1
|
Thiyagarajan G, Muthukumaran P, Prabhu D, Balasubramanyam M, Baddireddi LS. Syzygium cumini ameliorates high fat diet induced glucose intolerance, insulin resistance, weight gain, hepatic injury and nephrotoxicity through modulation of PTP1B and PPARγ signaling. ENVIRONMENTAL TOXICOLOGY 2024; 39:1086-1098. [PMID: 37815491 DOI: 10.1002/tox.23989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Metabolic disorders are majorly associated with insulin resistance and an impaired glucose tolerance. Since, many of the currently available drugs exhibit adverse effects and are resistant to therapies, natural products are a promising alternate in the alleviation of complex metabolic disorders. In the current study, Syzygium cumini methanolic extract (SCE) was investigated for its anti-diabetic and anti-adipogenic potential using C57BL/6 mice fed on high fat diet (HFD). The HFD fed obese mice were treated with 200 mg/kg SCE and compared with positive controls Metformin, Pioglitazone and Sodium Orthovanadate. The biometabolites in SCE were characterized using Fourier transform infrared and gas chromatography and mass spectroscopy. A reduction in blood glucose levels with improved insulin sensitivity and glucose tolerance was observed in SCE-treated HFD obese mice. Histopathological and biochemical investigations showed a reduction in hepatic injury and nephrotoxicity in SCE-administered HFD mice. Results showed inhibition of PTP1B and an upregulation of IRS1 and PKB-mediated signaling in skeletal muscle. A significant decrease in lipid markers such as TC, TG, LDL-c and VLDL-c levels were observed with increased HDL-c in SCE-treated HFD mice. A significant decrease in weight and adiposity was observed in SCE-administered HFD mice in comparison to controls. This decrease could be due to the partial agonism of PPARγ and an increased expression of adiponectin, an insulin sensitizer. Hence, the dual-modulatory effect of SCE, partly due to the presence of 26% Pyrogallol, could be useful in the management of diabetes and its associated maladies.
Collapse
Affiliation(s)
- Gopal Thiyagarajan
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Padmanaban Muthukumaran
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - Durai Prabhu
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Chennai, India
| | | | - Lakshmi Subhadra Baddireddi
- Tissue Culture and Drug Discovery Laboratory, Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
2
|
Patel K, Bora V, Patel B. Sodium orthovanadate exhibits anti-angiogenic, antiapoptotic and blood glucose-lowering effect on colon cancer associated with diabetes. Cancer Chemother Pharmacol 2024; 93:55-70. [PMID: 37755518 DOI: 10.1007/s00280-023-04596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND The presence of type 2 diabetes mellitus increases the risk of developing the colon cancer. The main objective of this study was to determine the role of sodium orthovanadate (SOV) in colon cancer associated with diabetes mellitus by targeting the competitive inhibition of PTP1B. METHODS For in vivo study, high fat diet with low dose streptozotocin model was used for inducing the diabetes mellitus. Colon cancer was induced by injecting 1,2-dimethylhydrazine (25 mg/kg, sc) twice a week. TNM staging and immunohistochemistry (IHC) was carried out for colon cancer tissues. In vitro studies like MTT assay, clonogenic assay, rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry were performed on HCT-116 cell line. CAM assay was performed to examine the anti-angiogenic effect of the drug. RESULTS Sodium orthovanadate reduces the blood glucose level and tumor parameters in the animals. In vitro studies revealed that SOV decreased cell proliferation dose dependently. In addition, SOV induced apoptosis as depicted from rhodamine-123 dye assay and annexin V-FITC assay using flow cytometry as well as p53 IHC staining. SOV showed reduced angiogenesis effect on eggs which was depicted from CAM assay and also from CD34 and E-cadherin IHC staining. CONCLUSIONS Our data suggest that SOV exhibits protective role in colon cancer associated with diabetes mellitus. SOV exhibits anti-proliferative, anti-angiogenic and apoptotic inducing effects hence can be considered for therapeutic switching in diabetic colon cancer.
