1
|
Sukumar VK, Tai YK, Chan CW, Iversen JN, Wu KY, Fong CHH, Lim JSJ, Franco-Obregón A. Brief Magnetic Field Exposure Stimulates Doxorubicin Uptake into Breast Cancer Cells in Association with TRPC1 Expression: A Precision Oncology Methodology to Enhance Chemotherapeutic Outcome. Cancers (Basel) 2024; 16:3860. [PMID: 39594815 PMCID: PMC11592624 DOI: 10.3390/cancers16223860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Doxorubicin (DOX) is commonly used as a chemotherapeutic agent for the treatment of breast cancer. Nonetheless, its systemic delivery via intravenous injection and toxicity towards healthy tissues commonly result in a broad range of detrimental side effects. Breast cancer severity was previously shown to be correlated with TRPC1 channel expression that conferred upon it enhanced vulnerability to pulsed electromagnetic field (PEMF) therapy. PEMF therapy was also previously shown to enhance breast cancer cell vulnerability to DOX in vitro and in vivo that correlated with TRPC1 expression and mitochondrial respiratory rates. Methods: DOX uptake was assessed by measuring its innate autofluorescence within murine 4T1 or human MCF7 breast cancer cells following magnetic exposure. Cellular vulnerability to doxorubicin uptake was assessed by monitoring mitochondrial activity and cellular DNA content. Results: Here, we demonstrate that 10 min of PEMF exposure could augment DOX uptake into 4T1 and MCF7 breast cancer cells. DOX uptake could be increased by TRPC1 overexpression, whereas inhibiting the activity of TRPC1 channels with SKF-96356 or genetic knockdown, precluded DOX uptake. PEMF exposure enhances DOX-mediated killing of breast cancer cells, reducing the IC50 value of DOX by half, whereas muscle cells, representative of collateral tissues, were less sensitive to PEMF-enhanced DOX-mediated cytotoxicity. Vesicular loading of DOX correlated with TRPC1 expression. Conclusions: This study presents a novel TRPC1-mediated mechanism through which PEMF therapy may enhance DOX cytotoxicity in breast cancer cells, paving the way for the development of localized non-invasive PEMF platforms to improve cancer outcomes with lower systemic levels of DOX.
Collapse
Affiliation(s)
- Viresh Krishnan Sukumar
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Yee Kit Tai
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Ching Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Jan Nikolas Iversen
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Kwan Yu Wu
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Charlene Hui Hua Fong
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Joline Si Jing Lim
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- Experimental Therapeutics Programme, Cancer Science Institute, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore 119228, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore
| | - Alfredo Franco-Obregón
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; (V.K.S.); (J.S.J.L.)
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore; (J.N.I.); (K.Y.W.); (C.H.H.F.)
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
2
|
Hu Y, Zhang Y, Guo J, Chen S, Jin J, Li P, Pan Y, Lei S, Li J, Wu S, Bu B, Fu L. Synthesis and anti-proliferative effect of novel 4-Aryl-1, 3-Thiazole-TPP conjugates via mitochondrial uncoupling process. Bioorg Chem 2024; 150:107588. [PMID: 38936051 DOI: 10.1016/j.bioorg.2024.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
With the advent of mitochondrial targeting moiety such as triphenlyphosphonium cation (TPP+), targeting mitochondria in cancer cells has become a promising strategy for combating tumors. Herein, a series of novel 4-aryl-1,3-thiazole derivatives linked to TPP+ moiety were designed and synthesized. The cytotoxicity against a panel of four cancer cell lines was evaluated by CCK-8 assay. Most of these compounds exhibited moderate to good inhibitory activity over HeLa, PC-3 and HCT-15 cells while MCF-7 cells were less sensitive to most compounds. Among them, compound 12a exhibited a significant anti-proliferative activity against HeLa cells, and prompted for further investigation. Specifically, 12a decreased mitochondrial membrane potential and enhanced levels of reactive oxygen species (ROS). The flow cytometry analysis revealed that compound 12a could induce apoptosis and cell cycle arrest at G0/G1 phase in HeLa cells. In addition, mitochondrial bioenergetics assay revealed that 12a displayed mild mitochondrial uncoupling effect. Taken together, these findings suggest the therapeutic potential of compound 12a as an antitumor agent targeting mitochondria.
Collapse
Affiliation(s)
- Yixin Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Guo
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shihao Chen
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jie Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Pengyu Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yuchen Pan
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Suheng Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Buzhou Bu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
3
|
He J, Peng C, Yang X, Li P, Bai J, Jia Q, Bo C. Identification of critical genes associated with oxidative stress pathways in benzene-induced hematotoxicity. Heliyon 2024; 10:e35427. [PMID: 39170214 PMCID: PMC11336642 DOI: 10.1016/j.heliyon.2024.e35427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Background and aims Bone marrow failure (BMF) is chronic benzene-induced hematotoxicity, which is associated with differential gene expression abnormality. Benzene-induced BMF is characterized by irreversible bone marrow depression. Despite extensive studies have been conducted, there is a lack of reliable, useful and simple diagnostic method for BMF. Previous studies have shown that the aberrant gene expression changes and reactive oxygen species production in bone marrow cells related to the development of BMF. Early detection of differentially expressed genes (DEGs) as potential biomarkers is important for diagnosis and treatment. However, the validation of effective biomarker through DEGs analysis in benzene-induced BMF still deserve to be clarified. This study aimed to identify target genes as potential biomarkers with benzene-induced BMF based on DEGs analysis. Methods First, we developed a benzene-induced BMF mouse model and obtained the DEGs in bone marrow cells of benzene-exposed CD1 mice. Next, after obtaining the DEGs via RNA-Sequencing (RNA-seq) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also used, key genes associated with benzene-induced BMF were identified. Additionally, the key markers for benzene poisoning was evaluated using qRT-PCR technique. Results We identified DEGs for further KEGG functional analysis. Ten statistically significantly (up or down) regulated genes, namely Mapk11, Foxo1, Lefty1, Ren1, Bank1, Fgf3, Cdc42ep2, Rasgrf1, P2rx7, and Shank3 were found mainly associated with mitogen-activated protein kinases (MAPK) oxidative stress pathway . Further analysis using qRT-PCR identified that eight statistically significant DEGs associated with signaling pathways such as MAPK. We found that the level of mRNA expression of Mapk11, Foxo1, Bank1, Lefty1, Ren1, P2rx7, and Fgf3 genes were increased and Cdc42ep2 gene was decreased in BMF mice compared to control mice. Additionally, we validated the eight candidate genes for potential biomarkers in peripheral blood mononuclear cells of benzene poisoning patients by qRT-PCR. Conclusion Our results indicated that Mapk11 and Fgf3 were predominantly candidate genes linked to novel biomarkers for benzene hematotoxicity in human beings. Our study will provide new candidate genes as useful biomarkers involved in benzene-induced hematotoxicity.
Collapse
Affiliation(s)
- Jin He
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences, University of Queensland, Brisbane, Queensland, 4029, Australia
| | - XiaoHan Yang
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Peng Li
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Jin Bai
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine & Shandong Provincial Occupational Diseases Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|
4
|
Shikholeslami SR, Keshavarzi F. Investigation of the association between the CASP8rs1045485 and SOD2 rs4880 single nucleotide polymorphisms (SNPs) with breast cancer. Cancer Treat Res Commun 2024; 40:100835. [PMID: 39038402 DOI: 10.1016/j.ctarc.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Single nucleotide polymorphisms (SNPs) have been identified as prognostic markers that can influence the response to chemotherapy and, ultimately, the outcome of the disease. The objective of this study is to investigate the association between the rs1045485 and rs4880 variants and breast cancer. METHODS Ninety-nine cases and 81 healthy individuals (over 60 years old) were recruited from Iranian population. Genotyping of the rs1045485 and rs4880 polymorphisms was determined using the PCR-RFLP molecular method. The obtained results were then evaluated using the SPSS 23.0, odds ratios (ORs) with 95 % confidence intervals (95 %CIs). RESULTS The average age of the subjects was 50.17± 1.8 years, with age ranging from 40 to 76 years. Additionally, more patients were in stage and grade 2 of the disease. Furthermore, 51.73 %, 53.24 % and 41.48 % of patients tested positive for ER, PR and HER2 status, respectively. The odds ratios of the genotypes studied for each of the two variants were not statistically significant. Additionally, all models (dominant, codominant, recessive and over dominant) also indicated that this difference was not significant (p > 0.05). Investigation of the association between the CASP8rs1045485 and SOD2 rs4880 variants with clinicopathological status were not revealed a significant relationship. The Hardy-Weinberg test showed that the evaluated population was balanced (p > 0.05). CONCLUSION In the studied models of both polymorphisms, no significant correlation was found between the genotypes and the conditions of estrogen, progesterone and Her2 receptors, as well as the stage and grade of the disease.
Collapse
Affiliation(s)
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| |
Collapse
|
5
|
Khaksar S, Kiarostami K, Ramdan M. Effect of Rosmarinic Acid on Cell Proliferation, Oxidative Stress, and Apoptosis Pathways in an Animal Model of Induced Glioblastoma Multiforme. Arch Med Res 2024; 55:103005. [PMID: 38759277 DOI: 10.1016/j.arcmed.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND In brain tumors, the complexity of the pathophysiological processes such as oxidative stress, cell proliferation, angiogenesis, and apoptosis have seriously challenged the definitive treatment. Rosmarinic acid (RA), as a polyphenolic compound, has been found to prevent tumor progression in some aggressive cancers. This study was designed to evaluate the anticancer effects of RA on brain tumors. METHOD Rats were divided into six groups. Implantation of C6 glioma cells was carried out in the caudate nucleus of the right hemisphere. RA at doses of 5, 10, and 20 mg/kg (i.p.) was administered to the treatment groups for seven days. Tumor volume (by MRI imaging), locomotor ability, survival time, histological alterations (by H & E staining), expression of p53 and p21 mRNAs (by RT-PCR), activities of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT] by assay kits), expression of caspase-3 and VEGF (by immunohistochemical analysis), and TUNEL-positive cells (by tunnel staining) were analyzed. RESULTS The results indicated that the RA at a dose of 20 mg/kg reduced the tumor volume, prolonged survival time, increased p53 and p21 mRNAs, attenuated SOD and CAT activities in tumor tissue, elevated caspase-3, and increased the number of TUNEL-positive cells. Furthermore, histological analysis revealed less invasion of tumor cells into the normal parenchyma in rats treated with RA (20 mg/kg). CONCLUSION These findings provide evidence that the ability of RA to reduce tumor volume could be related to factors that modulate oxidative stress (SOD and CAT enzymes), cell proliferation (p53 and p21), and apoptosis (caspase-3).
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahmoud Ramdan
- Department of Biology, Faculty of Science, Al-Furat University, Deir-ez-Zor, Syrian Arab Republic
| |
Collapse
|
6
|
Biesiadecki M, Mołoń M, Balawender K, Kobylińska Z, Galiniak S. Shedding light on the shadows: oxidative stress and its pivotal role in prostate cancer progression. Front Oncol 2024; 14:1393078. [PMID: 38774418 PMCID: PMC11106406 DOI: 10.3389/fonc.2024.1393078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Objectives Data on oxidative protein damage, total antioxidant capacity (TAC) and lipid peroxidation in progression of prostate cancer remain elusive. So far, the influence of the presence of perineural invasion on the level of oxidative stress has not been described. Additionally, there is limited data on the level of oxidative stress in patients' urine. Methods We compared the levels of oxidative stress markers in serum and urine in 50 patients with prostate cancer depending on the tumor stage and histological grade, the Gleason score, and the presence of perineural invasion. Results We found a significantly de-creased level of serum thiol groups and TAC in participants with prostate cancer. Similarly, serum Amadori products and malondialdehyde (MDA) were higher in patients than in healthy men. There was a significantly decrease in TAC and a significantly increased MDA in the urine of prostate cancer patients. As the stage of cancer increased, a decrease in the thiol group concentration and TAC as well as an increase in the concentration of lipid peroxidation products in the serum was observed. The serum level of advanced oxidation protein products (AOPP) increased in the group with Gleason scores greater than 7. Furthermore, serum thiol groups and TAC were reduced in the group with Gleason >7 as compared to Gleason <7. The presence of perineural invasion significantly reduced serum and urinary TAC and increased urinary AOPP concentration. Conclusions These results indicate a significant role for oxidative damage in prostate carcinogenesis and its progression. Characterizing oxidative and nitrosative damage to proteins may be useful in designing targeted therapies for prostate cancer patients.
