1
|
Ji A, Trumbauer AC, Noffsinger VP, Meredith LW, Dong B, Wang Q, Guo L, Li X, De Beer FC, Webb NR, Tannock LR, Starr ME, Waters CM, Shridas P. Deficiency of Acute-Phase Serum Amyloid A Exacerbates Sepsis-Induced Mortality and Lung Injury in Mice. Int J Mol Sci 2023; 24:17501. [PMID: 38139330 PMCID: PMC10744229 DOI: 10.3390/ijms242417501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.
Collapse
Affiliation(s)
- Ailing Ji
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Andrea C. Trumbauer
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Victoria P. Noffsinger
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Luke W. Meredith
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Brittany Dong
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; (B.D.); (C.M.W.)
| | - Qian Wang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Ling Guo
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
| | - Xiangan Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; (B.D.); (C.M.W.)
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Frederick C. De Beer
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Nancy R. Webb
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA;
| | - Lisa R. Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
| | - Marlene E. Starr
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA;
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Christopher M. Waters
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; (B.D.); (C.M.W.)
| | - Preetha Shridas
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA; (A.J.); (A.C.T.); (V.P.N.); (L.W.M.); (Q.W.); (L.G.); (X.L.); (N.R.W.); (L.R.T.)
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
2
|
den Hartigh LJ, May KS, Zhang XS, Chait A, Blaser MJ. Serum amyloid A and metabolic disease: evidence for a critical role in chronic inflammatory conditions. Front Cardiovasc Med 2023; 10:1197432. [PMID: 37396595 PMCID: PMC10311072 DOI: 10.3389/fcvm.2023.1197432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Serum amyloid A (SAA) subtypes 1-3 are well-described acute phase reactants that are elevated in acute inflammatory conditions such as infection, tissue injury, and trauma, while SAA4 is constitutively expressed. SAA subtypes also have been implicated as playing roles in chronic metabolic diseases including obesity, diabetes, and cardiovascular disease, and possibly in autoimmune diseases such as systemic lupus erythematosis, rheumatoid arthritis, and inflammatory bowel disease. Distinctions between the expression kinetics of SAA in acute inflammatory responses and chronic disease states suggest the potential for differentiating SAA functions. Although circulating SAA levels can rise up to 1,000-fold during an acute inflammatory event, elevations are more modest (∼5-fold) in chronic metabolic conditions. The majority of acute-phase SAA derives from the liver, while in chronic inflammatory conditions SAA also derives from adipose tissue, the intestine, and elsewhere. In this review, roles for SAA subtypes in chronic metabolic disease states are contrasted to current knowledge about acute phase SAA. Investigations show distinct differences between SAA expression and function in human and animal models of metabolic disease, as well as sexual dimorphism of SAA subtype responses.
Collapse
Affiliation(s)
- Laura J. den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Karolline S. May
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| | - Alan Chait
- Department of Medicine, Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, United States
- Diabetes Institute, University of Washington, Seattle, WA, United States
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
3
|
Al‐kuraishy HM, Hussien NR, Al‐Niemi MS, Fahad EH, Al‐Buhadily AK, Al‐Gareeb AI, Al‐Hamash SM, Tsagkaris C, Papadakis M, Alexiou A, Batiha GE. SARS-CoV-2 induced HDL dysfunction may affect the host's response to and recovery from COVID-19. Immun Inflamm Dis 2023; 11:e861. [PMID: 37249296 PMCID: PMC10187021 DOI: 10.1002/iid3.861] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