Collapse
Affiliation(s)
- Kruti Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| |
Collapse
|
3
|
Yang J, Wang ZX, Fang L, Li TS, Liu ZH, Pan Y, Kong LD. Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115688. [PMID: 36067838 DOI: 10.1016/j.jep.2022.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ying Pan
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
4
|
Xu JF, Xia J, Wan Y, Yang Y, Wu JJ, Peng C, Ao H. Vasorelaxant Activities and its Underlying Mechanisms of Magnolia Volatile Oil on Rat Thoracic Aorta Based on Network Pharmacology. Front Pharmacol 2022; 13:812716. [PMID: 35308213 PMCID: PMC8926352 DOI: 10.3389/fphar.2022.812716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Magnolia volatile oil (MVO) is a mixture mainly containing eudesmol and its isomers. This study was to investigate the vasorelaxant effects and the underlying mechanism of MVO in rat thoracic aortas. Method: The present study combined gas chromatography–mass spectrometry (GC-MS) and network pharmacology analysis with in vitro experiments to clarify the mechanisms of MVO against vessel contraction. A compound–target network, compound–target–disease network, protein–protein interaction network, compound–target–pathway network, gene ontology, and pathway enrichment for hypertension were applied to identify the potential active compounds, drug targets, and pathways. Additionally, the thoracic aortic rings with or without endothelium were prepared to explore the underlying mechanisms. The roles of the PI3K-Akt-NO pathways, neuroreceptors, K+ channels, and Ca2+ channels on the vasorelaxant effects of MVO were evaluated through the rat thoracic aortic rings. Results: A total of 29 compounds were found in MVO, which were identified by GC-MS, of which 21 compounds with a content of more than 0.1% were selected for further analysis. The network pharmacology research predicted that beta-caryophyllene, palmitic acid, and (+)-β-selinene might act as the effective ingredients of MVO for the treatment of hypertension. Several hot targets, mainly involving TNF, CHRM1, ACE, IL10, PTGS2, REN, and F2, and pivotal pathways, such as the neuroactive ligand–receptor interaction, the calcium signaling pathway, and the PI3K-Akt signaling, were responsible for the vasorelaxant effect of MVO. As expected, MVO exerted a vasorelaxant effect on the aortic rings pre-contracted by KCl and phenylephrine in an endothelium-dependent and non-endothelium-dependent manner. Importantly, a pre-incubation with indomethacin (Indo), N-nitro-L-arginine methyl ester, methylene blue, wortmannin, and atropine sulfate as well as 4-aminopyridione diminished MVO-induced vasorelaxation, suggesting that the activation of the PI3K-Akt-NO pathway and KV channel were involved in the vasorelaxant effect of MVO, which was consistent with the results of the Kyoto Encyclopedia of Genes and the Genomes. Additionally, MVO could significantly inhibit Ca2+ influx resulting in the contraction of aortic rings, revealing that the inhibition of the calcium signaling pathway exactly participated in the vasorelaxant activity of MVO as predicted by network pharmacology. Conclusion: MVO might be a potent treatment of diseases with vascular dysfunction like hypertension. The underlying mechanisms were related to the PI3K-Akt-NO pathway, KV pathway, as well as Ca2+ channel, which were predicted by the network pharmacology and verified by the experiments in vitro. This study based on network pharmacology provided experimental support for the clinical application of MVO in the treatment of hypertension and afforded a novel research method to explore the activity and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jin-Feng Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| |
Collapse
|
5
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
6
|
Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández F. Approaches to Decrease Hyperglycemia by Targeting Impaired Hepatic Glucose Homeostasis Using Medicinal Plants. Front Pharmacol 2021; 12:809994. [PMID: 35002743 PMCID: PMC8733686 DOI: 10.3389/fphar.2021.809994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022] Open
Abstract
Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.