Collapse
Affiliation(s)
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów, Poland
| | | | | | - Sabina Galiniak
- Institute of Medical Sciences, Rzeszów University, Rzeszów, Poland
| |
Collapse
|
7
|
Jara-Gutiérrez C, Mercado L, Paz-Araos M, Howard C, Parraga M, Escobar C, Mellado M, Madrid A, Montenegro I, Santana P, Murgas P, Jimenez-Jara C, González-Olivares LG, Ahumada M, Villena J. Oxidative stress promotes cytotoxicity in human cancer cell lines exposed to Escallonia spp. extracts. BMC Complement Med Ther 2024; 24:38. [PMID: 38218817 PMCID: PMC10787448 DOI: 10.1186/s12906-024-04341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Standard cancer treatments show a lack of selectivity that has led to the search for new strategies against cancer. The selective elimination of cancer cells modulating the redox environment, known as "selective oxycution", has emerged as a viable alternative. This research focuses on characterizing the unexplored Escallonia genus plant extracts and evaluating their potential effects on cancer's redox balance, cytotoxicity, and activation of death pathways. METHODS 36 plant extracts were obtained from 4 different species of the Escallonia genus (E. illinita C. Presl, E. rubra (Ruiz & Pav.) Pers., E. revoluta (Ruiz & Pav.) Pers., and E. pulverulenta (Ruiz & Pav.) Pers.), which were posteriorly analyzed by their phytoconstituents, antioxidant capacity, and GC-MS. Further, redox balance assays (antioxidant enzymes, oxidative damage, and transcription factors) and cytotoxic effects (SRB, ∆Ψmt, and caspases actives) of those plant extracts were analyzed on four cell lines (HEK-293T, MCF-7, HT-29, and PC-3). RESULTS 36 plant extracts were obtained, and their phytoconstituents and antioxidant capacity were established. Further, only six extracts had EC50 values < 10 µg*mL- 1, indicating high toxicity against the tested cells. From those, two plant extracts were selective against different cancer cell lines: the hexane extract of E. pulverulenta´s stem was selective for HT-29, and the ethyl acetate extract of E. rubra´s stem was selective for PC-3. Both extracts showed unbalanced redox effects and promoted selective cell death. CONCLUSIONS This is the first study proving "selective oxycution" induced by Chilean native plant extracts.
Collapse
Affiliation(s)
- Carlos Jara-Gutiérrez
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marilyn Paz-Araos
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolyn Howard
- Facultad de Medicina, Escuela de Kinesiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Mario Parraga
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Escobar
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, 8330507, Chile
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, 2340000, Chile
| | - Iván Montenegro
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Paula Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| | - Paola Murgas
- Facultad de Medicina y Ciencia, Sede Patagonia, Universidad San Sebastián, Puerto Montt, Chile
| | - Cristina Jimenez-Jara
- Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
8
|
Li ZY, Chang SH, Liu KT, Wu AE, Hsu CS, Huang SW, Chung MC, Wang SC, Kao JK, Chen YJ, Shieh JJ. Low-dose imiquimod induces melanogenesis in melanoma cells through an ROS-mediated pathway. J Dermatol Sci 2024; 113:18-25. [PMID: 38185543 DOI: 10.1016/j.jdermsci.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Melanogenesis is the process of melanin maturation which not only protects skin from UV radiation but also plays an important role in antigenicity of melanomas. Imiquimod (IMQ) is a toll-like receptor 7 (TLR7) agonist that exhibits antiviral and anticancer activity. OBJECTIVE To explore whether IMQ could induce melanogenesis in melanoma cells. METHODS The mouse melanoma cell line B16F10, the mouse immortalized melanocyte Melan-A, and human melanoma cell lines MNT-1, C32 and A375 were utilized in this study. The pigmented level was observed by the centrifuged cell pellet. The intracellular and extracellular melanin levels were examined in the absorbance in NaOH-extracted cell lysate and cell-cultured medium, respectively. The expression of melanogenesis related proteins was examined by immunoblotting. The intracellular cyclic AMP amount was evaluated by the cAMP Glo assay kit. The activity of phosphodiesterase 4B (PDE4B) was investigated by CREB reporter assay with overexpressed PDE4B or not. RESULTS We demonstrated that a low dose of IMQ could trigger melanogenesis in B16F10 cells. IMQ induced microphthalmia-associated transcription factor (MITF) nuclear translocation, upregulated the expression of melanogenesis-related proteins, increased tyrosinase (TYR) activity, and led to pigmentation in B16F10 cells. Next, we found that IMQ-induced melanogenesis was activated by excessive intracellular cAMP accumulation, which was regulated through IMQ-mediated PDE4B inhibition. Finally, IMQ-induced ROS production was found to be involved in melanogenesis by its control of PDE4B activity. CONCLUSIONS Low dose of IMQ could activate melanogenesis through the ROS/PDE4B/PKA pathway in melanoma cells.
Collapse
Affiliation(s)
- Zheng-Yi Li
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Hao Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Ting Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Alaina Edelie Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Sheng Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Shi-Wei Huang
- Center for Cell Therapy and Translation Research, China Medical University Hospital, Taichung, Taiwan
| | - Mu-Chi Chung
- Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; PhD Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology/Oncology, Changhua Christian Children Hospital, Changhua County, Taiwan
| | - Jun-Kai Kao
- Frontier Molecular Medical Research Center in Children, Changhua Christian Children Hospital, Changhua County, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ju Chen
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Jer Shieh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan; Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Wu S, Zhang Q, Zhao Q, Jiang Y, Qu X, Zhou Y, Zhao T, Cang F, Li Y. Cobalt-doped hollow polydopamine for oxygen generation and GSH consumption enhanced chemo-PTT combined cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213593. [PMID: 37657278 DOI: 10.1016/j.bioadv.2023.213593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.
Collapse
Affiliation(s)
- Shilong Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Qin Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiyao Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Xiaomeng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Tingting Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Feng Cang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Yanyan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China.
| |
Collapse
|
10
|
Zhou X, Zhou A, Tian Z, Chen W, Xu Y, Ning X, Chen K. A Responsive Nanorobot Modulates Intracellular Zinc Homeostasis to Amplify Mitochondria-Targeted Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302952. [PMID: 37434337 DOI: 10.1002/smll.202302952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Zinc has been proven to interweave with many critical cell death pathways, and not only exhibits potent anticancer activity solely, but sensitizes cancer cells to anticancer treatment, making zinc supplementation ideal for boosting odds against malignancy. Herein, a smart nanorobot (termed as Zinger) is developed, composed of iRGD-functionalized liposome encapsulating black phosphorus nanosheet (BPNs) doped zeolite imidazole framework-8 (BPN@ZIF-8), for advancing zinc-promoted photodynamic therapy (PDT). Zinger exhibits photo-triggered sequential mitochondria-targeting ability, and can induce zinc overload-mediated mitochondrial stress, which consequently sensitized tumor to PDT through synergistically modulating reactive oxygen species (ROS) production and p53 pathway. It is identified that Zinger selectively triggered intracellular zinc overload and photodynamic effect in cancer cells, which together enhanced PDT treatment outcomes. Importantly, Zinger shows high efficacy in overcoming various treatment barriers, allowing for effectively killing cancer cells in the complex circumstances. Particularly, Zinger exhibits good tumor accumulation, penetration, and even cell uptake, and can respond to light stimulation to eliminate tumors while avoiding normal tissues, thereby prolonging survival of tumor-bearing mice. Therefore, the study provides a novel insight in the development of novel zinc-associated therapy for advancing cancer treatment approaches.
Collapse
Affiliation(s)
- Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, School of Physics, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
11
|
de Carvalho JCB, de Oliveira IM, Trindade C, Juchem ALM, da Silva Machado M, Guecheva TN, Moura S, de Souza LAG, Vainstein MH, Henriques JAP. Chemical characterization of Callingcard Vine (Entada polystachya (L.) DC. var. polystachya) aqueous seed extract and evaluation of its cytotoxic, genotoxic and mutagenic properties. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503687. [PMID: 37770144 DOI: 10.1016/j.mrgentox.2023.503687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Callingcard Vine (Entada polystachya (L.) DC. var. polystachya - Fabaceae) is a common plant in coastal thickets from western Mexico through Central America to Colombia and Brazil, especially in Amazon biome. It has been popularly used as a urinary burning reliever and diuretic. However, the plant chemical constituents are poorly understood and Entada spp. genotoxic potential have not been previously investigated. In the present study we determined the chemical composition of the aqueous E. polystachya crude seed extract (EPCSE) and evaluated the cytotoxic, genotoxic and mutagenic properties of EPCSE in Salmonella typhimurium and Chinese hamster fibroblast (V79) cells. Cytotoxic activity was also evaluated in tumor cell lines (HT29, MCF7 and U87) and non-malignant cells (MRC5). The chemical analysis by High Resolution Mass Spectrometry (HRMS) of EPCSE indicated the presence of saponin and chalcone. The results of the MTT and clonal survival assays suggest that EPCSE is cytotoxic to V79 cells. Survival analysis showed higher IC50 in non-tumor compared with tumor cell lines. EPCSE showed induction of DNA strand breaks as revealed by the alkaline comet assay and micronucleus test. Using the modified comet assay, it was possible to detect the induction of oxidative DNA base damage by EPCSE in V79 cells. Consistently, the extract induced increase lipid peroxidation (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities in V79 cells. In addition, EPCSE induced mutations in S. typhimurium TA98 and TA100 strains, confirming a mutagenic potential. Taken together, our results suggest that EPCSE is cytotoxic and genotoxic to V79 cells and mutagenic to S. typhimurium. These properties can be related to the pro-oxidant ability of the extract and induction of DNA lesions. Additionally, EPCSE could inhibit the growth of tumor cells, especially human colorectal adenocarcinoma (HT29) cell line, and can constitute a possible source of antitumor natural agents.
Collapse
Affiliation(s)
- Juliane Cristina Bugs de Carvalho
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | - Cristiano Trindade
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | | | - Miriana da Silva Machado
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil
| | - Temenouga Nikolova Guecheva
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sidnei Moura
- Laboratory of Natural and Synthetics Products, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luiz Augusto Gomes de Souza
- Environment and Health Society Coordination of the National Institute for Research in the Amazon (COSAS/INPA), Manaus, AM, Brazil
| | - Marilene Henning Vainstein
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; InnVitro Pesquisa e Desenvolvimento, Porto Alegre, RS, Brazil; Postgraduate Programs in Biotechnology and Medical Sciences, University of Vale do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
12
|
Berner J, Miebach L, Kordt M, Seebauer C, Schmidt A, Lalk M, Vollmar B, Metelmann HR, Bekeschus S. Chronic oxidative stress adaptation in head and neck cancer cells generates slow-cyclers with decreased tumour growth in vivo. Br J Cancer 2023; 129:869-883. [PMID: 37460712 PMCID: PMC10449771 DOI: 10.1038/s41416-023-02343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) are implicated in cancer therapy and as drivers of microenvironmental tumour cell adaptations. Medical gas plasma is a multi-ROS generating technology that has been shown effective for palliative tumour control in head and neck cancer (HNC) patients before tumour cells adapted to the oxidative stress and growth regressed fatally. METHODS In a bedside-to-bench approach, we sought to explore the oxidative stress adaptation in two human squamous cell carcinoma cell lines. Gas plasma was utilised as a putative therapeutic agent and chronic oxidative stress inducer. RESULTS Cellular responses of single and multiple treated cells were compared regarding sensitivity, cellular senescence, redox state and cytokine release. Whole transcriptome analysis revealed a strong correlation of cancer cell adaption with increased interleukin 1 receptor type 2 (IL1R2) expression. Using magnetic resonance imaging, tumour growth and gas plasma treatment responses of wild-type (WT) and repeatedly exposed (RE) A431 cells were further investigated in a xenograft model in vivo. RE cells generated significantly smaller tumours with suppressed inflammatory secretion profiles and increased epidermal growth factor receptor (EGFR) activity showing significantly lower gas plasma sensitivity until day 8. CONCLUSIONS Clinically, combination treatments together with cetuximab, an EGFR inhibitor, may overcome acquired oxidative stress resistance in HNC.
Collapse
Grants
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18, ESF/14-BM-A55-0005/18, and ESF/14-BM-A55-0006/18) and the Ministry of Education, Science, and Culture of Mecklenburg-Vorpommern, Germany, as well as the German Federal Ministry of Education and Research (BMBF, grant numbers 03Z22DN11 and 03Z22Di1).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0005/18).