INTRODUCTION Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia, dysregulation of high-density lipoprotein (HDL), and low-density lipoprotein (LDL). Furthermore, SARS-Co-2 infection is associated with noteworthy changes in lipid profile, which is suggested as a possible biomarker to support the diagnosis and management of Covid-19. METHODS This paper adopts the literature review method to obtain information about how Covid-19 affects high-risk group patients and may cause severe and critical effects due to the development of acute lung injury and acute respiratory distress syndrome. A narrative and comprehensive review is presented. RESULTS Reducing HDL in Covid-19 is connected to the disease severity and poor clinical outcomes, suggesting that high HDL serum levels could benefit Covid-19. SARS-CoV-2 binds HDL, and this complex is attached to the co-localized receptors, facilitating viral entry. Therefore, SARS-CoV-2 infection may induce the development of dysfunctional HDL through different mechanisms, including induction of inflammatory and oxidative stress with activation of inflammatory signaling pathways. In turn, the induction of dysfunctional HDL induces the activation of inflammatory signaling pathways and oxidative stress, increasing Covid-19 severity. CONCLUSIONS Covid-19 is linked with the development of cardio-metabolic disorders, including dyslipidemia in general and dysregulation of high-density lipoprotein and low-density lipoprotein. Therefore, the present study aimed to overview the causal relationship between dysfunctional high-density lipoprotein and Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | - Nawar R. Hussien
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | - Marwa S. Al‐Niemi
- Department of Clinical Pharmacy, College of PharmacyAl‐Farahidi UniversityBagdadIraq
| | | | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Pharmacology, ToxicologyMedicine College of Medicine Al‐Mustansiriyah UniversityBaghdadIraq
| | | | - Christos Tsagkaris
- Department of Health SciencesNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP Med AustriaWienAustria
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
4
|
Fosheim IK, Jacobsen DP, Sugulle M, Alnaes-Katjavivi P, Fjeldstad HES, Ueland T, Lekva T, Staff AC. Serum amyloid A1 and pregnancy zone protein in pregnancy complications and correlation with markers of placental dysfunction. Am J Obstet Gynecol MFM 2023; 5:100794. [PMID: 36334725 DOI: 10.1016/j.ajogmf.2022.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (preeclampsia, gestational hypertension, and chronic hypertension), diabetes mellitus, and placental dysfunction confer an increased risk of long-term maternal cardiovascular disease. Preeclampsia is also associated with acute atherosis that involves lesions of uteroplacental spiral arteries, resembling early stages of atherosclerosis. Serum amyloid A1 is involved in hypercoagulability and atherosclerosis and may aggregate into amyloid-aggregations of misfolded proteins. Pregnancy zone protein may inhibit amyloid aggregation. Amyloid is involved in Alzheimer's disease and cardiovascular disease; it has been identified in preeclampsia, but its role in preeclampsia pathophysiology is unclear. OBJECTIVE We hypothesized that serum amyloid A1 would be increased and pregnancy zone protein decreased in hypertensive disorders of pregnancy and diabetic pregnancies and that serum amyloid A1 and pregnancy zone protein would correlate with placental dysfunction markers (fetal growth restriction and dysregulated angiogenic biomarkers) and acute atherosis. STUDY DESIGN Serum amyloid A1 is measurable in both the serum and plasma. In our study, plasma from 549 pregnancies (normotensive, euglycemic controls: 258; early-onset preeclampsia: 71; late-onset preeclampsia: 98; gestational hypertension: 30; chronic hypertension: 9; diabetes mellitus: 83) was assayed for serum amyloid A1 and pregnancy zone protein. The serum levels of angiogenic biomarkers soluble fms-like tyrosine kinase-1 and placental growth factor were available for 547 pregnancies, and the results of acute atherosis evaluation were available for 313 pregnancies. The clinical characteristics and circulating biomarkers were compared between the pregnancy groups using the Mann-Whitney U, chi-squared, or Fisher exact test as appropriate. Spearman's rho was calculated for assessing correlations. RESULTS In early-onset preeclampsia, serum amyloid A1 was increased compared with controls (17.1 vs 5.1 µg/mL, P<.001), whereas pregnancy zone protein was decreased (590 vs 892 µg/mL, P=.002). Pregnancy zone protein was also decreased in diabetes compared with controls (683 vs 892 µg/mL, P=.01). Serum amyloid A1 was associated with placental dysfunction (fetal growth restriction, elevated soluble fms-like tyrosine kinase-1 to placental growth factor ratio). Pregnancy zone protein correlated negatively with soluble fms-like tyrosine kinase-1 to placental growth factor ratio in all study groups. Acute atherosis was not associated with serum amyloid A1 or pregnancy zone protein. CONCLUSION Proteins involved in atherosclerosis, hypercoagulability, and protein misfolding are dysregulated in early-onset preeclampsia and placental dysfunction, which links them and potentially contributes to future maternal cardiovascular disease.