Collapse
Affiliation(s)
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
7
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
8
|
Yoon SY, Ahn D, Hwang JY, Kang MJ, Chung SJ. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Magnolia officinalis Ameliorates Dehydroepiandrosterone-Induced Polycystic Ovary Syndrome in Rats. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.106447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is a prevalent reproductive and metabolic disorder. Insulin resistance (IR) is highly associated with PCOS and aggravates its symptoms. Thiazolidinediones (TZDs), as insulin sensitizing agents, are PPARγ agonists that improve many of the symptoms of PCOS. The Magnolia officinalis extract (MOE) is a natural peroxisome proliferator activated receptor gamma (PPARγ) agonist that improves insulin sensitivity in experimental models. Objectives: Using a dehydroepiandrosterone (DHEA)-induced rat model of PCOS and IR, this study aimed to explore both the potential beneficial effects and the molecular mechanisms of action of MOE. Methods: Post-pubertal female Sprague Dawley rats were subcutaneously injected daily with DHEA (6 mg/100 g body weight) dissolved in sesame oil for 28 days (n = 30). Age- and weight-matched control rats received only sesame oil (n = 12). Afterward, 16 of the DHEA-injected rats, along with five control rats, were sacrificed for blood and tissue collection. The 14 remaining DHEA-injected rats received either treatment of 30 days of oral MOE (500 mg/kg) dissolved in dimethyl sulfoxide (DMSO) (n = 7), or oral DMSO only (n = 7). Meanwhile, the remaining control rats (n = 7) continued to receive daily oral DMSO for 30 days. At the end of the treatments, the rats were sacrificed for blood and tissue collection. Results: After 28 days, the DHEA-treated rats exhibited an increase in body weight as compared to controls (P < 0.05). DHEA injection induced a PCOS phenotype as evident by a statistically significant (P < 0.05) elevated serum luteinizing hormone (LH), and an increased number of cystically dilated follicles with thicker granulosa compared to controls. PCOS rats showed a statistically significant rise in fasting insulin with an increased homeostatic model assessment index of insulin resistance (HOMA-IR) as compared to controls (P < 0.05). Compared to the control group, PCOS rats had a statistically significant lower ovarian protein expression of PPARγ, insulin receptor substrate 1 (IRS1), and protein kinase B (Akt) by Western Blot (P < 0.05). Conversely, the PCOS group showed an increased mammalian target of rapamycin (mTOR) pathway activity as evident by an increase in the fraction of phosphorylated mTOR to total mTOR compared to the control group (P < 0.05). When treated for 30 days with oral MOE (500 mg/kg), the PCOS rats showed a statistically significant decrease in body weight and serum LH levels as compared to the non-treated PCOS rats (P < 0.05). The number of cystically dilated follicles in the MOE-treated PCOS rats was significantly reduced compared to the non-treated PCOS rats. In the MOE-treated PCOS rats, the ovarian protein expression of PPARγ, IRS1, and Akt was significantly increased, while the p-mTOR/mTOR expression was decreased compared to the non-treated PCOS group (P < 0.05). Conclusions: According to our results, the MOE ameliorated the DHEA-induced PCOS phenotype histologically, hormonally, and metabolically. Fundamentally, this explores the elusive pathophysiologic association between IR and PCOS by targeting pathways common to both disorders.
Collapse
|
10
|
Salazar-Gómez A, Ontiveros-Rodríguez JC, Pablo-Pérez SS, Vargas-Díaz ME, Garduño-Siciliano L. The potential role of sesquiterpene lactones isolated from medicinal plants in the treatment of the metabolic syndrome - A review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2020; 135:240-251. [PMID: 32963416 PMCID: PMC7493762 DOI: 10.1016/j.sajb.2020.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 05/15/2023]
Abstract
Metabolic syndrome comprises a cluster of metabolic disorders related to the development of cardiovascular disease and type 2 diabetes mellitus. In latter years, plant secondary metabolites have become of special interest because of their potential role in preventing and managing metabolic syndrome. Sesquiterpene lactones constitute a large and diverse group of biologically active compounds widely distributed in several medicinal plants used for the treatment of metabolic disorders. The structural diversity and the broad spectrum of biological activities of these compounds drew significant interests in the pharmacological applications. This review describes selected sesquiterpene lactones that have been experimentally validated for their biological activities related to risk factors of metabolic syndrome, together with their mechanisms of action. The potential beneficial effects of sesquiterpene lactones discussed in this review demonstrate that these substances represent remarkable compounds with a diversity of molecular structure and high biological activity, providing new insights into the possible role in metabolic syndrome management.