- Gerhard-Domagk-Foundation Greifswald (Germany).
- This study was funded by the joint research project ONKOTHER-H is supported by the European Social Fund (ESF, grant numbers ESF/14-BM-A55-0003/18).
Collapse
Affiliation(s)
- Julia Berner
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
- Department of General, Visceral, Thoracic, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Marcel Kordt
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Christian Seebauer
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Michael Lalk
- Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057, Rostock, Germany
| | - Hans-Robert Metelmann
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str, 17475, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
13
|
Huang TY, Yang CK, Chen MY, Yadav VK, Fong IH, Yeh CT, Cherng YG. Furanocoumarin Notopterol: Inhibition of Hepatocellular Carcinogenesis through Suppression of Cancer Stemness Signaling and Induction of Oxidative Stress-Associated Cell Death. Nutrients 2023; 15:nu15112447. [PMID: 37299411 DOI: 10.3390/nu15112447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains an aggressive malignancy with a poor prognosis and a leading cause of cancer-related mortality globally. Cumulative evidence suggests critical roles for endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in chronic liver diseases. However, the role of ER stress in HCC pathogenesis, aggressiveness and therapy response remains unclear and understudied. OBJECTIVES Against this background, the present study evaluated the therapeutic efficacy and feasibility of notopterol (NOT), a furanocoumarin and principal component of Notopterygium incisum, in the modulation of ER stress and cancer stemness, and the subsequent effect on liver oncogenicity. METHODS An array of biomolecular methods including Western blot, drug cytotoxicity, cell motility, immunofluorescence, colony and tumorsphere formation, flow-cytometric mitochondrial function, GSH/GSSG ratio, and tumor xenograft ex vivo assays were used in the study. RESULTS Herein, we demonstrated that NOT significantly suppresses the viability, migration, and invasion capacity of the human HCC HepJ5 and Mahlavu cell lines by disrupting ATF4 expression, inhibiting JAK2 activation, and downregulating the GPX1 and SOD1 expression in vitro. NOT also markedly suppressed the expression of vimentin (VIM), snail, b-catenin, and N-cadherin in the HCC cells, dose-dependently. Treatment with NOT significantly attenuated cancer stem cells (CSCs)-like phenotypes, namely colony and tumorsphere formation, with the concomitant downregulation of stemness markers OCT4, SOX2, CD133, and upregulated PARP-1 cleavage, dose-dependently. We also demonstrated that NOT anticancer activity was strongly associated with increased cellular reactive oxidative stress (ROS) but, conversely, reduced mitochondrial membrane potential and function in the HepJ5 and Mahlavu cells in vitro. Our tumor xenograft studies showed that compared with sorafenib, NOT elicited greater tumor growth suppression without adverse changes in mice body weights. Compared with the untreated control and sorafenib-treated mice, NOT-treated mice exhibited markedly greater apoptosis ex vivo, and this was associated with the co-suppression of stemness and drug-resistance markers OCT4, SOX2, ALDH1, and the upregulation of endoplasmic reticulum stress and oxidative stress factors PERK and CHOP. CONCLUSIONS In summary, we demonstrated for the first time that NOT exhibits strong anticancer activity via the suppression of cancer stemness, enhanced endoplasmic reticulum stress and increased oxidative stress thus projecting NOT as a potentially effective therapeutic agent against HCC.
Collapse
Affiliation(s)
- Ting-Yun Huang
- Department of Emergency Medicine, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Ching-Kuo Yang
- Division of Colorectal Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei City 10449, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235041, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235041, Taiwan
| | - Iat-Hang Fong
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235041, Taiwan
| | - Chi-Tai Yeh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235041, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Yih-Giun Cherng
- Department of Anesthesiology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
14
|
Telliam G, Desterke C, Imeri J, M'kacher R, Oudrhiri N, Balducci E, Fontaine-Arnoux M, Acloque H, Bennaceur-Griscelli A, Turhan AG. Modeling Global Genomic Instability in Chronic Myeloid Leukemia (CML) Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Cancers (Basel) 2023; 15:cancers15092594. [PMID: 37174060 PMCID: PMC10177163 DOI: 10.3390/cancers15092594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
METHODS We used a patient-specific induced pluripotent stem cell (iPSC) line treated with the mutagenic agent N-ethyl-N-nitrosourea (ENU). Genomic instability was validated using γ-H2AX and micronuclei assays and CGH array for genomic events. RESULTS An increased number of progenitors (x5-Fold), which proliferated in liquid cultures with a blast cell morphology, was observed in the mutagenized condition as compared to the unmutagenized one. CGH array performed for both conditions in two different time points reveals several cancer genes in the ENU-treated condition, some known to be altered in leukemia (BLM, IKZF1, NCOA2, ALK, EP300, ERG, MKL1, PHF6 and TET1). Transcriptome GEO-dataset GSE4170 allowed us to associate 125 of 249 of the aberrations that we detected in CML-iPSC with the CML progression genes already described during progression from chronic and AP to BC. Among these candidates, eleven of them have been described in CML and related to tyrosine kinase inhibitor resistance and genomic instability. CONCLUSIONS These results demonstrated that we have generated, for the first time to our knowledge, an in vitro genetic instability model, reproducing genomic events described in patients with BC.
Collapse
Affiliation(s)
- Gladys Telliam
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jusuf Imeri
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
| | - Radhia M'kacher
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Noufissa Oudrhiri
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Estelle Balducci
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Micheline Fontaine-Arnoux
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
| | - Hervé Acloque
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
- APHP-Paris Saclay Service d'Hématologie-Bicêtre, 94270 Le Kremlin Bicêtre, France
- INGESTEM National iPSC Infrastructure, 94800 Villejuif, France
- Centre for iPSC Therapies (CITHERA) INSERM UMS 45, Génopole, 91100 Evry, France
| | - Ali G Turhan
- INSERM UMR_S_1310, Université Paris Saclay, 94800 Villejuif, France
- Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
- APHP Paris Saclay Service d'Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse, 94800 Villejuif, France
- APHP-Paris Saclay Service d'Hématologie-Bicêtre, 94270 Le Kremlin Bicêtre, France
- INGESTEM National iPSC Infrastructure, 94800 Villejuif, France
- Centre for iPSC Therapies (CITHERA) INSERM UMS 45, Génopole, 91100 Evry, France
| |
Collapse
|
15
|
Wang Z, Han J, Guo Z, Wu H, Liu Y, Wang W, Zhang C, Liu J. Ginseng-based carbon dots inhibit the growth of squamous cancer cells by increasing ferroptosis. Front Oncol 2023; 13:1097692. [PMID: 36969027 PMCID: PMC10036825 DOI: 10.3389/fonc.2023.1097692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundRecent studies indicated that Ginseng potentiate cancer treatments. Ginseng-based carbon dots (GCDs) might possess properties to kill cancer cells and inhibit malignant tumor development and invasion. This study aimed to prepare GCDs, examine their effects on cancer cell growth and invasion, and explore the mechanisms involved.MethodsGCDs were synthesized, purified, and characterized. Cells were cultured with GCDs and were tested for growth, invasiveness, and wound healing. RNA was extracted for transcriptomics analysis. Protein expression was evaluated using western blot and immunohistochemistry. Mice were injected with cancer cells and treated with PBS or GCDs. Tumor volume was evaluated.ResultsGCDs were successfully synthesized and purified. The solution was yellow under sunlight and fluorescent blue under ultraviolet light. Electron microscopy showed GCDs with a uniform shape without apparent aggregation and an average diameter of about 4 nm. GCDs inhibited Cal-27, SCC-25, and SCC-7 cancer cell growth at concentrations of >250-300 μg/mL, while GCDs inhibited the non-cancerous HaCaT cells at concentrations >400 μg/mL. Immunofluorescence showed that GCDs could enter the cells. Transcriptomics revealed 552 downregulated mRNAs and 338 upregulated ones, including mRNAs involved in the oxidative phosphorylation and ferroptosis pathways. GCDs induced the ferroptosis of cancer cells, as shown by decreased GPX-4 and increased COX-2. GCDs decreased cell invasion and migration. In vivo, GCDs decreased tumor growth without apparent organ toxicity and promoted CD4+ T cell infiltration in the tumor.ConclusionGCDs appear to possess anticancer properties by increasing ferroptosis, resulting in cancer cell growth inhibition in vitro and in vivo.
Collapse
Affiliation(s)
- Zilin Wang
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Han
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyong Guo
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Hao Wu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yige Liu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Tissue Engineering Research, Shanghai, China
| | - Wenying Wang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenping Zhang
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiannan Liu, ; Chenping Zhang,
| | - Jiannan Liu
- Department of Oral Maxillofacial - Head & Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiannan Liu, ; Chenping Zhang,
| |
Collapse
|
16
|
Freire Boullosa L, Van Loenhout J, Flieswasser T, Hermans C, Merlin C, Lau HW, Marcq E, Verschuuren M, De Vos WH, Lardon F, Smits ELJ, Deben C. Auranofin Synergizes with the PARP Inhibitor Olaparib to Induce ROS-Mediated Cell Death in Mutant p53 Cancers. Antioxidants (Basel) 2023; 12:antiox12030667. [PMID: 36978917 PMCID: PMC10045521 DOI: 10.3390/antiox12030667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Auranofin (AF) is a potent, off-patent thioredoxin reductase (TrxR) inhibitor that efficiently targets cancer via reactive oxygen species (ROS)- and DNA damage-mediated cell death. The goal of this study is to enhance the efficacy of AF as a cancer treatment by combining it with the poly(ADP-ribose) polymerase-1 (PARP) inhibitor olaparib (referred to as ‘aurola’). Firstly, we investigated whether mutant p53 can sensitize non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) cancer cells to AF and olaparib treatment in p53 knock-in and knock-out models with varying p53 protein expression levels. Secondly, we determined the therapeutic range for synergistic cytotoxicity between AF and olaparib and elucidated the underlying molecular cell death mechanisms. Lastly, we evaluated the effectiveness of the combination strategy in a murine 344SQ 3D spheroid and syngeneic in vivo lung cancer model. We demonstrated that high concentrations of AF and olaparib synergistically induced cytotoxicity in NSCLC and PDAC cell lines with low levels of mutant p53 protein that were initially more resistant to AF. The aurola combination also led to the highest accumulation of ROS, which resulted in ROS-dependent cytotoxicity of mutant p53 NSCLC cells through distinct types of cell death, including caspase-3/7-dependent apoptosis, inhibited by Z-VAD-FMK, and lipid peroxidation-dependent ferroptosis, inhibited by ferrostatin-1 and alpha-tocopherol. High concentrations of both compounds were also needed to obtain a synergistic cytotoxic effect in 3D spheroids of the murine lung adenocarcinoma cell line 344SQ, which was interestingly absent in 2D. This cell line was used in a syngeneic mouse model in which the oral administration of aurola significantly delayed the growth of mutant p53 344SQ tumors in 129S2/SvPasCrl mice, while either agent alone had no effect. In addition, RNA sequencing results revealed that AF- and aurola-treated 344SQ tumors were negatively enriched for immune-related gene sets, which is in accordance with AF’s anti-inflammatory function as an anti-rheumatic drug. Only 344SQ tumors treated with aurola showed the downregulation of genes related to the cell cycle, potentially explaining the growth inhibitory effect of aurola since no apoptosis-related gene sets were enriched. Overall, this novel combination strategy of oxidative stress induction (AF) with PARP inhibition (olaparib) could be a promising treatment for mutant p53 cancers, although high concentrations of both compounds need to be reached to obtain a substantial cytotoxic effect.