Collapse
Affiliation(s)
- Ingrid K Fosheim
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff).
| | - Daniel P Jacobsen
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Meryam Sugulle
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Patji Alnaes-Katjavivi
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Heidi E S Fjeldstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| | - Thor Ueland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway (Drs Ueland and Lekva); K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway (Dr Ueland)
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway (Drs Ueland and Lekva)
| | - Anne C Staff
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, Ueland, and Staff); Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway (Drs Fosheim, Jacobsen, Sugulle, Alnaes-Katjavivi, Fjeldstad, and Staff)
| |
Collapse
|
5
|
Vujčić S, Stefanović T, Zeljković A, Mihajlović M, Vekić J. Biomarkers of dyslipidemia in patients with diabetic foot. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Diabetic foot (DF) is one of the most severe complications of diabetes that significantly reduces the quality of life and survival of patients. Besides firmly established risk factors, novel data indicate that alterations in lipid metabolism might also be implicated in the development and progression of DF. Diabetic dyslipidemia is characterized by the atherogenic triad, consisting of increased triglycerides (TG), decreased high-density lipoprotein cholesterol (HDL-C) levels and the presence of small, dense low-density lipoprotein (LDL) particles. Accumulating evidence suggests that profound hypertriglyceridemia and HDL-C reduction are common findings in patients with diabetic neuropathy and significantly contribute to an increased risk for DF, amputation and mortality. Small, dense LDL particles play an important role in the development of cardiovascular complications of diabetes, but their clinical importance in patients with DF remains to be established. In this paper, we will discuss the significance of standard and novel lipid biomarker determination in the assessment of the risk for the development and progression of DF.
Collapse
|
6
|
Serum amyloid A in polycystic ovary syndrome. Clin Chim Acta 2021; 518:151-155. [PMID: 33811926 DOI: 10.1016/j.cca.2021.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Polycystic ovary syndrome (PCOS), i.e., anovulation, hyperandrogenemia and polycystic ovary, is an endocrine-metabolic disease affecting reproductive aged women. Women with PCOS are likely to develop obesity, dyslipidemia, type 2 diabetes mellitus (T2DM) and cardiovascular diseases at a younger age. Despite high frequency and severe disease burden, the pathophysiological mechanisms of PCOS remain poorly defined and correspondingly have no therapeutic options. Emerging evidence has demonstrated that PCOS is accompanied with low-grade chronic inflammation and biomarkers thereof. Interestingly, serum amyloid A (SAA) has recently been identified as a potential marker of infection and inflammation and a number of studies have reported an association with PCOS. In this review, we explore the relationship between SAA and hyperandrogenemia, inflammation, obesity and insulin resistance, and provide convincing evidence for SAA as a potential inflammatory biomarker in PCOS.
Collapse
|
7
|
Ahmed MO, Byrne RE, Pazderska A, Segurado R, Guo W, Gunness A, Frizelle I, Sherlock M, Ahmed KS, McGowan A, Moore K, Boran G, McGillicuddy FC, Gibney J. HDL particle size is increased and HDL-cholesterol efflux is enhanced in type 1 diabetes: a cross-sectional study. Diabetologia 2021; 64:656-667. [PMID: 33169205 DOI: 10.1007/s00125-020-05320-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS The prevalence of atherosclerosis is increased in type 1 diabetes despite normal-to-high HDL-cholesterol levels. The cholesterol efflux capacity (CEC) of HDL is a better predictor of cardiovascular events than static HDL-cholesterol. This cross-sectional study addressed the hypothesis that impaired HDL function contributes to enhanced CVD risk within type 1 diabetes. METHODS We compared HDL particle size and concentration (by NMR), total CEC, ATP-binding cassette subfamily A, member 1 (ABCA1)-dependent CEC and ABCA1-independent CEC (by determining [3H]cholesterol efflux from J774-macrophages to ApoB-depleted serum), and carotid intima-media thickness (CIMT) in 100 individuals with type 1 diabetes (37.6 ± 1.2 years; BMI 26.9 ± 0.5 kg/m2) and 100 non-diabetic participants (37.7 ± 1.1 years; 27.1 ± 0.5 kg/m2). RESULTS