRD or DRD-plus (genetic defects in the dopamine synthetic pathway without nigral cell loss). We reframed the concept of DRD/DRD-plus and proposed the concept of DRD look-alike to include the additional cases described above. Examples of dystonia that is responsive to dopaminergic drugs include the following: transportopathies (dopamine transporter deficiency; vesicular monoamine transporter 2 deficiency); SOX6 mutation resulting in a developmentally decreased number of nigral cells; degenerative disorders with progressive loss of nigral cells (juvenile Parkinson's disease; pallidopyramidal syndrome; spinocerebellar ataxia type 3), and disorders that are not known to affect the nigrostriatal dopaminergic system (DYT1; GLUT1 deficiency; myoclonus-dystonia; ataxia telangiectasia). This classification will help with an etiologic diagnosis as well as planning the work up and guiding the therapy.
Collapse
Affiliation(s)
- Woong-Woo Lee
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Ryul Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Miura M, Numasawa Y, Takahisa M, Ozaki K, Irioka T, Nishida Y, Ishibashi S, Yokota T. Levodopa-responsive truncal tremor in a patient with spinocerebellar ataxia type 3. J Neurol Sci 2018; 392:32-33. [PMID: 30097150 DOI: 10.1016/j.jns.2018.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Motoki Miura
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Yoshiyuki Numasawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan.
| | - Mikami Takahisa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Kokoro Ozaki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Takashi Irioka
- Department of Neurology, Yokosuka Kyosai Hospital, Japan
| | - Yoichiro Nishida
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Japan
| |
Collapse
|
36
|
Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol 2018; 265:2764-2772. [DOI: 10.1007/s00415-018-8876-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
|
37
|
Groth CL, Berman BD. Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype. Tremor Other Hyperkinet Mov (N Y) 2018; 8:534. [PMID: 29416937 PMCID: PMC5801325 DOI: 10.7916/d80s0zjq] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism.
Collapse
Affiliation(s)
- Christopher L. Groth
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neurology Section, Denver VA Medical Center, Denver, CO, USA
| |
Collapse
|
38
|
Clinical subtypes and genetic heterogeneity: of lumping and splitting in Parkinson disease. Curr Opin Neurol 2018; 29:727-734. [PMID: 27749396 DOI: 10.1097/wco.0000000000000384] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Recent studies on clinical, genetic and pathological heterogeneity of Parkinson disease have renewed the old debate whether we should think of Parkinson disease as one disease with variations, or as a group of independent diseases that happen to present with similar phenotypes. Here, we provide an overview of where the debate is coming from, and how recent findings in clinical subtyping, genetics and clinico-pathological correlation have shaped this controversy over the last few years. RECENT FINDINGS New and innovative clinical diagnostic criteria for Parkinson disease have been proposed and await validation. Studies using functional imaging or wearable biosensors, as well as biomarker studies, provide new support for the validity of the traditional clinical subtypes of Parkinson disease (tremor-dominant versus akinetic-rigid or postural instability/gait difficulty). A recent cluster analysis (as unbiased data-driven approach to subtyping) included a wide spectrum of nonmotor variables, and showed correlation of the proposed subtypes with disease progression in a longitudinal analysis. New genetic factors contributing to Parkinson disease susceptibility continue to be identified, including rare mutations causing monogenetic disease, common variants with small effect size and risk factors (like mutations in the gene for glucocerebrosidase) that fall in between the two other categories. Recent studies show some limited correlation between genetic factors and clinical heterogeneity. Despite some variations in patterns of pathology, Lewy bodies are still the hallmark of Parkinson disease, including the vast majority of genetic subgroups. SUMMARY Evidence of clinical, genetic and pathological heterogeneity of Parkinson disease continues to emerge, but clearly defined subtypes that hold up in more than one of these domains remain elusive. For research to identify such subtypes, splitting is likely the way forward; until then, for clinical practice, lumping remains the more pragmatic approach.