Collapse
Affiliation(s)
- Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Evelien L. J. Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-3-265-25-76
| |
Collapse
|
17
|
A comparative study of smart nanoformulations of diethyldithiocarbamate with Cu 4O 3 nanoparticles or zinc oxide nanoparticles for efficient eradication of metastatic breast cancer. Sci Rep 2023; 13:3529. [PMID: 36864097 PMCID: PMC9981580 DOI: 10.1038/s41598-023-30553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Metastatic tumor is initiated by metastatic seeds (cancer stem cells "CSCs") in a controlled redox microenvironment. Hence, an effective therapy that disrupts redox balance with eliminating CSCs is critical. Diethyldithiocarbamate (DE) is potent inhibitor of radical detoxifying enzyme (aldehyde dehydrogenase "ALDH"1A) causing effective eradication of CSCs. This DE effect was augmented and more selective by its nanoformulating with green synthesized copper oxide (Cu4O3) nanoparticles (NPs) and zinc oxide NPs, forming novel nanocomplexes of CD NPs and ZD NPs, respectively. These nanocomplexes exhibited the highest apoptotic, anti-migration, and ALDH1A inhibition potentials in M.D. Anderson-metastatic breast (MDA-MB) 231 cells. Importantly, these nanocomplexes revealed more selective oxidant activity than fluorouracil by elevating reactive oxygen species with depleting glutathione in only tumor tissues (mammary and liver) using mammary tumor liver metastasis animal model. Due to higher tumoral uptake and stronger oxidant activity of CD NPs than ZD NPs, CD NPs had more potential to induce apoptosis, suppress hypoxia-inducing factor gene, and eliminate CD44+CSCs with downregulating their stemness, chemoresistance, and metastatic genes and diminishing hepatic tumor marker (α-fetoprotein). These potentials interpreted the highest tumor size reduction with complete eradicating tumor metastasis to liver in CD NPs. Consequently, CD nanocomplex revealed the highest therapeutic potential representing a safe and promising nanomedicine against the metastatic stage of breast cancer.
Collapse
|
18
|
Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci 2023; 24:4745. [PMID: 36902176 PMCID: PMC10003082 DOI: 10.3390/ijms24054745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer's and Parkinson's diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile.
Collapse
Affiliation(s)
- Benedetta Fibbi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| | - Giada Marroncini
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Laura Naldi
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
| | - Alessandro Peri
- “Pituitary Diseases and Sodium Alterations” Unit, AOU Careggi, 50139 Florence, Italy
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy
| |
Collapse
|
19
|
Intratumoral pro-oxidants promote cancer immunotherapy by recruiting and reprogramming neutrophils to eliminate tumors. Cancer Immunol Immunother 2023; 72:527-542. [PMID: 36066649 PMCID: PMC9446783 DOI: 10.1007/s00262-022-03248-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/23/2022] [Indexed: 11/06/2022]
Abstract
Neutrophils have recently gained recognition for their potential in the fight against cancer. Neutrophil plasticity between the N1 anti-tumor and N2 pro-tumor subtypes is now apparent, as is the ability to polarize these individual subtypes by interventions such as intratumoral injection of various agents including bacterial products or pro-oxidants. Metabolic responses and the production of reactive oxygen species (ROS) such as hydrogen peroxide act as potent chemoattractants and activators of N1 neutrophils that facilitates their recruitment and ensuing activation of a toxic respiratory burst in tumors. Greater understanding of the precise mechanism of N1 neutrophil activation, recruitment and regulation is now needed to fully exploit their anti-tumor potential against cancers both locally and at distant sites. This systematic review critically analyzes these new developments in cancer immunotherapy.
Collapse
|
20
|
Tuli HS, Kaur J, Vashishth K, Sak K, Sharma U, Choudhary R, Behl T, Singh T, Sharma S, Saini AK, Dhama K, Varol M, Sethi G. Molecular mechanisms behind ROS regulation in cancer: A balancing act between augmented tumorigenesis and cell apoptosis. Arch Toxicol 2023; 97:103-120. [PMID: 36443493 DOI: 10.1007/s00204-022-03421-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
ROS include hydroxyl radicals (HO.), superoxide (O2..), and hydrogen peroxide (H2O2). ROS are typically produced under physiological conditions and play crucial roles in living organisms. It is known that ROS, which are created spontaneously by cells through aerobic metabolism in mitochondria, can have either a beneficial or detrimental influence on biological systems. Moderate levels of ROS can cause oxidative damage to proteins, DNA and lipids, which can aid in the pathogenesis of many disorders, including cancer. However, excessive concentrations of ROS can initiate programmed cell death in cancer. Presently, a variety of chemotherapeutic drugs and herbal agents are being investigated to induce ROS-mediated cell death in cancer. Therefore, preserving ROS homeostasis is essential for ensuring normal cell development and survival. On account of a significant association of ROS levels at various concentrations with carcinogenesis in a number of malignancies, further studies are needed to determine the underlying molecular mechanisms and develop the possibilities for intervening in these processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Kanupriya Vashishth
- Advance Cardiac Centre Department of Cardiology, PGIMER, Chandigarh, 160012, India
| | | | - Ujjawal Sharma
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.,Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Tejveer Singh
- Translanatal Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura, 140401, India
| | - Adesh K Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, 48000, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
21
|
Bioderived deep eutectic solvent-based topical chemotherapy for squamous cell carcinoma of the skin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Gallegos-Arreola MP, Ramírez-Patiño R, Sánchez-López JY, Zúñiga-González GM, Figuera LE, Delgado-Saucedo JI, Gómez-Meda BC, Rosales-Reynoso MA, Puebla-Pérez AM, Lemus-Varela ML, Garibaldi-Ríos AF, Marín-Domínguez NA, Pacheco-Verduzco DP, Mohamed-Flores EA. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Curr Issues Mol Biol 2022; 44:5221-5233. [PMID: 36354667 PMCID: PMC9688594 DOI: 10.3390/cimb44110355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
The superoxide dismutase (SOD) is the principal antioxidant defense system in the body that is activated by a reactive oxygen species. Some variants of the SOD2 gene have been associated with cancer. The rs4880 variant was determined by PCR real-time and the rs5746136 variant by PCR-RFLP in healthy subjects and in breast cancer (BC) patients. The rs4880 and rs5746136 variants were associated with BC susceptibility when BC patients and the control group were compared for the CT, TT, CTCC, and the T alleles (p < 0.05). The CT genotype of the rs4880 variant showed significant statistical differences in patients and controls aged ≤ 45 years old, and with hormonal consumption (p < 0.05). The rs4880 variant was associated with BC patients with CTTT genotype and obesity, the presence of DM2-SAH, and a non-chemotherapy response (p < 0.05). Additionally, the rs5746136 variant was associated with susceptibility to BC with Ki-67 (≥20%), luminal A type BC, and a chemotherapy partial response (p < 0.05) in BC patients who carry TT, TC, and CTTT genotypes, respectively. The haplotype T/T (OR 1.98; 95% CI 1.20−3.26, p = 0.005) was observed to be a risk factor for BC. The rs4880 and rs5746136 variants in the SOD2 gene were associated with BC susceptibility.
Collapse
Affiliation(s)
- Martha P. Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico
- Correspondence: ; Tel.: +52-33-36170060 (ext. 31936)
| | - Ramiro Ramírez-Patiño
- Departamento de Medicina y Ciencias de la Vida, Centro Universitario la Ciénega, Universidad de Guadalajara, 47810 Ocotlán, Mexico
| | - Josefina Y. Sánchez-López
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico
| | | | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico
| | - Jorge I. Delgado-Saucedo
- Laboratorio de Inmunofarmacología, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 44100 Guadalajara, Mexico
| | - Belinda C. Gómez-Meda
- Departamento de Biología Molecular y Genómica, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44100 Guadalajara, Mexico
| | | | - Ana M. Puebla-Pérez
- Laboratorio de Inmunofarmacología, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 44100 Guadalajara, Mexico
| | - María L. Lemus-Varela
- Departamento de Neonatología, Hospital de Pediatría, UMAE, CMNO, IMSS, 44340 Guadalajara, Mexico
| | | | - Nayely A. Marín-Domínguez
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico
| | - Diana P. Pacheco-Verduzco
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), 44340 Guadalajara, Mexico
| | | |
Collapse
|
23
|
Curcumin Modulates Oxidative Stress, Fibrosis, and Apoptosis in Drug-Resistant Cancer Cell Lines. Life (Basel) 2022; 12:life12091427. [PMID: 36143462 PMCID: PMC9504331 DOI: 10.3390/life12091427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
In cancer management, drug resistance remains a challenge that reduces the effectiveness of chemotherapy. Several studies have shown that curcumin resensitizes cancer cells to chemotherapeutic drugs to overcome resistance. In the present study, we investigate the potential therapeutic role of curcumin in regulating the proliferation of drug-resistant cancers. Six drug-sensitive (MCF7, HCT116, and A549) and -resistant (MCF7/TH, HCT116R, and A549/ADR) cancer cell lines were treated with curcumin followed by an analysis of cytotoxicity, LDH enzyme, total reactive oxygen species, antioxidant enzymes (SOD and CAT), fibrosis markers (TGF-β1 protein, fibronectin, and hydroxyproline), and expression of cellular apoptotic markers (Bcl-2, Bax, Bax/Bcl-2 ratio, Annexin V, cytochrome c, and caspase-8). Additionally, the expression of cellular SIRT1 was estimated by ELISA and RT-PCR analysis. Curcumin treatment at doses of 2.7–54.3 µM significantly reduced the growth of sensitive and resistant cells as supported with decreased viability and increased cellular LDH enzyme of treated cells compared to controls non-treated cells. Curcumin also at doses of 2.7 and 54.3 µM regulated the fibrogenesis by reducing the expression of fibrotic markers in treated cells. Analysis of apoptotic markers indicated increased Bax, Bax, Bax/Bcl-2 ratio, Annexin V, caspase-8, and cytochrome c expression, while Bcl-2 expressions were significantly reduced. In curcumin-treated cells at 2.7 μM, non-significant change in ROS with significant increase in SOD and CAT activity was observed, whereas an increase in ROS with a reduction in respective antioxidant enzymes were seen at higher concentrations along with significant upregulation of SIRT1. In conclusion, the present study shows that curcumin induces anticancer activity against resistant cancer cell lines in a concentration- and time-dependent manner. The protective activities of curcumin against the growth of cancer cells are mediated by modulating oxidative stress, regulating fibrosis, SIRT1 activation, and inducing cellular apoptosis. Therefore, curcumin could be tested as an auxiliary therapeutic agent to improve the prognosis in patients with resistant cancers.
Collapse
|
24
|
Yao W, Qiu HM, Cheong KL, Zhong S. Advances in anti-cancer effects and underlying mechanisms of marine algae polysaccharides. Int J Biol Macromol 2022; 221:472-485. [PMID: 36089081 DOI: 10.1016/j.ijbiomac.2022.09.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/08/2022] [Accepted: 09/06/2022] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death in both developing and developed countries. With the increase in the average global life expectancy, it has become a major health problem and burden for most public healthcare systems worldwide. Due to the fewer side effects of natural compounds than of chemotherapeutic drugs, increasing scientific attention is being focused on the development of anti-cancer drugs derived from natural sources. Marine algae are an interesting source of functional compounds with diverse health-promoting activities. Among these compounds, polysaccharides have attracted considerable interest for many years because of their excellent anti-cancer abilities. They improve the efficacy of conventional chemotherapeutic drugs with relatively low toxicity to normal human cells. However, there are few reviews summarising the unique anti-cancer effects and underlying mechanisms of marine algae polysaccharides (MAPs). Thus, the current review focuses on updating the advances in the discovery and evaluation of MAPs with anti-cancer properties and the elucidation of their mechanisms of action, including the signalling pathways involved. This review aims to provide a deeper understanding of the anti-cancer functions of the natural compounds derived from medicinal marine algae and thereby offer a new perspective on cancer prevention and therapy with high effectiveness and safety.