Collapse
Key Words
- ACE, angiotensin I-converting enzyme
- AMPK, activated protein kinase
- APOC3, apolipoprotein C3
- AT, adipose tissue
- Antidiabetic
- CAT, catalase
- COX-2, cyclooxygenase 2
- CVD, cardiovascular disease
- FFA, free fatty acids
- FN, fibronectin
- G6Pase, glucose-6-phosphatase
- GK, glucokinase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- HDL-C, high-density lipoproteins-cholesterol
- Hypoglycemic
- Hypolipidemic
- IFN-γ, interferon gamma
- IL-1β, interleukin 1 beta
- IL-6, interleukin 6
- IR, insulin resistance
- JNK, c-Jun N-terminal kinases
- LDL-C, low-density lipoprotein-cholesterol
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinases
- MCP-1, monocyte chemoattractant protein 1
- Medicinal plants
- MetS, metabolic syndrome
- Metabolic syndrome
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- ROS, reactive oxygen species
- SLns, sesquiterpene lactones
- SOD, superoxide dismutase
- STAT1, signal transducer and activator of transcription 1
- STZ, streptozotocin
- Sesquiterpene lactones
- T2DM, type 2 diabetes mellitus
- TBARS, thiobarbituric acid reactive substances
- TC, total cholesterol
- TG, triglycerides
- TGF-β1, transforming growth factor beta
- TLRs, Toll-like receptor
- TNF-α, tumor necrosis factor alpha
- VLDL, very-low-density lipoprotein
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Anuar Salazar-Gómez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - Julio C Ontiveros-Rodríguez
- CONACYT - Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico
| | - Saudy S Pablo-Pérez
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| | - M Elena Vargas-Díaz
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, 11340 Ciudad de México, Mexico
| | - Leticia Garduño-Siciliano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu y M. Stampa, Col. Planetario Lindavista, 77380 Ciudad de México, Mexico
| |
Collapse
|
11
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
12
|
Xie Z, Zhao J, Wang H, Jiang Y, Yang Q, Fu Y, Zeng H, Hölscher C, Xu J, Zhang Z. Magnolol alleviates Alzheimer's disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-γ. Biomed Pharmacother 2020; 124:109886. [PMID: 32000045 DOI: 10.1016/j.biopha.2020.109886] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/25/2019] [Accepted: 12/29/2019] [Indexed: 12/28/2022] Open
Abstract
This study aims to investigate whether magnolol (MG), a natural neolignane compound, can prevent AD induced by beta-amyloid (Aβ) and the possible mechanisms involved. MG dose-dependently reduces Aβ deposition, toxicity and memory impairment caused by Aβ in transgenic C. elegans. More importantly, these effects are reversed by GW9662, a selective peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist. MG is more effective in enhancing PPAR-γ luciferase levels than honokiol (HK). Meanwhile, MG has the potential to bind with the ligand binding domain of PPAR-γ (PPAR-γ-LBD). As expected, MG inhibited the luciferase activity of NF-κB and its target genes of inflammatory cytokines, and this effect was blocked by GW9662. The luciferase activity of Nrf2-ARE expression can be activated by MG and decreased Aβ-induced reactive oxygen species (ROS). The target gene LXR of PPAR-γ is activated by MG, which upregulates ApoE and promotes microglia phagocytosis and the degradation of Aβ, and these effects were also reversed by GW9662. In summary, MG can attenuate Aβ-induced AD and the underlying mechanism is the reduction of inflammation and promotion of phagocytosis and degradation of Aβ, which is dependent on PPAR-γ.