Collapse
|
39
|
Pipeline to gene discovery - Analysing familial Parkinsonism in the Queensland Parkinson's Project. Parkinsonism Relat Disord 2018; 49:34-41. [PMID: 29329938 DOI: 10.1016/j.parkreldis.2017.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Family based study designs provide an informative resource to identify disease-causing mutations. The Queensland Parkinson's Project (QPP) has been involved in numerous genetic screening studies; however, details of the families enrolled into the register have not been comprehensively reported. This article characterises the families enrolled in the QPP and summarises monogenic forms of hereditary Parkinsonism found in the register. METHOD The presence of pathogenic point mutations and copy number variations (CNVs) were, generally, screened in a sample of over 1000 PD patients from the total of 1725. Whole exome sequencing (WES) was performed on eighteen probands from multiplex families. RESULTS The QPP contains seventeen incidences of confirmed monogenic forms of PD, including LRRK2 p.G2019S, VPS35 p.D620N, SNCA duplications and PARK2 p.G430D (hom) & exon 4 deletion (hom). Of these seventeen, five belong to multi-incident families, while another eight have a family history of at least one other case of PD. In additional families, WES did not identify known forms of monogenic Parkinsonism; however, three heterozygous mutations in PARK2, p.R275W, p.Q34fs, and a 40bp deletion in exon 3 were identified. Of these three mutations, only the 40bp deletion segregated with disease in a dominant inheritance pattern. CONCLUSION Eighteen probands have screened negative for known CNVs and mutations that cause clear monogenic forms of PD. Each family is a candidate for further genetic analysis to identify genetic variants segregating with disease. The families enrolled in the QPP provide a useful resource to aid in identifying novel forms of monogenic PD.
Collapse
|
40
|
Matarazzo M, Wile D, Mackenzie M, Stoessl AJ. PET Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:177-223. [DOI: 10.1016/bs.irn.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Chew S, Vodopivec I, Berkowitz AL. Clinical Reasoning: An 82-year-old man with worsening gait. Neurology 2017; 89:e246-e252. [DOI: 10.1212/wnl.0000000000004672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord 2017; 32:1504-1523. [PMID: 29124790 PMCID: PMC5726430 DOI: 10.1002/mds.27193] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
Clinical-pathological studies remain the gold-standard for the diagnosis of Parkinson's disease (PD). However, mounting data from genetic PD autopsies challenge the diagnosis of PD based on Lewy body pathology. Most of the confirmed genetic risks for PD show heterogenous neuropathology, even within kindreds, which may or may not include Lewy body pathology. We review the literature of genetic PD autopsies from cases with molecularly confirmed PD or parkinsonism and summarize main findings on SNCA (n = 25), Parkin (n = 20, 17 bi-allelic and 3 heterozygotes), PINK1 (n = 5, 1 bi-allelic and 4 heterozygotes), DJ-1 (n = 1), LRRK2 (n = 55), GBA (n = 10 Gaucher disease patients with parkinsonism), DNAJC13, GCH1, ATP13A2, PLA2G6 (n = 8 patients, 2 with PD), MPAN (n = 2), FBXO7, RAB39B, and ATXN2 (SCA2), as well as on 22q deletion syndrome (n = 3). Findings from autopsies of heterozygous mutation carriers of genes that are traditionally considered recessively inherited are also discussed. Lewy bodies may be present in syndromes clinically distinctive from PD (eg, MPAN-related neurodegeneration) and absent in patients with clinical PD syndrome (eg, LRRK2-PD or Parkin-PD). Therefore, the authors can conclude that the presence of Lewy bodies are not specific to the diagnosis of PD and that PD can be diagnosed even in the absence of Lewy body pathology. Interventions that reduce alpha-synuclein load may be more justified in SNCA-PD or GBA-PD than in other genetic forms of PD. The number of reported genetic PD autopsies remains small, and there are limited genotype-clinical-pathological-phenotype studies. Therefore, larger series of autopsies from genetic PD patients are required. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
43
|
Schüle B, McFarland KN, Lee K, Tsai YC, Nguyen KD, Sun C, Liu M, Byrne C, Gopi R, Huang N, Langston JW, Clark T, Gil FJJ, Ashizawa T. Parkinson's disease associated with pure ATXN10 repeat expansion. NPJ PARKINSONS DISEASE 2017; 3:27. [PMID: 28890930 PMCID: PMC5585403 DOI: 10.1038/s41531-017-0029-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
Large, non-coding pentanucleotide repeat expansions of ATTCT in intron 9 of the ATXN10 gene typically cause progressive spinocerebellar ataxia with or without seizures and present neuropathologically with Purkinje cell loss resulting in symmetrical cerebellar atrophy. These ATXN10 repeat expansions can be interrupted by sequence motifs which have been attributed to seizures and are likely to act as genetic modifiers. We identified a Mexican kindred with multiple affected family members with ATXN10 expansions. Four affected family members showed clinical features of spinocerebellar ataxia type 10 (SCA10). However, one affected individual presented with early-onset levodopa-responsive parkinsonism, and one family member carried a large repeat ATXN10 expansion, but was clinically unaffected. To characterize the ATXN10 repeat, we used a novel technology of single-molecule real-time (SMRT) sequencing and CRISPR/Cas9-based capture. We sequenced the entire span of ~5.3-7.0 kb repeat expansions. The Parkinson's patient carried an ATXN10 expansion with no repeat interruption motifs as well as an unaffected sister. In the siblings with typical SCA10, we found a repeat pattern of ATTCC repeat motifs that have not been associated with seizures previously. Our data suggest that the absence of repeat interruptions is likely a genetic modifier for the clinical presentation of l-Dopa responsive parkinsonism, whereas repeat interruption motifs contribute clinically to epilepsy. Repeat interruptions are important genetic modifiers of the clinical phenotype in SCA10. Advanced sequencing techniques now allow to better characterize the underlying genetic architecture for determining accurate phenotype-genotype correlations.