Collapse
Affiliation(s)
- Wanzi Yao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Hua-Mai Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, PR China
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
25
|
Xu J, Qin S, Yi Y, Gao H, Liu X, Ma F, Guan M. Delving into the Heterogeneity of Different Breast Cancer Subtypes and the Prognostic Models Utilizing scRNA-Seq and Bulk RNA-Seq. Int J Mol Sci 2022; 23:ijms23179936. [PMID: 36077333 PMCID: PMC9456551 DOI: 10.3390/ijms23179936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Breast cancer (BC) is the most common malignancy in women with high heterogeneity. The heterogeneity of cancer cells from different BC subtypes has not been thoroughly characterized and there is still no valid biomarker for predicting the prognosis of BC patients in clinical practice. Methods: Cancer cells were identified by calculating single cell copy number variation using the inferCNV algorithm. SCENIC was utilized to infer gene regulatory networks. CellPhoneDB software was used to analyze the intercellular communications in different cell types. Survival analysis, univariate Cox, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox analysis were used to construct subtype specific prognostic models. Results: Triple-negative breast cancer (TNBC) has a higher proportion of cancer cells than subtypes of HER2+ BC and luminal BC, and the specifically upregulated genes of the TNBC subtype are associated with antioxidant and chemical stress resistance. Key transcription factors (TFs) of tumor cells for three subtypes varied, and most of the TF-target genes are specifically upregulated in corresponding BC subtypes. The intercellular communications mediated by different receptor–ligand pairs lead to an inflammatory response with different degrees in the three BC subtypes. We establish a prognostic model containing 10 genes (risk genes: ATP6AP1, RNF139, BASP1, ESR1 and TSKU; protective genes: RPL31, PAK1, STARD10, TFPI2 and SIAH2) for luminal BC, seven genes (risk genes: ACTR6 and C2orf76; protective genes: DIO2, DCXR, NDUFA8, SULT1A2 and AQP3) for HER2+ BC, and seven genes (risk genes: HPGD, CDC42 and PGK1; protective genes: SMYD3, LMO4, FABP7 and PRKRA) for TNBC. Three prognostic models can distinguish high-risk patients from low-risk patients and accurately predict patient prognosis. Conclusions: Comparative analysis of the three BC subtypes based on cancer cell heterogeneity in this study will be of great clinical significance for the diagnosis, prognosis and targeted therapy for BC patients.
Collapse
|
26
|
Mukherjee S, Dutta A, Chakraborty A. The interaction of oxidative stress with MAPK, PI3/AKT, NF-κB, and DNA damage kinases influences the fate of γ-radiation-induced bystander cells. Arch Biochem Biophys 2022; 725:109302. [DOI: 10.1016/j.abb.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
27
|
Guo N, Minas G, Synowsky SA, Dunne MR, Ahmed H, McShane R, Bhardwaj A, Donlon NE, Lorton C, O'Sullivan J, Reynolds JV, Caie PD, Shirran SL, Lynch AG, Stewart AJ, Arya S. Identification of plasma proteins associated with oesophageal cancer chemotherapeutic treatment outcomes using SWATH-MS. J Proteomics 2022; 266:104684. [PMID: 35842220 DOI: 10.1016/j.jprot.2022.104684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
Oesophageal adenocarcinoma (OAC) is an aggressive cancer with a five-year survival of <15%. Current chemotherapeutic strategies only benefit a minority (20-30%) of patients and there are no methods available to differentiate between responders and non-responders. We performed quantitative proteomics using Sequential Window Acquisition of all THeoretical fragment-ion spectra-Mass Spectrometry (SWATH-MS) on albumin/IgG-depleted and non-depleted plasma samples from 23 patients with locally advanced OAC prior to treatment. Individuals were grouped based on tumour regression (TRG) score (TRG1/2/3 vs TRG4/5) after chemotherapy, and differentially abundant proteins were compared. Protein depletion of highly abundant proteins led to the identification of around twice as many proteins. SWATH-MS revealed significant quantitative differences in the abundance of several proteins between the two groups. These included complement c1q subunit proteins, C1QA, C1QB and C1QC, which were of higher abundance in the low TRG group. Of those that were found to be of higher abundance in the high TRG group, glutathione S-transferase pi (GSTP1) exhibited the lowest p-value and highest classification accuracy and Cohen's kappa value. Concentrations of these proteins were further examined using ELISA-based assays. This study provides quantitative information relating to differences in the plasma proteome that underpin response to chemotherapeutic treatment in oesophageal cancers. SIGNIFICANCE: Oesophageal cancers, including oesophageal adenocarcinoma (OAC) and oesophageal gastric junction cancer (OGJ), are one of the leading causes of cancer mortality worldwide. Curative therapy consists of surgery, either alone or in combination with adjuvant or neoadjuvant chemotherapy or radiation, or combination chemoradiotherapy regimens. There are currently no clinico-pathological means of predicting which patients will benefit from chemotherapeutic treatments. There is therefore an urgent need to improve oesophageal cancer disease management and treatment strategies. This work compared proteomic differences in OAC patients who responded well to chemotherapy as compared to those who did not, using quantitative proteomics prior to treatment commencement. SWATH-MS analysis of plasma (with and without albumin/IgG-depletion) from OAC patients prior to chemotherapy was performed. This approach was adopted to determine whether depletion offered a significant improvement in peptide coverage. Resultant datasets demonstrated that depletion increased peptide coverage significantly. Additionally, there was good quantitative agreement between commonly observed peptides. Data analysis was performed by adopting both univariate as well as multivariate analysis strategies. Differentially abundant proteins were identified between treatment response groups based on tumour regression grade. Such proteins included complement C1q sub-components and GSTP1. This study provides a platform for further work, utilising larger sample sets across different treatment regimens for oesophageal cancer, that will aid the development of 'treatment response prediction assays' for stratification of OAC patients prior to chemotherapy.
Collapse
Affiliation(s)
- Naici Guo
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Giorgos Minas
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Silvia A Synowsky
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin D08 W9RT, Ireland; Department of Applied Science, Technological University Dublin, Tallaght, Dublin 24 D24 FKT9, Ireland
| | - Hasnain Ahmed
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom; School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Rhiannon McShane
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom; School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Anshul Bhardwaj
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland
| | - Noel E Donlon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin D08 W9RT, Ireland
| | - Cliona Lorton
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin D08 W9RT, Ireland; Our Lady's Hospice & Care Services, Harold's Cross, Dublin 6w, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin D08 W9RT, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin D08 W9RT, Ireland; Trinity St James's Cancer Institute, St James's Hospital, Dublin D08 W9RT, Ireland
| | - Peter D Caie
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Sally L Shirran
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Andy G Lynch
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, United Kingdom; School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom
| | - Alan J Stewart
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom; School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom.
| | - Swati Arya
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom; School of Medicine, University of St Andrews, St Andrews KY16 9TF, United Kingdom.
| |
Collapse
|
28
|
Robeldo T, Ribeiro LS, Manrique L, Kubo AM, Longo E, Camargo ER, Borra RC. Modified Titanium Dioxide as a Potential Visible-Light-Activated Photosensitizer for Bladder Cancer Treatment. ACS OMEGA 2022; 7:17563-17574. [PMID: 35664588 PMCID: PMC9161409 DOI: 10.1021/acsomega.1c07046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
Low oxygen concentration inside the tumor microenvironment represents a major barrier for photodynamic therapy of many malignant tumors, especially urothelial bladder cancer. In this context, titanium dioxide, which has a low cost and can generate high ROS levels regardless of local O2 concentrations, could be a potential type of photosensitizer for treating this type of cancer. However, the use of UV can be a major disadvantage, since it promotes breakage of the chemical bonds of the DNA molecule on normal tissues. In the present study, we focused on the cytotoxic activities of a new material (Ti(OH)4) capable of absorbing visible light and producing high amounts of ROS. We used the malignant bladder cell line MB49 to evaluate the effects of multiple concentrations of Ti(OH)4 on the cytotoxicity, proliferation, migration, and production of ROS. In addition, the mechanisms of cell death were investigated using FACS, accumulation of lysosomal acid vacuoles, caspase-3 activity, and mitochondrial electrical potential assays. The results showed that exposure of Ti(OH)4 to visible light stimulates the production of ROS and causes dose-dependent necrosis in tumor cells. Also, Ti(OH)4 was capable of inhibiting the proliferation and migration of MB49 in low concentrations. An increase in the mitochondrial membrane potential associated with the accumulation of acid lysosomes and low caspase-3 activity suggests that type II cell death could be initiated by autophagic dysfunction mechanisms associated with high ROS production. In conclusion, the characteristics of Ti(OH)4 make it a potential photosensitizer against bladder cancer.
Collapse
Affiliation(s)
| | - Lucas S. Ribeiro
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Lida Manrique
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| | - Andressa Mayumi Kubo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Elson Longo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Emerson Rodrigues Camargo
- CDMF,
LIEC, Chemistry Department of the Federal
University of São Carlos (UFSCar), São Carlos, São Paulo 13565-905, Brazil
| | - Ricardo Carneiro Borra
- Laboratory
of Applied Immunology, Federal University
of São Carlos (UFSCar), São Carlos, São Paulo 13565-905,Brazil
| |
Collapse
|
29
|
Mendivil-Perez M, Velez-Pardo C, Quiroz-Duque LM, Restrepo-Rincon A, Valencia-Zuluaga NA, Jimenez-Del-Rio M. TPEN selectively eliminates lymphoblastic B cells from bone marrow pediatric acute lymphoblastic leukemia patients. Biometals 2022; 35:741-758. [PMID: 35635647 DOI: 10.1007/s10534-022-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a hematologic disorder characterized by the abnormal proliferation and accumulation of immature B-lymphoblasts arrested at various stages of differentiation. Despite advances in treatment, a significant percentage of pediatric patients with precursor B-ALL still relapse. Therefore, alternative therapies are needed to improve the cure rates for pediatric patients. TPEN (N, N, N', N'-tetrakis(2-pyridylmethyl)-ethylenediamine) is a pro-oxidant agent capable of selectively inducing apoptosis in leukemia cell lines. Consequently, it has been suggested that TPEN could be a potential agent for oxidative therapy. However, it is not yet known whether TPEN can selectively destroy leukemia cells in a more disease-like model, for example, the bloodstream and bone marrow (BM), ex vivo. This investigation is an extension of a previous study that dealt with the effect of TPEN on ex vivo isolated/purified refractory B-ALL cells. Here, we evaluated the effect of TPEN on whole BM from nonleukemic patients (control) or pediatric patients diagnosed with de novo B-ALL or refractory B-ALL cells by analyzing the hematopoietic cell lineage marker CD34/CD19. Although TPEN was innocuous to nonleukemic BM (n = 3), we found that TPEN significantly induced apoptosis in de novo (n = 5) and refractory B-ALL (n = 6) leukemic cell populations. Moreover, TPEN significantly increased the counts of cells positive for the oxidation of the stress sensor protein DJ-1, a sign of the formation of H2O2, and significantly increased the counts of cells positive for the pro-apoptotic proteins TP53, PUMA, and CASPASE-3 (CASP-3), indicative of apoptosis, in B-ALL cells. We demonstrate that TPEN selectively eliminates B-ALL cells (CD34 + /CD19 +) but no other cell populations in BM (CD34 + /CD19-; CD34-/CD19 + ; CD34-/CD19-) independent of age, diagnosis status (de novo or refractory), sex, karyotype, or immunophenotype. Understanding TPEN-induced cell death in leukemia cells provides insight into more effective therapeutic oxidation-inducing anticancer agents.
Collapse
Affiliation(s)
- M Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - C Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia
| | - L M Quiroz-Duque
- Hospital Pablo Tobon Uribe, Pediatric Oncology Unit, Calle 78b #69-240, Medellin, Colombia
| | - A Restrepo-Rincon
- Hospital Pablo Tobon Uribe, Pediatric Oncology Unit, Calle 78b #69-240, Medellin, Colombia
| | - N A Valencia-Zuluaga
- Hospital Pablo Tobon Uribe, Pediatric Oncology Unit, Calle 78b #69-240, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia (UdeA), Calle 70 No. 52-21, and Calle 62 # 52-59, Building 1, Room 412, SIU, Medellin, Colombia.
| |
Collapse
|
30
|
Combinational treatment of TPEN and TPGS induces apoptosis in acute lymphoblastic and chronic myeloid leukemia cells in vitro and ex vivo. Med Oncol 2022; 39:109. [PMID: 35578067 DOI: 10.1007/s12032-022-01697-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
TPEN and TPGS have recently shown selective cytotoxic effects in vitro and ex vivo leukemia cells. In this study, we aimed to test the synergistic effect of combined TPEN and TPGS agents (thereafter, T2 combo) on Jurkat (clone-E61), K562, Ba/F3, and non-leukemia peripheral blood lymphocytes (PBL). The ED50 doses (i.e., TPEN ED50: 3.2 μM and TPGS ED50: 34 μM, potency ratio R = 10.62 = TPGS (ED50)/TPEN (ED50)) were identified as dose-effect curve (%DNA fragmentation (sub-G1 phase) versus agent concentration). The most effective synergistic doses were determined according to isobole analysis. The apoptotic and oxidative stress effects of combined doses (TPEN 0.1, 0.5, 1 μM) and TPGS (5, 10, 20 μM)) were evaluated by DNA fragmentation (sub-G1 phase), mitochondrial membrane potential, oxidation of stress sensor protein DJ-1, and activation of executer protein CASPASE-3. They testified to the synergistic effect of the T2 combo (e.g., TPEN 1: TPGS 20, combination index (CI) 0.90 < 1; 1/3.2+ 20/34, > 90% induced apoptosis) in all 3 cell lines. As proof of principle, we challenged complete bone marrow (n = 5) or isolated cells from bone marrow (n = 3) samples from acute pediatric acute B-cell patients and found that T2 combo (1:20; 10:200) dramatically reduced (- 50%) the CD34+/CD19+cell population and increased significantly CD19+/CASP-3+ positive B-ALL cells up to 960%. The T2 combo neither induced DNA fragmentation, altered ΔΨm, nor induced oxidation of stress sensor protein DJ-1, nor activated CASP-3 in PBL cells. We conclude that by using different combinations of TPEN and TPGS, a more efficient treatment strategy can be developed for leukemia patients.
