1
|
Ray R, Singh P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022; 11:1332. [PMID: 36422584 PMCID: PMC9694250 DOI: 10.3390/pathogens11111332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes human gastrointestinal infections across the globe, leading to kidney failure or even death in severe cases. E. coli are commensal members of humans and animals' (cattle, bison, and pigs) guts, however, may acquire Shiga-toxin-encoded phages. This acquisition or colonization by STEC may lead to dysbiosis in the intestinal microbial community of the host. Wildlife and livestock animals can be asymptomatically colonized by STEC, leading to pathogen shedding and transmission. Furthermore, there has been a steady uptick in new STEC variants representing various serotypes. These, along with hybrids of other pathogenic E. coli (UPEC and ExPEC), are of serious concern, especially when they possess enhanced antimicrobial resistance, biofilm formation, etc. Recent studies have reported these in the livestock and food industry with minimal focus on wildlife. Disturbed natural habitats and changing climates are increasingly creating wildlife reservoirs of these pathogens, leading to a rise in zoonotic infections. Therefore, this review comprehensively surveyed studies on STEC prevalence in livestock and wildlife hosts. We further present important microbial and environmental factors contributing to STEC spread as well as infections. Finally, we delve into potential strategies for limiting STEC shedding and transmission.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
2
|
Ningrum SG, Khaerunnisa I, Supriyono, Wibawan IWT. Molecular detection and phylogenetic analysis of a Shiga toxin-producing strain Escherichia coli (partial rfbE and fliCh7 gene), serotype O157:H7 isolated from a living chicken of a traditional market in Indonesia. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2020-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to identify a Shiga toxin-producing strain Escherichia coli partial rfbE and fliCh7 gene of O157:H7 isolated from a faeces sample collected from a live chicken in a traditional market in Bogor, Indonesia. The isolate was investigated using multiplex polymerase chain reaction (PCR) to detect stx1, stx2, rfbE, and fliCh7 gene of STEC O157:H7. Then, sequencing was applied to identify the antigen markers, which are the rfbE and fliCh7 genes. In the present study, the isolate which was obtained from a live chicken was successfully identified as STEC O157:H7 strain. This conclusion was based on multiplex PCR and a nucleotide sequence analysis. This pathogen was not only found in the live chicken, but it was further suggested that the rfbE and fliCh7 genes can be used as alternative targets for molecular identification of this pathogen.
Collapse
Affiliation(s)
- S. G. Ningrum
- Faculty of Veterinary Medicine, Universitas Wijaya Kusuma Surabaya, Surabaya, Indonesia
| | - I. Khaerunnisa
- Faculty of Agriculture, Bandung Raya University, Bandung, Indonesia
| | - Supriyono
- Laboratory of Medical Entomology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - I. W. T. Wibawan
- Department of Animal Disease and Veterinary Public Health, IPB University, Bogor, Indonesia
| |
Collapse
|
3
|
Du Y, Wang X, Han Z, Hua Y, Yan K, Zhang B, Zhao W, Wan C. Polyphosphate Kinase 1 Is a Pathogenesis Determinant in Enterohemorrhagic Escherichia coli O157:H7. Front Microbiol 2021; 12:762171. [PMID: 34777317 PMCID: PMC8578739 DOI: 10.3389/fmicb.2021.762171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The ppk1 gene encodes polyphosphate kinase (PPK1), which is the major catalytic enzyme that Escherichia coli utilizes to synthesize inorganic polyphosphate (polyP). The aim of this study was to explore the role of PPK1 in the pathogenesis of Enterohemorrhagic E. coli O157:H7 (EHEC O157:H7). An isogenic in-frame ppk1 deletion mutant (Δppk1) and ppk1 complemented mutant (Cppk1) were constructed and characterized in comparison to wild-type (WT) EHEC O157:H7 strain EDL933w by microscope observation and growth curve analysis. Survival rates under heat stress and acid tolerance, both of which the bacteria would face during pathogenesis, were compared among the three strains. LoVo cells and a murine model of intestinal colitis were used as the in vitro and in vivo models, respectively, to evaluate the effect of PPK1 on adhesion and invasion during the process of pathogenesis. Real-time reverse-transcription PCR of regulatory gene rpoS, adhesion gene eae, and toxin genes stx1 and stx2 was carried out to corroborate the results from the in vitro and in vivo models. The ppk1 deletion mutant exhibited disrupted polyP levels, but not morphology and growth characteristics. The survival rate of the Δppk1 strain under stringent environmental conditions was lower as compared with WT and Cppk1. The in vitro assays showed that deletion of the ppk1 gene reduced the adhesion, formation of attaching and effacing (A/E) lesions, and invasive ability of EHEC O157:H7. Moreover, the virulence of the Δppk1 in BALB/c mice was weaker as compared with the other two strains. Additionally, mRNA expression of rpoS, eae, stx1 and stx2 were consistent with the in vitro and in vivo results. In conclusion: EHEC O157:H7 requires PPK1 for both survival under harsh environmental conditions and virulence in vivo.