Collapse
Affiliation(s)
- Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease and The McKnight Brain Institute, University of Florida, College of Medicine, Department of Neurology, Gainesville, FL 32610 USA
| | - Kelsey Lee
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | | | | | - Chao Sun
- Biogen Idec, Cambridge, MA 02142 USA
| | - Mei Liu
- Biogen Idec, Cambridge, MA 02142 USA
| | - Christie Byrne
- Parkinson's Institute and Clinical Center, Sunnyvale, CA 94028 USA
| | - Ramesh Gopi
- Silicon Valley Diagnostic Imaging, El Camino Hospital, Mountain View, CA 94040 USA
| | - Neng Huang
- Valley Parkinson Clinic, Los Gatos, CA 95032 USA
| | | | - Tyson Clark
- Pacific Biosciences, Menlo Park, CA 94025 USA
| | | | | |
Collapse
|
44
|
Okahara Y, Takano K, Komori T, Nagao M, Iwadate Y, Kansaku K. Operation of a P300-based brain-computer interface by patients with spinocerebellar ataxia. Clin Neurophysiol Pract 2017; 2:147-153. [PMID: 30214988 PMCID: PMC6123944 DOI: 10.1016/j.cnp.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/12/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Objective We investigated the efficacy of a P300-based brain-computer interface (BCI) for patients with spinocerebellar ataxia (SCA), which is often accompanied by cerebellar impairment. Methods Eight patients with SCA and eight age- and gender-matched healthy controls were instructed to input Japanese hiragana characters using the P300-based BCI with green/blue flicker. All patients depended on some assistance in their daily lives (modified Rankin scale: mean 3.5). The chief symptom was cerebellar ataxia; no cognitive deterioration was present. A region-based, two-step P300-based BCI was used. During the P300 task, eight-channel EEG data were recorded, and a linear discriminant analysis distinguished the target from other nontarget regions of the matrix. Results The mean online accuracy in BCI operation was 82.9% for patients with SCA and 83.2% for controls; no significant difference was detected. Conclusion The P300-based BCI was operated successfully not only by healthy controls but also by individuals with SCA. Significance These results suggest that the P300-based BCI may be applicable for patients with SCA.
Collapse
Affiliation(s)
- Yoji Okahara
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Tetsuo Komori
- Department of Neurology, National Hakone Hospital, Odawara, Kanagawa 250-0032, Japan
| | - Masahiro Nagao
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
45
|
Kim YE, Jeon B, Farrer MJ, Scott E, Guella I, Park SS, Kim JM, Park HY, Kim A, Son YD, Cho ZH. SCA2 family presenting as typical Parkinson's disease: 34 year follow up. Parkinsonism Relat Disord 2017; 40:69-72. [DOI: 10.1016/j.parkreldis.2017.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 12/27/2022]
|
46
|
Alves-Cruzeiro JMDC, Mendonça L, Pereira de Almeida L, Nóbrega C. Motor Dysfunctions and Neuropathology in Mouse Models of Spinocerebellar Ataxia Type 2: A Comprehensive Review. Front Neurosci 2016; 10:572. [PMID: 28018166 PMCID: PMC5156697 DOI: 10.3389/fnins.2016.00572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant ataxia caused by an expansion of CAG repeats in the exon 1 of the gene ATXN2, conferring a gain of toxic function that triggers the appearance of the disease phenotype. SCA2 is characterized by several symptoms including progressive gait ataxia and dysarthria, slow saccadic eye movements, sleep disturbances, cognitive impairments, and psychological dysfunctions such as insomnia and depression, among others. The available treatments rely on palliative care, which mitigate some of the major symptoms but ultimately fail to block the disease progression. This persistent lack of effective therapies led to the development of several models in yeast, C. elegans, D. melanogaster, and mice to serve as platforms for testing new therapeutic strategies and to accelerate the research on the complex disease mechanisms. In this work, we review 4 transgenic and 1 knock-in mouse that exhibit a SCA2-related phenotype and discuss their usefulness in addressing different scientific problems. The knock-in mice are extremely faithful to the human disease, with late onset of symptoms and physiological levels of mutant ataxin-2, while the other transgenic possess robust and well-characterized motor impairments and neuropathological features. Furthermore, a new BAC model of SCA2 shows promise to study the recently explored role of non-coding RNAs as a major pathogenic mechanism in this devastating disorder. Focusing on specific aspects of the behavior and neuropathology, as well as technical aspects, we provide a highly practical description and comparison of all the models with the purpose of creating a useful resource for SCA2 researchers worldwide.