Collapse
|
31
|
Zakhireh S, Omidi Y, Beygi-Khosrowshahi Y, Barzegari A, Barar J, Adibkia K. Synthesis and biological impacts of pollen shells/Fe 3O 4 nanoparticles composites on human MG-63 osteosarcoma cells. J Trace Elem Med Biol 2022; 71:126921. [PMID: 35033859 DOI: 10.1016/j.jtemb.2022.126921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Cell-adhesive surfaces play a pivotal role in biomedical engineering, as most biological reactions take place on surfaces. Pollen shell (PSh) ofPistacia vera L., as a new medical device, has previously been reported to cause cytotoxicity and apoptosis in MG-63 bone cancer cells. METHODS Iron oxide nanoparticles (Fe3O4NPs) were synthesized and their reaction to PShs was gauged at different concentrations, and then characterized using field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy, energy dispersion X-ray spectrometer, X-ray diffraction spectra, dynamic light scattering, and vibrating sample magnetometer. Then, the biological impacts of PShs/Fe3O4NPs composites on MG-63 cells were investigated in-vitro using MTT assay, quantitative polymerase chain reaction (qPCR), Annexin V/propidium iodide, FESEM, and DAPI staining. RESULTS Fe3O4NPs with a size range of 24-40 nm and a zeta potential value of -37.4 mV were successfully assembled on the PShs. The viability of MG-63 cells was significantly decreased when cultured on the magnetic PShs as compared to non-magnetic PShs, in Fe3O4 concentration and time-dependent manner. In contrast, magnetic PShs had a positive effect on the viability of normal human bone marrow-derived mesenchymal stem cells (hBM-MSCs). The analysis of apoptosis-related genes in cancer cells revealed that loading Fe3O4NPs on PShs increased expression of BAX/BCL2 and caspase-3 genes. The increased apoptotic activity of combined PShs/Fe3O4NPs was further confirmed by flow cytometric measurement, morphological analysis, and DAPI staining. CONCLUSION The incorporation of Fe3O4NPs into PShs could effectively increase anticancer effects on MG-63 cells via the mitochondria-mediated apoptosis pathway, evident by upregulation of BAX/BCL2 ratio and caspase-3.
Collapse
Affiliation(s)
- Solmaz Zakhireh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Mallya R, Bhitre M. Evaluation of Antileukemic and Antimalarial Potential of Zanthoxylum rhetsa DC (Rutaceae): A Well-Known Spice. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/0929866529666220426121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Zanthoxylum rhetsa fruits, a common spice in many cuisines, have proven to have a good therapeutic potential and are routinely used in food, medicine, and commerce. The present study was conducted to screen the in vitro antileukemic and antimalarial activities of the methanolic extract of Z. rhetsa fruits and conduct mechanistic studies for antileukemic activity.
Methods:
Methanol extract was prepared by maceration process and standardised with lupeol as a marker using HPLC. MTT and SRB assays were used to establish the cytotoxicity of the extract against L929 and leukemic cell lines (Jurkat, K562, and HL-60). Amount of ROS in cell lines was detected by flow cytometry using 2',7'-dichlorodihydrofluorescin diacetate. Apoptosis on HL-60 was detected by Annexin-V/PI dual staining assay through cell cycle analysis and gel electrophoresis. In vitro antimalarial activity was conducted on Plasmodium falciparum CQ sensitive 3D7 strains according to the WHO 2001 guidelines.
Results:
The methanol extract contained 1.03% of lupeol. Potent antileukemic activity (IC50 <10 μg/mL) was observed against HL-60 in comparison to K562 and Jurkat cell lines. The extract induced apoptosis in cancer cells in the proliferative and mitotic phase without DNA fragmentation. Therefore, the antileukemic activity exhibited by the extract could be attributed to the increased oxidative stress generated in cancer cells. Fruits also exhibited good antioxidant activity against normal cells, thus proving beneficial as a cytoprotective agents. Promising antimalarial activity (IC50 = 16.21 μg/mL) with high selectivity against malarial parasites was exhibited by the fruits.
Conclusion:
Thus, the fruits of Z.rhetsa can be used as an adjuvant therapy to reduce the side effects and resistance associated with chemotherapy and can be a potential candidate for drug discovery research in the areas of cancer and parasitic infection.
Collapse
Affiliation(s)
- Rashmi Mallya
- SVKM’s Dr.Bhanuben Nanavati College of Pharmacy, Gate No:1 Mithibai College Campus, Vile Parle (W), Mumbai – 400052, India
- C.U. Shah College of Pharmacy, SNDT Women’s University, Santacruz (West), Mumbai – 400049, India
| | - Milind Bhitre
- C.U. Shah College of Pharmacy, SNDT Women’s University, Santacruz (West), Mumbai – 400049, India
| |
Collapse
|
33
|
Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Biomedicines 2022; 10:biomedicines10040823. [PMID: 35453573 PMCID: PMC9029215 DOI: 10.3390/biomedicines10040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.
Collapse
|
34
|
Terminalia ferdinandiana (Kakadu Plum)-Mediated Bio-Synthesized ZnO Nanoparticles for Enhancement of Anti-Lung Cancer and Anti-Inflammatory Activities. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Terminalia ferdinandiana (Kakadu plum) is an Australian native plant that has recently gained the attention of researchers due to its highly antioxidant compounds that have substantial health benefits. To raise the value, in this study, it is used for the first time to synthesize ZnO nanoparticles for anti-lung cancer and anti-inflammatory activities. The formation of KKD-ZnO-NPs (ZnO particles obtained from Kakadu plum) were confirmed using a UV-Visible spectrophotometer. Fourier transform infrared (FTIR) spectroscopy analysis confirmed the functional groups that are responsible for the stabilization and capping of KKD-ZnO-NPs. The flower shape of the synthesized KKD-ZnO-NPs was confirmed by field emission-scanning electron microscopy (FE-SEM) and field emission-transmission electron microscopy (FE-TEM) analyses. The crystallites were highly pure and had an average size of 21.89 nm as measured by X-ray diffraction (XRD). The dynamic light scattering (DLS) revealed size range of polydisperse KKD-ZnO-NPs was 676.65 ± 47.23 nm with a PDI of 0.41 ± 0.0634. Furthermore, the potential cytotoxicity was investigated in vitro against human lung cancer cell lines (A549) and Raw 264.7 Murine macrophages cells as normal cells to ensure safety purposes using MTT assay. Thus, KKD-ZnO-NPs showed prominent cytotoxicity against human lung adenocarcinoma (A549) at 10 μg/mL and increased reactive oxygen species (ROS) production as well, which could promote toxicity to cancer cells. Moreover, upregulation of p53 and downregulation of bcl2 gene expression as apoptosis regulators were confirmed via RT-PCR. In addition, KKD-ZnO-NPs possess a similar capacity of reduction in proinflammatory-nitric oxide (NO) production when compared to the L-NMMA as inflammation’s inhibitor, indicating anti-inflammatory potential. Incorporation of Kakadu plum extract as reducing and stabilizing agents enabled the green synthesis of flower-shaped KKD-ZnO-NPs that could be an initiative development of effective cancer therapy drug.
Collapse
|
35
|
Jîtcă G, Ősz BE, Tero-Vescan A, Miklos AP, Rusz CM, Bătrînu MG, Vari CE. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants (Basel) 2022; 11:antiox11030572. [PMID: 35326222 PMCID: PMC8944834 DOI: 10.3390/antiox11030572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress is the subject of numerous studies, most of them focusing on the negative effects exerted at both molecular and cellular levels, ignoring the possible benefits of free radicals. More and more people admit to having heard of the term "oxidative stress", but few of them understand the meaning of it. We summarized and analyzed the published literature data in order to emphasize the importance and adaptation mechanisms of basal oxidative stress. This review aims to provide an overview of the mechanisms underlying the positive effects of oxidative stress, highlighting these effects, as well as the risks for the population consuming higher doses than the recommended daily intake of antioxidants. The biological dose-response curve in oxidative stress is unpredictable as reactive species are clearly responsible for cellular degradation, whereas antioxidant therapies can alleviate senescence by maintaining redox balance; nevertheless, excessive doses of the latter can modify the redox balance of the cell, leading to a negative outcome. It can be stated that the presence of oxidative status or oxidative stress is a physiological condition with well-defined roles, yet these have been insufficiently researched and explored. The involvement of reactive oxygen species in the pathophysiology of some associated diseases is well-known and the involvement of antioxidant therapies in the processes of senescence, apoptosis, autophagy, and the maintenance of cellular homeostasis cannot be denied. All data in this review support the idea that oxidative stress is an undesirable phenomenon in high and long-term concentrations, but regular exposure is consistent with the hormetic theory.
Collapse
Affiliation(s)
- George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| | - Bianca E. Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
- Correspondence:
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Amalia Pușcaș Miklos
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.T.-V.); (A.P.M.)
| | - Carmen-Maria Rusz
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Mădălina-Georgiana Bătrînu
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (C.-M.R.); (M.-G.B.)
| | - Camil E. Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (G.J.); (C.E.V.)
| |
Collapse
|
36
|
Maciejewska N, Olszewski M, Jurasz J, Serocki M, Dzierzynska M, Cekala K, Wieczerzak E, Baginski M. Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Sci Rep 2022; 12:3703. [PMID: 35260633 PMCID: PMC8904451 DOI: 10.1038/s41598-022-07691-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential anticancer agents for non-small cell lung cancer A-549, H226, and H460 cell lines. Most of the compounds efficiently inhibited the growth of all the tested cancer cell lines at micromolar concentrations. One of the most active compounds (PCH-1) was further evaluated for its effect on cell cycle distribution, apoptosis, migration, epithelial–mesenchymal transition, and oxidative stress. Furthermore, studies on the mechanism of action revealed that PCH-1 disrupts microtubule assembly, leading to cancer cell death. Molecular modeling studies confirmed the potent interaction of PCH-1 with the vinblastine binding site on tubulin. Overall, this study provides novel opportunities to identify anticancer agents in the pyrazole series.
Collapse
Affiliation(s)
- Natalia Maciejewska
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jakub Jurasz
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Marcin Serocki
- Ryvu Therapeutics, Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Maria Dzierzynska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Cekala
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Maciej Baginski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
37
|
Datta S, Sinha D. Low dose epigallocatechin-3-gallate revives doxorubicin responsiveness by a redox-sensitive pathway in A549 lung adenocarcinoma cells. J Biochem Mol Toxicol 2022; 36:e22999. [PMID: 35218280 DOI: 10.1002/jbt.22999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary cancer confronts the greatest hurdle of resistance against most chemotherapeutic drugs. This may be circumvented with a combination of conventional chemotherapy with bioactive herbal adjuvant. Epigallocatechin-3-gallate (EGCG), was investigated for its chemo-sensitizing property along with doxorubicin (Dox), in an intrinsically nonresponsive lung adenocarcinoma (LAC) cell line, A549. A compromised functionality of Dox was reversed when EGCG was used as an adjuvant. On one hand, Dox (10 μM)-EGCG (0.5 μM) post treatment combination decreased the drug efflux, multidrug-resistance (MDR) signaling, invasiveness while, on the other hand, it increased drug internalization, cell-cycle arrest, stress-induced damage, and finally cell death. The resistant nature of A549 was probably due to constitutive activation of nuclear erythroid 2-related factor 2 (Nrf2) and its upstream/downstream antioxidant effectors, which were also pro-oxidatively coordinated by EGCG. In conclusion low dose EGCG improved Dox-toxicity and imparted oxidative damage-mediated antineoplastic efficacy by reorienting the redox signaling in A549 LAC cells.