Collapse
Affiliation(s)
- Zhishen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jianping Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yali Jiang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qiaoling Yang
- Department of Pharmacy, Children's Hospital of Shanghai, Children's Hospital Affiliate to Shanghai Jiao Tong University, Shanghai 200040, China
| | - Yu Fu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huahui Zeng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
13
|
Kumar A, Rana D, Rana R, Bhatia R. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments. Curr Mol Pharmacol 2020; 13:17-30. [DOI: 10.2174/1874467212666190724150723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Background:Protein tyrosine phosphatases are enzymes which help in the signal transduction in diabetes, obesity, cancer, liver diseases and neurodegenerative diseases. PTP1B is the main member of this enzyme from the protein extract of human placenta. In phosphate inhibitors development, significant progress has been made over the last 10 years. In early-stage clinical trials, few compounds have reached whereas in the later stage trials or registration, yet none have progressed. Many researchers investigate different ways to improve the pharmacological properties of PTP1B inhibitors.Objective:In the present review, authors have summarized various aspects related to the involvement of PTP1B in various types of signal transduction mechanisms and its prominent role in various diseases like cancer, liver diseases and diabetes mellitus.Conclusion:There are still certain challenges for the selection of PTP1B as a drug target. Therefore, continuous future efforts are required to explore this target for the development of PTP inhibitors to treat the prevailing diseases associated with it.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Divya Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rajat Rana
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga-142001, India
| |
Collapse
|
14
|
Paudel P, Seong SH, Jung HA, Choi JS. Rubrofusarin as a Dual Protein Tyrosine Phosphate 1B and Human Monoamine Oxidase-A Inhibitor: An in Vitro and in Silico Study. ACS OMEGA 2019; 4:11621-11630. [PMID: 31460269 PMCID: PMC6682096 DOI: 10.1021/acsomega.9b01433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/24/2019] [Indexed: 05/23/2023]
Abstract
A number of nature-derived biologically active compounds comprise glycosides. In some cases, the glycosidic residue is needed for bioactivity; however, in other cases, glycosylation just improves some pharmacokinetic/dynamic parameters. The patterns of protein tyrosine phosphatase 1B (PTP1B) and human monoamine oxidase A (hMAO-A) inhibition by rubrofusarin 6-O-β-d-glucopyranoside (1), rubrofusarin 6-O-β-d-gentiobioside (2), rubrofusarin triglucoside (3), and cassiaside B2 (4) were compared with the aglycone, rubrofusarin, isolated from Cassia obtusifolia seeds. Rubrofusarin showed potent inhibition against the PTP1B enzyme (IC50; 16.95 ± 0.49 μM), and its glycosides reduced activity (IC50; 87.36 ± 1.08 μM for 1 and >100 μM for 2-4) than did the reference drug, ursolic acid (IC50; 2.29 ± 0.04 μM). Similarly, in hMAO-A inhibition, rubrofusarin displayed the most potent activity with an IC50 value of 5.90 ± 0.99 μM, which was twice better than the reference drug, deprenyl HCl (IC50; 10.23 ± 0.82 μM). An enzyme kinetic and molecular docking study revealed rubrofusarin to be a mixed-competitive inhibitor of both these enzymes. In a western blot analysis, rubrofusarin increased glucose uptake significantly and decreased the PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells, increased the expression of phosphorylated protein kinase B (p-Akt) and phosphorylated insulin receptor substrate-1 (p-IRS1) (Tyr 895), and decreased the expression of glucose-6-phosphatase (G6Pase) and phosphoenol pyruvate carboxykinase (PEPCK), key enzymes of gluconeogenesis. Our overall results show that glycosylation retards activity; however, it reduces toxicity. Thus, Cassia seed as functional food and rubrofusarin as a base can be used for the development of therapeutic agents against comorbid diabetes and depression.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Chonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
15
|
Evaluation of Tyrosinase Inhibitory, Antioxidant, Antimicrobial, and Antiaging Activities of Magnolia officinalis Extracts after Aspergillus niger Fermentation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5201786. [PMID: 30581856 PMCID: PMC6276509 DOI: 10.1155/2018/5201786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/15/2023]
Abstract