Compared with non-diabetic participants, total HDL particle concentration was lower (mean ± SD 31.01 ± 8.66 vs 34.33 ± 8.04 μmol/l [mean difference (MD) -3.32 μmol/l]) in participants with type 1 diabetes. However, large HDL particle concentration was greater (9.36 ± 3.98 vs 6.99 ± 4.05 μmol/l [MD +2.37 μmol/l]), resulting in increased mean HDL particle size (9.82 ± 0.57 vs 9.44 ± 0.56 nm [MD +0.38 nm]) (p < 0.05 for all). Total CEC (14.57 ± 2.47%CEC/4 h vs 12.26 ± 3.81%CEC/4 h [MD +2.31%CEC/4 h]) was greater in participants with type 1 diabetes relative to non-diabetic participants. Increased HDL particle size was independently associated with increased total CEC; however, following adjustment for this in multivariable analysis, CEC remained greater in participants with type 1 diabetes. Both components of CEC, ABCA1-dependent (6.10 ± 2.41%CEC/4 h vs 5.22 ± 2.57%CEC/4 h [MD +0.88%CEC/4 h]) and ABCA1-independent (8.47 ± 1.79% CEC/4 h vs 7.05 ± 1.76% CEC/4 h [MD +1.42% CEC/4 h]) CEC, were greater in type 1 diabetes but the increase in ABCA1-dependent CEC was less marked and not statistically significant in multivariable analysis. CIMT was increased in participants with type 1 diabetes but in multivariable analysis it was only associated negatively with age and BMI. CONCLUSIONS/INTERPRETATION HDL particle size but not HDL-cholesterol level is independently associated with enhanced total CEC. HDL particle size is greater in individuals with type 1 diabetes but even after adjusting for this, total and ABCA1-independent CEC are enhanced in type 1 diabetes. Further studies are needed to understand the mechanisms underlying these effects, and whether they help attenuate progression of atherosclerosis in this high-risk group. Graphical abstract.
Collapse
Affiliation(s)
- Mohamad O Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Rachel E Byrne
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Agnieszka Pazderska
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Ricardo Segurado
- School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Belfield, Dublin, Ireland
| | - Weili Guo
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Anjuli Gunness
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Isolda Frizelle
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Mark Sherlock
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Khalid S Ahmed
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Anne McGowan
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Kevin Moore
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland
| | - Gerard Boran
- Department of Chemical Pathology, Tallaght University Hospital, Dublin, Ireland
| | - Fiona C McGillicuddy
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - James Gibney
- Robert Graves Institute of Endocrinology, Tallaght University Hospital, Dublin, Ireland.
| |
Collapse
|
8
|
Endothelial Dysfunction in Diabetes Is Aggravated by Glycated Lipoproteins; Novel Molecular Therapies. Biomedicines 2020; 9:biomedicines9010018. [PMID: 33375461 PMCID: PMC7823542 DOI: 10.3390/biomedicines9010018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetes and its vascular complications affect an increasing number of people. This disease of epidemic proportion nowadays involves abnormalities of large and small blood vessels, all commencing with alterations of the endothelial cell (EC) functions. Cardiovascular diseases are a major cause of death and disability among diabetic patients. In diabetes, EC dysfunction (ECD) is induced by the pathological increase of glucose and by the appearance of advanced glycation end products (AGE) attached to the plasma proteins, including lipoproteins. AGE proteins interact with their specific receptors on EC plasma membrane promoting activation of signaling pathways, resulting in decreased nitric oxide bioavailability, increased intracellular oxidative and inflammatory stress, causing dysfunction and finally apoptosis of EC. Irreversibly glycated lipoproteins (AGE-Lp) were proven to have an important role in accelerating atherosclerosis in diabetes. The aim of the present review is to present up-to-date information connecting hyperglycemia, ECD and two classes of glycated Lp, glycated low-density lipoproteins and glycated high-density lipoproteins, which contribute to the aggravation of diabetes complications. We will highlight the role of dyslipidemia, oxidative and inflammatory stress and epigenetic risk factors, along with the specific mechanisms connecting them, as well as the new promising therapies to alleviate ECD in diabetes.