Collapse
Affiliation(s)
- Yanli Du
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, China
| | - Xiangyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zongli Han
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Hua
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kaina Yan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chengsong Wan
- Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China.,Key Laboratory of Tropical Disease Research of Guangdong Province, Guangzhou, China
| |
Collapse
|
4
|
Shahzad A, Ullah F, Irshad H, Ahmed S, Shakeela Q, Mian AH. Molecular detection of Shiga toxin-producing Escherichia coli (STEC) O157 in sheep, goats, cows and buffaloes. Mol Biol Rep 2021; 48:6113-6121. [PMID: 34374895 DOI: 10.1007/s11033-021-06631-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Shiga toxin-producing E. coli (STEC) are important foodborne pathogens that causing serious public health consequences worldwide. The present study aimed to estimate the prevalence ratio and to identify the zoonotic potential of E. coli O157 isolates in slaughtered adult sheep, goats, cows and buffaloes. MATERIALS AND METHODS A total of 400 Recto-anal samples were collected from two targeted sites Rawalpindi and Islamabad. Among them, 200 samples were collected from the slaughterhouse of Rawalpindi included sheep (n = 75) and goats (n = 125). While, 200 samples were collected from the slaughterhouse of Islamabad included cows (n = 120) and buffalos (n = 80). All samples were initially processed in buffered peptone water and then amplified by conventional PCR. Samples positive for E. coli O157 were then streaked onto SMAC media plates. From each positive sample, six different Sorbitol fermented pink-colored colonies were isolated and analyzed again via conventional PCR to confirm the presence of rfbE O157 gene. Isolates positive for rfbE O157 gene were then further analyzed by multiplex PCR for the presence of STEC other virulent genes (sxt1, stx2, eae and ehlyA) simultaneously. RESULTS Of 400 RAJ samples only 2 (0.5%) showed positive results for E. coli O157 gene, included sheep 1/75 (1.33%) and buffalo 1/80 (1.25%). However, goats (n = 125) and cows (n = 120) found negative for E. coli O157. Only 2 isolates from each positive sample of sheep (1/6) and buffalo (1/6) harbored rfbE O157 genes, while five isolates could not. The rfbE O157 isolate (01) of sheep sample did not carry any of STEC genes, while the rfbE O157 isolate (01) of buffalo sample carried sxt1, stx2, eae and ehlyA genes simultaneously. CONCLUSION It was concluded that healthy adult sheep and buffalo are possibly essential carriers of STEC O157. However, rfbE O157 isolate of buffalo RAJ sample carried 4 STEC virulent genes, hence considered an important source of STEC infection to humans and environment which should need to devise proper control systems.
Collapse
Affiliation(s)
- Asim Shahzad
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan
| | - Fahim Ullah
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan
| | - Hamid Irshad
- Animal Health Program, Animal Sciences Institute, National Agricultural Research Centre (NARC), Park Road, Islamabad, 44000, Pakistan
| | - Shehzad Ahmed
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan.
| | - Qismat Shakeela
- Department of Microbiology, Abbottabad University of Science & Technology, Havelian, 22010, Pakistan
| | - Abrar Hussain Mian
- Department of Microbiology, Hazara University, Garden Campus, Mansehra, 21300, Pakistan.