Collapse
Affiliation(s)
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Pharmacy, University of CoimbraCoimbra, Portugal
| | - Clévio Nóbrega
- Department of Biomedical Sciences and Medicine and Center for Biomedical Research, University of Algarve Faro, Portugal
| |
Collapse
|
47
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
48
|
Robertson EE, Hall DA, McAsey AR, O'Keefe JA. Fragile X-associated tremor/ataxia syndrome: phenotypic comparisons with other movement disorders. Clin Neuropsychol 2016; 30:849-900. [PMID: 27414076 PMCID: PMC7336900 DOI: 10.1080/13854046.2016.1202239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/12/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The purpose of this paper is to review the typical cognitive and motor impairments seen in fragile X-associated tremor/ataxia syndrome (FXTAS), essential tremor (ET), Parkinson disease (PD), spinocerebellar ataxias (SCAs), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in order to enhance diagnosis of FXTAS patients. METHODS We compared the cognitive and motor phenotypes of FXTAS with each of these other movement disorders. Relevant neuropathological and neuroimaging findings are also reviewed. Finally, we describe the differences in age of onset, disease severity, progression rates, and average lifespan in FXTAS compared to ET, PD, SCAs, MSA, and PSP. We conclude with a flow chart algorithm to guide the clinician in the differential diagnosis of FXTAS. RESULTS By comparing the cognitive and motor phenotypes of FXTAS with the phenotypes of ET, PD, SCAs, MSA, and PSP we have clarified potential symptom overlap while elucidating factors that make these disorders unique from one another. In summary, the clinician should consider a FXTAS diagnosis and testing for the Fragile X mental retardation 1 (FMR1) gene premutation if a patient over the age of 50 (1) presents with cerebellar ataxia and/or intention tremor with mild parkinsonism, (2) has the middle cerebellar peduncle (MCP) sign, global cerebellar and cerebral atrophy, and/or subcortical white matter lesions on MRI, or (3) has a family history of fragile X related disorders, intellectual disability, autism, premature ovarian failure and has neurological signs consistent with FXTAS. Peripheral neuropathy, executive function deficits, anxiety, or depression are supportive of the diagnosis. CONCLUSIONS Distinct profiles in the cognitive and motor domains between these movement disorders may guide practitioners in the differential diagnosis process and ultimately lead to better medical management of FXTAS patients.
Collapse
Affiliation(s)
- Erin E Robertson
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Deborah A Hall
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| | - Andrew R McAsey
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
| | - Joan A O'Keefe
- a Department of Anatomy and Cell Biology , Rush University , Chicago , IL , USA
- b Department of Neurological Sciences , Rush University , Chicago , IL , USA
| |
Collapse
|
49
|
Marcián V, Filip P, Bareš M, Brázdil M. Cerebellar Dysfunction and Ataxia in Patients with Epilepsy: Coincidence, Consequence, or Cause? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2016; 6:376. [PMID: 27375960 PMCID: PMC4925921 DOI: 10.7916/d8kh0nbt] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022]
Abstract
Basic epilepsy teachings assert that seizures arise from the cerebral cortex, glossing over infratentorial structures such as the cerebellum that are believed to modulate rather than generate seizures. Nonetheless, ataxia and other clinical findings in epileptic patients are slowly but inevitably drawing attention to this neural node. Tracing the evolution of this line of inquiry from the observed coincidence of cerebellar atrophy and cerebellar dysfunction (most apparently manifested as ataxia) in epilepsy to their close association, this review considers converging clinical, physiological, histological, and neuroimaging evidence that support incorporating the cerebellum into epilepsy pathology. We examine reports of still controversial cerebellar epilepsy, studies of cerebellar stimulation alleviating paroxysmal epileptic activity, studies and case reports of cerebellar lesions directly associated with seizures, and conditions in which ataxia is accompanied by epileptic seizures. Finally, the review substantiates the role of this complex brain structure in epilepsy whether by coincidence, as a consequence of deleterious cortical epileptic activity or antiepileptic drugs, or the very cause of the disease.
Collapse
Affiliation(s)
- Václav Marcián
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic.,First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic
| | - Martin Bareš
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic; Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Milan Brázdil
- First Department of Neurology, St. Anne's University Hospital, Brno, Czech Republic; Medical Faculty of Masaryk University, Brno, Czech Republic; Behavioral and Social Neuroscience Research Group, CEITEC (Central European Institute of Technology), Masaryk University, Brno, Czech Republic
| |
Collapse
|