Collapse
|
9
|
Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26:946-957. [PMID: 31912769 DOI: 10.2174/1381612826666200108113002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is characterized by an autoimmune β-cell destruction resulting in endogenous insulin deficiency, potentially leading to micro- and macrovascular complications. Besides an exogenous insulin therapy and continuous glucose monitoring, physical exercise is recommended in adults with type 1 diabetes to improve overall health. The close relationship between physical exercise, inflammation, muscle contraction, and macronutrient intake has never been discussed in detail about type 1 diabetes. The aim of this narrative review was to detail the role of physical exercise in improving clinical outcomes, physiological responses to exercise and different nutrition and therapy strategies around exercise. Physical exercise has several positive effects on glucose uptake and systemic inflammation in adults with type 1 diabetes. A new approach via personalized therapy adaptations must be applied to target beneficial effects on complications as well as on body weight management. In combination with pre-defined macronutrient intake around exercise, adults with type 1 diabetes can expect similar physiological responses to physical exercise, as seen in their healthy counterparts. This review highlights interesting findings from recent studies related to exercise and type 1 diabetes. However, there is limited research available accompanied by a proper number of participants in the cohort of type 1 diabetes. Especially for this group of patients, an increased understanding of the impact of physical exercise can improve its effectiveness as an adjuvant therapy to move (forward).
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J West
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
10
|
Vergès B. Dyslipidemia in Type 1 Diabetes: AMaskedDanger. Trends Endocrinol Metab 2020; 31:422-434. [PMID: 32217073 DOI: 10.1016/j.tem.2020.01.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) patients show lipid disorders which are likely to play a role in their increased cardiovascular (CV) disease risk. Quantitative abnormalities of lipoproteins are noted in T1D with poor glycemic control. In T1D with optimal glycemic control, triglycerides and LDL-cholesterol are normal or slightly decreased whereas HDL-cholesterol is normal or slightly increased. T1D patients, even with good glycemic control, show several qualitative and functional abnormalities of lipoproteins that are potentially atherogenic. An association between these abnormalities and CV disease risk has been reported in recent studies. Although the mechanisms underlying T1D dyslipidemia remain unclear, the subcutaneous route of insulin administration, that is responsible for peripheral hyperinsulinemia, is likely to be an important factor.
Collapse
Affiliation(s)
- Bruno Vergès
- Service Endocrinologie, Diabétologie, et Maladies Métaboliques, Centre Hospitalier Universitaire (CHU), Institut National de la Santé et de la Recherche Médicale (INSERM) Lipides, Nutrition, Cancer (LNC)-Unité Mixte de Recherche (UMR) 1231, University of Burgundy, 21000 Dijon, France.
| |
Collapse
|
11
|
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2020; 21:ijms21041316. [PMID: 32075280 PMCID: PMC7072968 DOI: 10.3390/ijms21041316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE-/-) mice in the absence of a high-fat diet. Male ApoE-/- mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman's space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE-/- mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman's space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
Collapse
|
12
|
Jakob P, Lüscher TF. Dysfunctional HDL and inflammation: a noxious liaison in adolescents with type 1 diabetes. Eur Heart J 2019; 40:3567-3570. [DOI: 10.1093/eurheartj/ehz502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Philipp Jakob
- Department of Cardiology, University Heart Center, Zürich, Switzerland
- Charité Universitätsmedizin Berlin, Berlin Institute of Health (BIH), Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| |
Collapse
|
13
|
Zhang Y, Zhang J, Sheng H, Li H, Wang R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv Clin Chem 2019; 90:25-80. [PMID: 31122611 DOI: 10.1016/bs.acc.2019.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute-phase reactant serum amyloid A (A-SAA) plays an important role in acute and chronic inflammation and is used in clinical laboratories as an indicator of inflammation. Although both A-SAA and C-reactive protein (CRP) are acute-phase proteins, the detection of A-SAA is more conclusive than the detection of CRP in patients with viral infections, severe acute pancreatitis, and rejection reactions to kidney transplants. A-SAA has greater clinical diagnostic value in patients who are immunosuppressed, patients with cystic fibrosis who are treated with corticoids, and preterm infants with late-onset sepsis. Nevertheless, for the assessment of the inflammation status and identification of viral infection in other pathologies, such as bacterial infections, the combinatorial use of A-SAA and other acute-phase proteins (APPs), such as CRP and procalcitonin (PCT), can provide more information and sensitivity than the use of any of these proteins alone, and the information generated is important in guiding antibiotic therapy. In addition, A-SAA-associated diseases and the diagnostic value of A-SAA are discussed. However, the relationship between different A-SAA isotypes and their human diseases are mostly derived from research laboratories with limited clinical samples. Thus, further clinical evaluations are necessary to confirm the clinical significance of each A-SAA isotype. Furthermore, the currently available A-SAA assays are based on polyclonal antibodies, which lack isotype specificity and are associated with many inflammatory diseases. Therefore, these assays are usually used in combination with other biomarkers in the clinic.