Collapse
Affiliation(s)
- Suchisnigdha Datta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
38
|
Efficacy of High-Ozonide Oil in Prevention of Cancer Relapses Mechanisms and Clinical Evidence. Cancers (Basel) 2022; 14:cancers14051174. [PMID: 35267482 PMCID: PMC8909345 DOI: 10.3390/cancers14051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cancer tissue is characterized by low oxygen availability triggering neo angiogenesis and metastatisation. Accordingly, oxidation is a possible strategy for counteracting cancer progression and relapses. Previous studies used ozone gas, administered by invasive methods, both in experimental animals and clinical studies, transiently decreasing cancer growth. This study evaluated the effect of ozonized oils (administered either topically or orally) on cancer, exploring triggered molecular mechanisms. Methods: In vitro, in lung and glioblastoma cancer cells, ozonized oils having a high ozonide content suppressed cancer cell viability by triggering mitochondrial damage, intracellular calcium release, and apoptosis. In vivo, a total of 115 cancer patients (age 58 ± 14 years; 44 males, 71 females) were treated with ozonized oil as complementary therapy in addition to standard chemo/radio therapeutic regimens for up to 4 years. Results: Cancer diagnoses were brain glioblastoma, pancreas adenocarcinoma, skin epithelioma, lung cancer (small and non-small cell lung cancer), colon adenocarcinoma, breast cancer, prostate adenocarcinoma. Survival rate was significantly improved in cancer patients receiving HOO as integrative therapy as compared with those receiving standard treatment only. Conclusions: These results indicate that ozonized oils at high ozonide may represent an innovation in complementary cancer therapy worthy of further clinical studies.
Collapse
|
39
|
Liang YY, Niu FY, Xu AA, Jiang LL, Liu CS, Liang HP, Huang YF, Shao XF, Mo ZW, Yuan YW. Increased MCL-1 synthesis promotes irradiation-induced nasopharyngeal carcinoma radioresistance via regulation of the ROS/AKT loop. Cell Death Dis 2022; 13:131. [PMID: 35136016 PMCID: PMC8827103 DOI: 10.1038/s41419-022-04551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Worldwide, nasopharyngeal carcinoma (NPC) is a rare head and neck cancer; however, it is a common malignancy in southern China. Radiotherapy is the most important treatment strategy for NPC. However, although radiotherapy is a strong tool to kill cancer cells, paradoxically it also promotes aggressive phenotypes. Therefore, we mimicked the treatment process in NPC cells in vitro. Upon exposure to radiation, a subpopulation of NPC cells gradually developed resistance to radiation and displayed cancer stem-cell characteristics. Radiation-induced stemness largely depends on the accumulation of the antiapoptotic myeloid cell leukemia 1 (MCL-1) protein. Upregulated MCL-1 levels were caused by increased stability and more importantly, enhanced protein synthesis. We showed that repeated ionizing radiation resulted in persistently enhanced reactive oxygen species (ROS) production at a higher basal level, further promoting protein kinase B (AKT) signaling activation. Intracellular ROS and AKT activation form a positive feedback loop in the process of MCL-1 protein synthesis, which in turn induces stemness and radioresistance. AKT/MCL-1 axis inhibition attenuated radiation-induced resistance, providing a potential target to reverse radiation therapy-induced radioresistance.
Collapse
Affiliation(s)
- Ying-Ying Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Fei-Yu Niu
- Department of Internal Medicine, Section 3, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - An-An Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li-Li Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Chun-Shan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ping Liang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yu-Fan Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xun-Fan Shao
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Wen Mo
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| | - Ya-Wei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Najeeb S, Suresh S, Raga SS, Binumon TM, Panicker SP. Regulation of ROS in Skin Stem Cells for Cancer Therapeutics. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:2427-2450. [DOI: 10.1007/978-981-16-5422-0_220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
41
|
Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Hernández-Hernández JD, Aviña-Verduzco J, García-Gutiérrez HA. In vitro cytotoxic potential of extracts from Aristolochia foetida Kunth against MCF-7 and bMECs cell lines. Saudi J Biol Sci 2021; 28:7082-7089. [PMID: 34867010 PMCID: PMC8626259 DOI: 10.1016/j.sjbs.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to evaluate the cytotoxic potential of Aristolochia foetida Kunth. Stems and leaves of A. foetida Kunth (Aristolochiaceae) have never been investigated pharmacologically. Recent studies of species of the Aristolochiaceae family found significant cytotoxic activities. Hexane, dichloromethane, ethyl acetate and methanol extracts were analyzed by 1H NMR and GC-MS to know the metabolites in each extract. In GC-MS analysis, the main compounds were methyl hexadecanoate (3); hexadecanoic acid (4); 2-butoxyethyl dodecanoate (9); ethyl hexadecanoate (20); methyl octadeca-9,12,15-trienoate (28) and (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (40). The results showed a significant reduction in cell viability of the MCF-7 (breast cancer) cell line caused by organic extracts in a dose-dependent manner. The cytotoxicity activity of the dichloromethane extract from the stems (DSE) showed IC50 values of 45.9 μg/mL and the dichloromethane extract of the leaves (DLE) showed IC50 values of 47.3 μg/mL. DSE and DLE had the highest cytotoxic potential in an in vitro study against the MCF-7 cell line and non-tumor cells obtained from the bovine mammary epithelial (bMECs). DSE and DLE induced a loss in mitochondrial membrane potential (ΔΨm) and can cause cell death by apoptosis through the intrinsic pathway in the MCF-7 cell line. DSE and DLE are cytotoxic in cancer cells and cause late apoptosis. Higher concentrations of DSE and DLE are required to induce a cytotoxic effect in healthy mammary epithelial cells. This is the first report of the dichloromethane extract of A. foetida Kunth that induces late apoptosis in MCF-7 cancer cells and may be a candidate for pharmacological study against breast cancer.
Collapse
Key Words
- 7AAD, 7-Aminoactinomycin D
- ANOVA, Analysis of variance
- Act-D, Actinomycin D
- Apoptosis
- Aristolochia foetida
- Cytotoxicity
- DEL, Dichloromethane extract from leaves
- DMEM, Medium/nutrient mixture F-12 Ham
- DSE, Dichloromethane extract from stems
- EtOH, Ethanol
- FBS, Fetal bovine serum
- Flow cytometry
- GC–MS, Gas chromatography-mass spectrometry
- HLE, Hexane extract from leaves
- HSE, Hexane extract from stems
- IM, Incomplete medium
- JC-1, 5,5′,6,6′-tetrachloro-1,1′,3,3′tetraethylbenzimidazolcarbocyanineiodide
- MCF-7 breast cancer cell
- Medicinal plants
- NMR, Nuclear magnetic resonance
- Organic extract
- SE, Standard error
- TMS, Tetramethylsilane
- bMECs, Bovine mammary epithelial cells
Collapse
Affiliation(s)
- Martín A. Lerma-Herrera
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Lidia Beiza-Granados
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58893, Mexico
| | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán 58893, Mexico
| | - Juan D. Hernández-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Judit Aviña-Verduzco
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Hugo A. García-Gutiérrez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| |
Collapse
|
42
|
Mohsin A, Haneef K, Ilyas A, Zarina S, Hashim Z. Oxidative Stress Induced Cell Cycle Arrest: Potential Role of PRX-2 and GSTP-1 as Therapeutic Targets in Hepatocellular Carcinoma. Protein Pept Lett 2021; 28:1323-1329. [PMID: 34749598 DOI: 10.2174/0929866528666211105105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The increasing incidence and mortality rate of HCC is a major concern, especially for developing countries of the world. Hence, extensive research is being carried out in order to explore new approaches for developing successful therapeutic strategies for HCC. The controversial role of oxidative stress in the prognosis and treatment of various diseases such as cancer has become the area of great interest and intrigue for many scientists throughout the world. OBJECTIVE We aim to investigate the role of induced oxidative stress on the suppression of HCC Huh-7 cancerous cells as therapeutic approach. METHODS Induction of oxidative stress via H2O2 treatment produced cell cytotoxicity in a dose dependent manner and also led to the over expression of GSTP-1 and PRX-2. The expression of GSTP-1 and PRX-2 was compared in HCC Huh-7 treated, untreated cells and normal hepatocytes using immunocytochemistry. Furthermore, the effects of oxidative stress on cell cycle arrest were also studied through flow cytometry. RESULTS Our study demonstrated the inhibition of cancer cell proliferation as a result of H2O2 induction by arresting the cell cycle at G2 phase. CONCLUSION The induction of oxidative stress could be a potential therapeutic approach for treating HCC in the future. GSTP-1 and PRX-2 can serve as substantial therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Abeer Mohsin
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270. Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270. Pakistan
| | - Amber Ilyas
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270. Pakistan
| | - Shamshad Zarina
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270. Pakistan
| | - Zehra Hashim
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi 75270. Pakistan
| |
Collapse
|
43
|
Manoukian P, Bijlsma M, van Laarhoven H. The Cellular Origins of Cancer-Associated Fibroblasts and Their Opposing Contributions to Pancreatic Cancer Growth. Front Cell Dev Biol 2021; 9:743907. [PMID: 34646829 PMCID: PMC8502878 DOI: 10.3389/fcell.2021.743907] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic tumors are known to harbor an abundant and highly desmoplastic stroma. Among the various cell types that reside within tumor stroma, cancer-associated fibroblasts (CAFs) have gained a lot of attention in the cancer field due to their contributions to carcinogenesis and tumor architecture. These cells are not a homogeneous population, but have been shown to have different origins, phenotypes, and contributions. In pancreatic tumors, CAFs generally emerge through the activation and/or recruitment of various cell types, most notably resident fibroblasts, pancreatic stellate cells (PSCs), and tumor-infiltrating mesenchymal stem cells (MSCs). In recent years, single cell transcriptomic studies allowed the identification of distinct CAF populations in pancreatic tumors. Nonetheless, the exact sources and functions of those different CAF phenotypes remain to be fully understood. Considering the importance of stromal cells in pancreatic cancer, many novel approaches have aimed at targeting the stroma but current stroma-targeting therapies have yielded subpar results, which may be attributed to heterogeneity in the fibroblast population. Thus, fully understanding the roles of different subsets of CAFs within the stroma, and the cellular dynamics at play that contribute to heterogeneity in CAF subsets may be essential for the design of novel therapies and improving clinical outcomes. Fortunately, recent advances in technologies such as microfluidics and bio-printing have made it possible to establish more advanced ex vivo models that will likely prove useful. In this review, we will present the different roles of stromal cells in pancreatic cancer, focusing on CAF origin as a source of heterogeneity, and the role this may play in therapy failure. We will discuss preclinical models that could be of benefit to the field and that may contribute to further clinical development.
Collapse
Affiliation(s)
- Paul Manoukian
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Maarten Bijlsma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanneke van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Azani H, Homayouni Tabrizi M, Neamati A, Khadem F, Khatamian N. The Ferula Assa-foetida Essential Oil Nanoemulsion (FAEO-NE) as the Selective, Apoptotic, and Anti-Angiogenic Anticancer Compound in Human MCF-7 Breast Cancer Cells and Murine Mammary Tumor Models. Nutr Cancer 2021; 74:2196-2206. [PMID: 34607477 DOI: 10.1080/01635581.2021.1985533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ferula assa-foetida (FA) is the healthy common-consumed anticancer beverage in Iranian folk medicine. In the current study, we aimed to produce a nanoemulsion-based drug delivery system containing FA essential oil (FAEO) and evaluate its antioxidant and anticancer activity on both MCF-7 cells and murine mammary cancer tissue. The FAEO-loaded nanoemulsion (FAEO-NE) was produced and characterized by DLS, TEM, FTIR, and Zeta potential analysis. Radical (ABTS and DPPH) scavenging activity, cytotoxic, apoptotic, and anti-angiogenic potentials of the FAEO-NE were studied by applying antioxidant (ABTS-DPPH), MTT, AO/PI cell staining, and Q-PCR analysis. Finally, its anti-tumor impact was evaluated on murine mammary tumor models. The FAEO-NE exhibited a meaningful antioxidant activity. Also, its significant cell-selective cytotoxic, apoptotic, and anti-angiogenic impacts on MCF-7 cancer cells indicated its anticancer potential. Moreover, the progressive destruction of the murine mammary glands cancer tissue confirmed their anticancer activity. Regarding the FAEO-NE cell-selective cytotoxic, apoptotic, and anti-angiogenic activity on MCF-7 breast cancer cells, it has the potential to be studied as a safe efficient anti-breast cancer agent.