This study intended to improve physiological characteristics of Magnolia officinalis bark (MOB) extracts by Aspergillus niger fermentation. M. officinalis bark was extracted using distilled water, 95% ethanol, and methanol, and it was then fermented by A. niger. The physiological characteristics of the fermented extracts, namely, tyrosinase inhibitory activity, antioxidant activity, antibacterial activity, and anti-skin-aging activity, were evaluated and compared with those of unfermented extracts. To determine the safety of the fermented extracts, their cytotoxicity was analyzed by measuring the cell viability of CCD-966SK and human epidermal melanocytes (HEMn) after exposure. The fermented methanol extract exhibited the highest antityrosinase activity, total phenolic content, and antioxidant activity. The total phenolic content of the extracts fermented by A. niger was 3.52 times greater than that of the unfermented extracts. The optimal IC50 values for tyrosinase inhibition and 2,2-diphenyl-1-picrylhydrazyl (DPPH) removal by the A. niger-fermented extracts were 30 and 12 μg/mL, respectively. The fermented methanol extracts inhibited skin-aging-related enzymes such as collagenase, elastase, MMP-1, and MMP-2. Compared with the unfermented extracts, the fermented extracts also contained greater antibacterial activity against tested stains including MRSA. These results could be attributed to an increase in the concentration of original active compounds and the biosynthesis of new compounds during fermentation. In cytotoxicity assays, the A. niger-fermented extracts were nontoxic to CCD-966SK cells, even at 500 μg/mL. Hence, in general, methanol-extracted M. officinalis fermented by A. niger for 72 h has the most active antioxidant, skincare, or antiaging compounds for healthy food or cosmetics applications.
Collapse
|
16
|
PAXX Participates in Base Excision Repair via Interacting with Pol β and Contributes to TMZ Resistance in Glioma Cells. J Mol Neurosci 2018; 66:214-221. [PMID: 30238427 PMCID: PMC6182633 DOI: 10.1007/s12031-018-1157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
Abstract
Non-homologous end joining (NHEJ) is one of the major DNA repair pathway in mammalian cell that can ligate a variety of DNA ends. However, how does all NHEJ factors communicate and organize together to achieve the final repair is still not clear. PAralog of XRCC4 and XLF (PAXX) was a new factor identified recently that play an important role in NHEJ. PAXX contributes to efficient NHEJ by interacting with Ku, which is a NHEJ key factor, and PAXX deficiency cause sensitivity to DNA double-strand break repair (DSBR). We observed that PAXX-deficient cells showed slight increase of homologous recombination (HR, which is another major DSBR repair pathways in mammalian cells). More importantly, we found that PAXX contributes to base excision repair pathway via interaction of polymerase beta (pol β). Temozolomide (TMZ) is one of the standard chemotherapies widely applied in glioblastoma. However, TMZ resistance and lack of potent chemotherapy agents can substitute TMZ. We observed that PAXX deficiency cause more sensitivity to TMZ-resistant glioma cells. In conclusion, the PAXX contributes to a variety of DNA repair pathways and TMZ resistance. Therefore, inhibition of PAXX may provide a promising way to overcome TMZ resistance and improve TMZ therapeutic effects in glioma treatment.
Collapse
|
17
|
Park H, Hwang YH, Ma JY. Single, repeated dose toxicity and genotoxicity assessment of herb formula KIOM2012H. Integr Med Res 2018; 6:361-371. [PMID: 29296563 PMCID: PMC5741389 DOI: 10.1016/j.imr.2017.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/12/2023] Open
Abstract
Background Traditional medicine and herbal prescriptions are becoming more popular, and they account for a large share of the world's healthcare research studies, developments, and market demands. Increasing scientific evidence of the substantive efficacies such as preventive health keeping pharmaceutical materials and dietary supplements can be found elsewhere. Above all, safety should be the critical premise for considering developmental materials such as pharmaceuticals without side effects and toxicity. Methods The authors formulated KIOM2012H (K2H) using four herbs that were reported to have medicinal effects-including anticancer, antiaging, antimicrobial, inflammation, and neuroprotective properties. In order to examine the toxicity, single and repeated dose toxicity, and genotoxicities of bacterial mutation, micronucleus, and chromosomal aberration assays were conducted. Results All experimental observations and results showed normal findings. Toxicities or abnormal signs were not observed in all experimental assays, including oral administration, animal behavior, clinical findings, and changes in body weight in vivo. In vitro bacterial cultures produced no revertant colonies, and no increased numbers of structural or numerical aberrant metaphases were found in the metaphase chromosomes examined. Moreover, no significant increased frequency of micronucleus was observed in any of the doses used. Overall, no acute toxicity or genotoxicity was found in all analysis parameters in all the assays conducted. Conclusion Reviewing the results as a whole, K2H extract was regarded as a safe material with no toxicity, and can be applied for the research and development of complementary and alternative medicines with improved efficacy in current therapeutic healthcare, based on traditional medicine and herb resources.