| |
Collapse
|
5
|
Santos ECCD, Castro VS, Cunha-Neto A, Santos LFD, Vallim DC, Lisbôa RDC, Carvalho RCT, Junior CAC, Figueiredo EEDS. Escherichia coli O26 and O113:H21 on Carcasses and Beef from a Slaughterhouse Located in Mato Grosso, Brazil. Foodborne Pathog Dis 2018; 15:653-659. [PMID: 30036077 DOI: 10.1089/fpd.2018.2431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of emerging pathogens that can cause human diseases, including hemolytic uremic syndrome (HUS) and hemorrhagic colitis (HC). Monitoring slaughtering stages and checking contamination points are crucial for the production of safe food. In this context, the aim of this study was to verify contamination by STEC strains, to determine the contamination points and evaluate the resistance profile to 12 antimicrobials used in both veterinary and human medicine. A total of 80 samples were obtained from eight collection points (pen floor, rectum, hide, carcass swabs and esophagus, diaphragm, masseter, and retail beef tissue samples). The isolates were collected by dilution plating on MacConkey agar with sorbitol, cefixime, and tellurite and analyzed by multiplex polymerase chain reaction for virulence genes. Serotyping of non-O157 was performed, and testing for 12 antibiotics by disk diffusion was carried out. A total of 18 STEC strains were isolated, presenting different virulence profiles. Contamination by STEC was observed in the rectum (5/18), carcass surface (5/18), hide (3/18), diaphragm (2/18), retail beef (2/18), and masseter muscle (1/18). Pen floor swabs and esophagus tissues showed no STEC contamination. Moreover, three strains were identified as O26 and three as O113:H21 strains, which have been linked to HUS and HC outbreak cases in Brazil. All STEC isolates were susceptible to all evaluated antimicrobials, except streptomycin. The presence of STEC strains is a direct risk to the consumer, especially when isolated from retail beef, and contamination can occur during different slaughter stages. However, antimicrobial resistance profiles did not identify multidrug-resistant strains, limiting potential antimicrobial resistance transmission to other pathogens.
Collapse
Affiliation(s)
| | - Vinicius Silva Castro
- 2 Instituto de Química , Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adelino Cunha-Neto
- 3 Programa de Pós graduação Nutrição, Alimentos e Metabolismo, Universidade Federal de Mato Grosso , Cuiabá, Brazil .,4 Faculdade de Veterinária, Universidade Federal Fluminense , Rio de Janeiro, Brazil
| | - Luis Fernando Dos Santos
- 5 Instituto Adolf Lutz , Núcleo de Doenças Entéricas e Infecções por Patógenos Especiais, São Paulo, Brazil
| | | | | | | | - Carlos Adam Conte Junior
- 2 Instituto de Química , Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil .,4 Faculdade de Veterinária, Universidade Federal Fluminense , Rio de Janeiro, Brazil .,6 Instituto Oswaldo Cruz , Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- 1 Programa de Pós graduação em Ciência Animal, Universidade Federal de Mato Grosso , Cuiabá, Brazil .,3 Programa de Pós graduação Nutrição, Alimentos e Metabolismo, Universidade Federal de Mato Grosso , Cuiabá, Brazil
| |
Collapse
|
6
|
Neher S, Hazarika AK, Barkalita LM, Borah P, Bora DP, Sharma RK. Isolation and characterization of Shiga toxigenic Escherichia coli of animal and bird origin by multiplex polymerase chain reaction. Vet World 2016; 9:123-7. [PMID: 27051196 PMCID: PMC4819360 DOI: 10.14202/vetworld.2016.123-127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022] Open
Abstract
AIM The purpose of this study was to determine the virulence genes and serotype of Shiga toxin producing Escherichia coli (STEC) strains isolated from animals and birds. MATERIALS AND METHODS A total of 226 different samples viz., fecal, intestinal content, rectal swab and heart blood were collected from different clinically affected/healthy animals and birds and were streaked on McConkeys' lactose agar and eosin methylene blue agar for isolation of E. coli, confirmed by staining characteristics and biochemical tests. By polymerase chain reaction (PCR) all the E. coli isolates were screened for certain virulence genes, viz., Shiga toxin 1 (stx1), stx2 and eae and enterohemolytic (Ehly) phenotype was observed in washed sheep blood agar plate. All the isolated E. coli strains were forwarded to the National Salmonella and Escherichia Centre, Central Research Institute, Kasauli (Himachal Pradesh) for serotyping. RESULTS Out of 226 samples 138 yielded E. coli. All the isolates were screened for molecular detection of different virulent genes, viz. stx1, stx2 and eae, based on which 36 (26.08%) were identified as STEC. Among those STEC isolates, 15 (41.67%), 14 (38.89%), 1 (2.78%) exhibited eae, stx2, stx1 alone, respectively, whereas 4 (11.11%) and 2 (5.56%) carried both stx1 and stx2, stx2 and eae, respectively. Among the STEC isolates 22 were belonged to 15 different sero-groups, viz., O2, O20, O22, O25, O43, O60, O69, O90, O91, O95, O106, O118, O130, O162 and O170 and others were untypable. Ehly phenotype was observed in 10 (27.78%) the STEC isolates. CONCLUSION The present study concluded that STEC could be isolated from both clinically affected as well as healthy animals and birds. Regular monitoring of more samples from animal and bird origin is important to identify natural reservoir of STEC to prevent zoonotic infection.
Collapse
Affiliation(s)
- S. Neher
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - A. K. Hazarika
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - L. M. Barkalita
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - P. Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - D. P. Bora
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - R. K. Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| |
Collapse
|