Collapse
Affiliation(s)
- Yan Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Jie Zhang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China
| | - Huiming Sheng
- Department of Laboratory Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- C.N. Maternity & Infant Health Hospital, Shanghai, China
| | - Rongfang Wang
- Shanghai R&D Center, DiaSys Diagnostic Systems (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
14
|
Sahebekhtiari N, Saraswat M, Joenväärä S, Jokinen R, Lovric A, Kaye S, Mardinoglu A, Rissanen A, Kaprio J, Renkonen R, Pietiläinen KH. Plasma Proteomics Analysis Reveals Dysregulation of Complement Proteins and Inflammation in Acquired Obesity-A Study on Rare BMI-Discordant Monozygotic Twin Pairs. Proteomics Clin Appl 2019; 13:e1800173. [PMID: 30688043 DOI: 10.1002/prca.201800173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/27/2018] [Indexed: 01/24/2023]
Abstract
PURPOSE The purpose of this study is to elucidate the effect of excess body weight and liver fat on the plasma proteome without interference from genetic variation. EXPERIMENTAL DESIGN The effect of excess body weight is assessed in young, healthy monozygotic twins from pairs discordant for body mass index (intrapair difference (Δ) in BMI > 3 kg m-2 , n = 26) with untargeted LC-MS proteomics quantification. The effect of liver fat is interrogated via subgroup analysis of the BMI-discordant twin cohort: liver fat discordant pairs (Δliver fat > 2%, n = 12) and liver fat concordant pairs (Δliver fat < 2%, n = 14), measured by magnetic resonance spectroscopy. RESULTS Seventy-five proteins are differentially expressed, with significant enrichment for complement and inflammatory response pathways in the heavier co-twins. The complement dysregulation is found in obesity in both the liver fat subgroups. The complement and inflammatory proteins are significantly associated with adiposity measures, insulin resistance and impaired lipids. CONCLUSIONS AND CLINICAL RELEVANCE The early pathophysiological mechanisms in obesity are incompletely understood. It is shown that aberrant complement regulation in plasma is present in very early stages of clinically healthy obese persons, independently of liver fat and in the absence of genetic variation that typically confounds human studies.
Collapse
Affiliation(s)
- Navid Sahebekhtiari
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Mayank Saraswat
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Alen Lovric
- Science for Life Laboratory, KTH-Royal Institute of Technology, 17121, Stockholm, Sweden
| | - Sanna Kaye
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, 17121, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Centre for Host-Microbiome Interactions, Dental Institute, King's College London, SE19RT, London, UK
| | - Aila Rissanen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00014, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Public Health, Finnish Twin Cohort Study, University of Helsinki, 00014, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, University of Helsinki, 00014, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, 00029, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Programs Unit, Diabetes and Obesity Research Program, University of Helsinki, 00014, Helsinki, Finland.,Abdominal Center, Endocrinology, Helsinki University Central Hospital and University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
15
|
Vallejo A, Chami B, Dennis JM, Simone M, Ahmad G, Abdo AI, Sharma A, Shihata WA, Martin N, Chin-Dusting JPF, de Haan JB, Witting PK. NFκB Inhibition Mitigates Serum Amyloid A-Induced Pro-Atherogenic Responses in Endothelial Cells and Leukocyte Adhesion and Adverse Changes to Endothelium Function in Isolated Aorta. Int J Mol Sci 2018; 20:ijms20010105. [PMID: 30597899 PMCID: PMC6337750 DOI: 10.3390/ijms20010105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 μM BAY11-7082 or vehicle (control) followed by SAA (10 μg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in exvivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.
Collapse
Affiliation(s)
- Abigail Vallejo
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Martin Simone
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Adrian I Abdo
- Heart Research Institute, Newton, NSW 2053, Australia.