Collapse
Affiliation(s)
- Hwayong Park
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, Daegu Korea
| | - Youn-Hwan Hwang
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, Daegu Korea
| | - Jin Yeul Ma
- KM (Korean Medicine) Application Center, Korea Institute of Oriental Medicine, Daegu Korea
| |
Collapse
|
18
|
Huang Q, Han L, Liu Y, Wang C, Duan D, Lu N, Wang K, Zhang L, Gu K, Duan S, Mai Y. Elevation of PTPN1 promoter methylation is a significant risk factor of type 2 diabetes in the Chinese population. Exp Ther Med 2017; 14:2976-2982. [PMID: 29042909 PMCID: PMC5639402 DOI: 10.3892/etm.2017.4924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the contribution of DNA methylation of the protein tyrosine phosphatase, non-receptor type 1 (PTPN1) gene to the susceptibility to type 2 diabetes (T2D). Peripheral blood mononuclear cells (PBMCs) were collected from 97 patients with T2D and 97 age- and gender-matched controls. DNA methylation of the PTPN1 gene promoter was evaluated by bisulfite pyrosequencing. Independent sample t-tests were used to compare the differences in the PTPN1 promoter and other phenotypes between the patients with T2D and the controls. The results indicated a significant correlation between PTPN1 promoter methylation and the risk of T2D. Additionally, a breakdown analysis by gender revealed that PTPN1 methylation was associated with an increased risk of T2D in females. Furthermore, low-density lipoprotein (r=−0.183, P=0.046) and total cholesterol (r=−0.310, P=0.001) were inversely associated with PTPN1 methylation in females. In conclusion, the results indicate that elevated PTPN1 promoter methylation is a risk factor for T2D in the female Chinese population.
Collapse
Affiliation(s)
- Qing Huang
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, P.R. China
| | - Liyuan Han
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yanfen Liu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Changyi Wang
- Department of Chronic Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong 518000, P.R. China
| | - Donghui Duan
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Nanjia Lu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaiyue Wang
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lu Zhang
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Kaibo Gu
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shiwei Duan
- Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yifeng Mai
- The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
19
|
Liu W, Liu J, Xia J, Xue X, Wang H, Qi Z, Ji L. Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling. Brain Behav Immun 2017; 61:297-305. [PMID: 28069387 DOI: 10.1016/j.bbi.2017.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 01/16/2023] Open
Abstract
Relatively little has been known about pathophysiological mechanisms contributing to the development of neuropsychiatric symptoms in the context of metabolic syndrome. Impaired leptin signaling activation in db/db mice has been proposed as a potential link between behavioral and metabolic disorders. Our previous studies have shown that exercise has the beneficial effects on a depression-like and insulin-resistant state in mice. The present study aimed to determine whether and how leptin receptor knockout (db/db) induces depression-like behaviors, and to identify the antidepressant effects of swimming exercise in db/db mice. Our results support the validity of db/db mice as an animal model to study depression with metabolic abnormalities, but fail to confirm the improvement of exercise on depression. LepRb knockout-induced depression-like behaviors are associated with STAT3/SOCS3 signaling but independent of IKKβ/NFκB signaling. Our findings suggest the potential importance of LepRb as an exercise-regulated target for depression, also representing a new target underlying treatment-resistant depression.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jiatong Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Xiangli Xue
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Hongmei Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| | - Liu Ji
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; School of Physical Education & Health Care, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
20
|
Inhibitory effects of atractylone on mast cell-mediated allergic reactions. Chem Biol Interact 2016; 258:59-68. [DOI: 10.1016/j.cbi.2016.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022]
|
21
|
Extracts of Magnolia Species-Induced Prevention of Diabetic Complications: A Brief Review. Int J Mol Sci 2016; 17:ijms17101629. [PMID: 27669240 PMCID: PMC5085662 DOI: 10.3390/ijms17101629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetic complications are the major cause of mortality for the patients with diabetes. Oxidative stress and inflammation have been recognized as important contributors for the development of many diabetic complications, such as diabetic nephropathy, hepatopathy, cardiomyopathy, and other cardiovascular diseases. Several studies have established the anti-inflammatory and oxidative roles of bioactive constituents in Magnolia bark, which has been widely used in the traditional herbal medicines in Chinese society. These findings have attracted various scientists to investigate the effect of bioactive constituents in Magnolia bark on diabetic complications. The aim of this review is to present a systematic overview of bioactive constituents in Magnolia bark that induce the prevention of obesity, hyperglycemia, hyperlipidemia, and diabetic complications, including cardiovascular, liver, and kidney.