Collapse
Affiliation(s)
- Hanieh Azani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
45
|
Kung FP, Lim YP, Chao WY, Zhang YS, Yu HI, Tai TS, Lu CH, Chen SH, Li YZ, Zhao PW, Yen YP, Lee YR. Piperlongumine, a Potent Anticancer Phytotherapeutic, Induces Cell Cycle Arrest and Apoptosis In Vitro and In Vivo through the ROS/Akt Pathway in Human Thyroid Cancer Cells. Cancers (Basel) 2021; 13:cancers13174266. [PMID: 34503074 PMCID: PMC8428232 DOI: 10.3390/cancers13174266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary There is no effective treatment currently available for patients with anaplastic, recurrent papillary, or follicular thyroid cancers. Reactive oxygen species (ROS) are believed to hold promise as a new therapeutic strategy for multiple human cancers. However, studies on ROS inducers for human thyroid cancer treatment are scarce. This study assesses the anticancer activity and the detailed downstream mechanisms of piperlongumine, a ROS inducer, in human thyroid cancer cells. We demonstrate that piperlongumine inhibits cell proliferation, regulates the cell cycle, and induces cellular apoptosis in various types of human thyroid cancer cells. The antihuman thyroid cancer activity of piperlongumine was through ROS induction, and it further suppressed the downstream Akt signaling pathway to elevate mitochondria-dependent apoptosis. A mouse xenograft study demonstrated that piperlongumine was safe and could inhibit tumorigenesis in vivo. The present study provides strong evidence that piperlongumine can be used as a therapeutic candidate for human thyroid cancers. Abstract Thyroid cancer (TC) is the most common endocrine malignancy, and its global incidence has steadily increased over the past 15 years. TC is broadly divided into well-differentiated, poorly differentiated, and undifferentiated types, depending on the histological and clinical parameters. Thus far, there are no effective treatments for undifferentiated thyroid cancers or advanced and recurrent cancer. Therefore, the development of an effective therapeutic is urgently needed for such patients. Piperlongumine (PL) is a naturally occurring small molecule derived from long pepper; it is selectively toxic to cancer cells by generating reactive oxygen species (ROS). In this study, we demonstrate the potential anticancer activity of PL in four TC cell lines. For this purpose, we cultured TC cell lines and analyzed the following parameters: Cell viability, colony formation, cell cycle, apoptosis, and cellular ROS induction. PL modulated the cell cycle, induced apoptosis, and suppressed tumorigenesis in TC cell lines in a dose- and time-dependent manner through ROS induction. Meanwhile, an intrinsic caspase-dependent apoptosis pathway was observed in the TC cells under PL treatment. The activation of Erk and the suppression of the Akt/mTOR pathways through ROS induction were seen in cells treated with PL. PL-mediated apoptosis in TC cells was through the ROS-Akt pathway. Finally, the anticancer effect and safety of PL were also demonstrated in vivo. Our findings indicate that PL exhibits antitumor activity and has the potential for use as a chemotherapeutic agent against TC. This is the first study to show the sensitivity of TC cell lines to PL.
Collapse
Affiliation(s)
- Fang-Ping Kung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 406040, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan;
| | - Yi-Sheng Zhang
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Hui-I Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Tsai-Sung Tai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Chieh-Hsiang Lu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (Y.-S.Z.); (S.-H.C.); (Y.-Z.L.); (P.-W.Z.)
| | - Yu-Pei Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan; (F.-P.K.); (H.-I.Y.); (T.-S.T.); (C.-H.L.); (Y.-P.Y.)
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence:
| |
Collapse
|
46
|
Cinobufagin-induced DNA damage response activates G 2/M checkpoint and apoptosis to cause selective cytotoxicity in cancer cells. Cancer Cell Int 2021; 21:446. [PMID: 34425836 PMCID: PMC8381584 DOI: 10.1186/s12935-021-02150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Processed extracts from toad skin and parotoid gland have long been used to treat various illnesses including cancer in many Asian countries. Recent studies have uncovered a family of bufadienolides as the responsible pharmacological compounds, and the two major molecules, cinobufagin and bufalin, have been shown to possess robust antitumor activity; however, the underlying mechanisms remain poorly understood. Methods Intracellular reactive oxygen species (ROS) were measured by DCFH-DA staining and flow cytometry, and DNA damage was analyzed by immunofluorescent staining and the alkaline comet assay. Cytotoxicity was measured by MTT as well as colony formation assays, and cell cycle and apoptosis were analyzed by flow cytometry. In addition, apoptosis was further characterized by TUNEL and mitochondrial membrane potential assays. Results Here we showed that sublethal doses of cinobufagin suppressed the viability of many cancer but not noncancerous cell lines. This tumor-selective cytotoxicity was preceded by a rapid, cancer-specific increase in cellular ROS and was significantly reduced by the ROS inhibitor N-acetyl cysteine (NAC), indicating oxidative stress as the primary source of cinobufagin-induced cancer cell toxicity. Sublethal cinobufagin-induced ROS overload resulted in oxidative DNA damage and intense replication stress in cancer cells, leading to strong DNA damage response (DDR) signaling. Subsequent phosphorylation of CDC25C and stabilization of p53 downstream of DDR resulted in activation of the G2/M checkpoint followed by induction of apoptosis. These data indicate that cinobufagin suppresses cancer cell viability via DDR-mediated G2 arrest and apoptosis. Conclusion As elevated oxidative pressure is shared by most cancer cells that renders them sensitive to further oxidative insult, these studies suggest that nontoxic doses of cinobufagin can be used to exploit a cancer vulnerability for induction of cancer-specific cytotoxicity. Supplementary Information The online version contains supplementary materials available at 10.1186/s12935-021-02150-0.
Collapse
|
47
|
Fagundes TR, Bortoleti B, Camargo P, Concato V, Tomiotto-Pellissier F, Carloto A, Panis C, Bispo M, Junior FM, Conchon-Costa I, Pavanelli W. Patterns of Cell Death Induced by Thiohydantoins in Human MCF-7 Breast Cancer Cells. Anticancer Agents Med Chem 2021; 22:1592-1600. [PMID: 34382528 DOI: 10.2174/1871520621666210811102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Conventional therapies for breast cancer is still a challenge due to use of cytotoxic drugs not highly effective with major adverse effects. Thiohydantoins, are biologically active heterocyclic compounds reported by several biological activities, including anticarcinogenic properties, i.e., this work aimed to assess the use of thiohydantoin as a potential antitumor agent against MCF-7 breast cancer cells. METHODS MTT and neutral red assays were used to assess the possible cytotoxic activity of compounds against MCF-7 cells. Cell volume measurement and analysis were performed by flow cytometry, fluorescence analysis was carried out to determine patterns of cell death induced by thiohydantoins. RESULTS The treatment with micromolar doses of thiohydantoins promoted a decrease in the viability of MCF-7 breast tumor cells. Also were observed the increase in ROS and NO production, reduction in cell volume, loss of membrane integrity, mitochondrial depolarization, and increased fluorescence for annexin V and caspase-3. These findings indicate cell death by apoptosis and increased formation of autophagic vacuoles and stopping the cell cycle in the G1/ G0 phase. CONCLUSIONS Our results indicate that thiohydantoins are cytotoxic to breast tumor cells, and this effect is linked to the increase in ROS production. This phenomenon changes tumorigenic pathways, that lead to a halt of the cell cycle in G1/G0, an important checkpoint for DNA errors, which may have altered the process by which cells produce energy, causing a decrease in mitochondrial viability and thus leading to the apoptotic process. Furthermore, the results indicate increased autophagy, a vital process linked to a decrease in lysosomal viability and considered as a cell death and tumor suppression mechanism.
Collapse
Affiliation(s)
- Tatiane Renata Fagundes
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Bruna Bortoleti
- Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR. Brazil
| | - Priscila Camargo
- Laboratory of Properties and Synthesis of Organic Substances, Department of Chemistry, Center of Exact Sciences, Londrina State University, PR. Brazil
| | - Vírgínia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | | | - Amanda Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of Western Paraná, Francisco Beltrão, Paraná. Brazil
| | - Marcelle Bispo
- Laboratory of Properties and Synthesis of Organic Substances, Department of Chemistry, Center of Exact Sciences, Londrina State University, PR. Brazil
| | - Fernando Macedo Junior
- Graduate Program in Biosciences and Biotechnology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, PR. Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| | - Wander Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, State University of Londrina, PR. Brazil
| |
Collapse
|
48
|
Doello K, Mesas C, Quiñonero F, Perazzoli G, Cabeza L, Prados J, Melguizo C, Ortiz R. The Antitumor Activity of Sodium Selenite Alone and in Combination with Gemcitabine in Pancreatic Cancer: An In Vitro and In Vivo Study. Cancers (Basel) 2021; 13:cancers13133169. [PMID: 34201986 PMCID: PMC8268835 DOI: 10.3390/cancers13133169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
Sodium selenite acts by depleting enzymes that protect against cellular oxidative stress. To determine its effect alone or in combination with gemcitabine (GMZ) in pancreatic cancer, we used PANC-1 and Pan02 cell lines and C57BL mice bearing a Pan02-generated tumor. Our results demonstrated a significant inhibition of pancreatic cancer cell viability with the use of sodium selenite alone and a synergistic effect when associated with GMZ. The molecular mechanisms of the antitumor effect of sodium selenite alone involved apoptosis-inducing factor (AIF) and the expression of phospho-p38 in the combined therapy. In addition, sodium selenite alone and in association with GMZ significantly decreased the migration capacity and colony-forming ability, reduced tumor activity in multicellular tumor spheroids (MTS) and decreased sphere formation of cancer stem cells. In vivo studies demonstrated that combined therapy not only inhibited tumor growth (65%) compared to the untreated group but also relative to sodium selenite or GMZ used as monotherapy (up to 40%), increasing mice survival. These results were supported by the analysis of C57BL/6 albino mice bearing a Pan02-generated tumor, using the IVIS system. In conclusion, our results showed that sodium selenite is a potential agent for the improvement in the treatment of pancreatic cancer and should be considered for future human clinical trials.
Collapse
Affiliation(s)
- Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain;
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Laura Cabeza
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Correspondence:
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Raul Ortiz
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain; (C.M.); (F.Q.); (G.P.); (L.C.); (C.M.); (R.O.)
- Center of Biomedical Research (CIBM), Institute of Biopathology and Regenerative Medicine (IBIMER), University of Granada, 18100 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| |
Collapse
|
49
|
Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives. Antioxidants (Basel) 2021; 10:antiox10060950. [PMID: 34204594 PMCID: PMC8231124 DOI: 10.3390/antiox10060950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.
Collapse
|
50
|
Curcumin Targets Both Apoptosis and Necroptosis in Acidity-Tolerant Prostate Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8859181. [PMID: 34095313 PMCID: PMC8164543 DOI: 10.1155/2021/8859181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Objective Curcumin, a major bioactive curcuminoid derived from the rhizome of Curcuma longa, is known to have anticancer potential and is still under investigation. In this study, we investigated the cytotoxic mechanism(s) of curcumin against acidity-tolerant prostate cancer PC-3AcT cells in lactic acid-containing medium. Methods Using 2D-monolyer and 3D spheroid culture models, MTT assay, annexin V-PE binding assay, flow cytometric analysis, measurement of ATP content, and Western blot analysis were used for this study. Results At nontoxic concentrations in normal prostate epithelial RWPE-1 and HPrEC cells, curcumin led to strong cytotoxicity in PC-3AcT cells, including increases in sub-G0/G1 peak, annexin V-PE-positive cells, and ROS levels; loss of mitochondrial membrane potential; reduction of cellular ATP content; DNA damage; and concurrent induction of apoptosis and necroptosis. A series of changes induced by curcumin were effectively reversed by reducing ROS levels or replenishing ATP. Pretreatment with apoptosis inhibitor Q-VD-Oph-1 or necroptosis inhibitor necrostatin-1 restored cell viability inhibited by curcumin. Treatment of 3D spheroids with curcumin decreased cell viability, accompanied by an increase in mediators of apoptosis and necroptosis, including cleaved caspase-3 and cleaved PARP, phospho (p)-RIP3, and p-MLKL proteins. Conclusion This study shows that curcumin simultaneously induces apoptosis and necroptosis by oxidative mitochondrial dysfunction and subsequent ATP depletion, providing a mechanistic basis for understanding the novel role of curcumin for prostate carcinoma cells.
Collapse
|