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
| | - Waled A Shihata
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Nathan Martin
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Jaye P F Chin-Dusting
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Immunology, Monash University, Victoria 3004, Australia.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Paul K Witting
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
16
|
Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci 2018; 19:E1680. [PMID: 29874886 PMCID: PMC6032203 DOI: 10.3390/ijms19061680] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Almost 600 million people are predicted to have diabetes mellitus (DM) by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL) are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.
Collapse
Affiliation(s)
- Nathan K P Wong
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Joanne T M Tan
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
17
|
Griffiths K, Pazderska A, Ahmed M, McGowan A, Maxwell AP, McEneny J, Gibney J, McKay GJ. Type 2 Diabetes in Young Females Results in Increased Serum Amyloid A and Changes to Features of High Density Lipoproteins in Both HDL 2 and HDL 3. J Diabetes Res 2017; 2017:1314864. [PMID: 28596970 PMCID: PMC5450179 DOI: 10.1155/2017/1314864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 03/09/2017] [Indexed: 01/20/2023] Open
Abstract
Persons with type 2 diabetes mellitus (T2DM) have an elevated risk of atherosclerosis. High-density lipoproteins (HDL) normally protect against cardiovascular disease (CVD), but this may be attenuated by serum amyloid A (SAA). In a case-control study of young females, blood samples were compared between subjects with T2DM (n = 42) and individuals without T2DM (n = 42). SAA and apolipoprotein AI (apoAI) concentrations, paraoxonase-1 (PON-1), cholesteryl ester transfer protein (CETP), and lecithin-cholesterol acyltransferase (LCAT) activities were measured in the serum and/or HDL2 and HDL3 subfractions. SAA concentrations were higher in T2DM compared to controls: serum (30 mg/L (17, 68) versus 15 mg/L (7, 36); p = 0.002), HDL2 (1.0 mg/L (0.6, 2.2) versus 0.4 mg/L (0.2, 0.7); p < 0.001), and HDL3, (13 mg/L (8, 29) versus 6 mg/L (3, 13); p < 0.001). Serum-PON-1 activity was lower in T2DM compared to that in controls (38,245 U/L (7025) versus 41,109 U/L (5690); p = 0.043). CETP activity was higher in T2DM versus controls in HDL2 (232.6 μmol/L (14.1) versus 217.1 μmol/L (25.1); p = 0.001) and HDL3 (279.5 μmol/L (17.7) versus 245.2 μmol/L (41.2); p < 0.001). These results suggest that individuals with T2DM have increased SAA-related inflammation and dysfunctional HDL features. SAA may prove to be a useful biomarker in T2DM given its association with elevated CVD risk.
Collapse
Affiliation(s)
| | | | - Mohammed Ahmed
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Anne McGowan
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | | | - Jane McEneny
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - James Gibney
- Department of Endocrinology, Tallaght Hospital, Dublin 24, Ireland
| | - Gareth J. McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- *Gareth J. McKay:
| |
Collapse
|
18
|
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, Grassl N, Iepsen EW, Lundgren J, Madsbad S, Holst JJ, Torekov SS, Mann M. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol 2016; 12:901. [PMID: 28007936 PMCID: PMC5199119 DOI: 10.15252/msb.20167357] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill‐defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed by a year of weight maintenance. Using mass spectrometry‐based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual‐specific protein levels with wide‐ranging effects of losing weight on the plasma proteome reflected in 93 significantly affected proteins. The adipocyte‐secreted SERPINF1 and apolipoprotein APOF1 were most significantly regulated with fold changes of −16% and +37%, respectively (P < 10−13), and the entire apolipoprotein family showed characteristic differential regulation. Clinical laboratory parameters are reflected in the plasma proteome, and eight plasma proteins correlated better with insulin resistance than the known marker adiponectin. Nearly all study participants benefited from weight loss regarding a ten‐protein inflammation panel defined from the proteomics data. We conclude that plasma proteome profiling broadly evaluates and monitors intervention in metabolic diseases.
Collapse
Affiliation(s)
- Philipp E Geyer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefka Tyanova
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Niklas Grassl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva W Iepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie Lundgren
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany .,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|