Collapse
|
22
|
Zha L, Liu S, Su P, Yuan Y, Huang L. Cloning, prokaryotic expression and functional analysis of squalene synthase (SQS) in Magnolia officinalis. Protein Expr Purif 2016; 120:28-34. [DOI: 10.1016/j.pep.2015.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/23/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
23
|
Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, Gao X, Li W, Hu X. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6327-42. [PMID: 26674084 PMCID: PMC4675651 DOI: 10.2147/dddt.s92777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Honokiol is one of the main bioactive constituents of the traditional Chinese herbal drug Magnolia bark (Cortex Magnoliae officinalis, Hou Po). The aim of this study was to probe its anti-type 2 diabetes mellitus effects and the underlying mechanism. METHODS Type 2 diabetic mouse model was established by intraperitoneally injecting with streptozotocin. Fasting blood glucose, body weight, and lipid profile were measured. The subcutaneous adipose tissue, skeletal muscle, and liver were isolated as well as homogenized. The phospho-insulin receptor β-subunit (IRβ), IRβ, phospho-AKT, AKT, phospho-ERK1/2, ERK1/2, phosphotyrosine, and actin were examined by Western blot assay. Cell viability or cytotoxicity was analyzed by using MTT method. The inhibitory potencies of honokiol on the protein tyrosine phosphatase 1B (PTP1B) activity were performed in reaction buffer. Molecular docking and dynamic simulation were also analyzed. RESULTS In in vivo studies, oral treatment with 200 mg/kg honokiol for 8 weeks significantly decreases the fasting blood glucose in type 2 diabetes mellitus mice. The phosphorylations of the IRβ and the downstream insulin signaling factors including AKT and ERK1/2 significantly increase in adipose, skeletal muscle, and liver tissue of the honokiol-treated mice. Moreover, honokiol enhanced the insulin-stimulated phosphorylations of IRβ, AKT, and ERK1/2 in a dose-dependent manner in C2C12 myotube cells. Meanwhile, honokiol enhanced insulin-stimulated GLUT4 translocation. Importantly, honokiol exhibited reversible competitive inhibitory activity against PTP1B with good selectivity in vitro and in vivo. Furthermore, using molecular docking and dynamic simulation approaches, we determined the potential binding mode of honokiol to PTP1B at an atomic level. CONCLUSION These findings indicated the hypoglycemic effects of honokiol and its mechanism that honokiol improved the insulin sensitivity by targeting PTP1B. Therefore, our study may highlight honokiol as a promising insulin sensitizer for the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Jing Sun
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xueqi Fu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China ; National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Ye Liu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yongsen Wang
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Bo Huo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Yidi Guo
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xuefeng Gao
- School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Wannan Li
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China ; National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Hu
- School of Life Sciences, Jilin University, Changchun, People's Republic of China ; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People's Republic of China ; National Engineering Laboratory of AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|