1
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
2
|
Barman TK, Metzger DW. Disease Tolerance during Viral-Bacterial Co-Infections. Viruses 2021; 13:v13122362. [PMID: 34960631 PMCID: PMC8706933 DOI: 10.3390/v13122362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Disease tolerance has emerged as an alternative way, in addition to host resistance, to survive viral-bacterial co-infections. Disease tolerance plays an important role not in reducing pathogen burden, but in maintaining tissue integrity and controlling organ damage. A common co-infection is the synergy observed between influenza virus and Streptococcus pneumoniae that results in superinfection and lethality. Several host cytokines and cells have shown promise in promoting tissue protection and damage control while others induce severe immunopathology leading to high levels of morbidity and mortality. The focus of this review is to describe the host cytokines and innate immune cells that mediate disease tolerance and lead to a return to host homeostasis and ultimately, survival during viral-bacterial co-infection.
Collapse
|
3
|
Zimecki M, Actor JK, Kruzel ML. The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol 2021; 95:107571. [PMID: 33765614 PMCID: PMC7953442 DOI: 10.1016/j.intimp.2021.107571] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a serious global health threat caused by severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Symptoms of COVID-19 are highly variable with common hyperactivity of immune responses known as a "cytokine storm". In fact, this massive release of inflammatory cytokines into in the pulmonary alveolar structure is a main cause of mortality during COVID-19 infection. Current management of COVID-19 is supportive and there is no common clinical protocol applied to suppress this pathological state. Lactoferrin (LF), an iron binding protein, is a first line defense protein that is present in neutrophils and excretory fluids of all mammals, and is well recognized for its role in maturation and regulation of immune system function. Also, due to its ability to sequester free iron, LF is known to protect against insult-induced oxidative stress and subsequent "cytokine storm" that results in dramatic necrosis within the affected tissue. Review of the literature strongly suggests utility of LF to silence the "cytokine storm", giving credence to both prophylactic and therapeutic approaches towards combating COVID-19 infection.
Collapse
Affiliation(s)
- Michał Zimecki
- The Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jeffrey K Actor
- University of Texas, Health Science Center Houston, Texas, USA.
| | - Marian L Kruzel
- University of Texas, Health Science Center Houston, Texas, USA
| |
Collapse
|
4
|
Lovewell RR, Baer CE, Mishra BB, Smith CM, Sassetti CM. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol 2021; 14:229-241. [PMID: 32483198 PMCID: PMC7704924 DOI: 10.1038/s41385-020-0300-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 02/04/2023]
Abstract
Granulocyte recruitment to the pulmonary compartment is a hallmark of progressive tuberculosis (TB). This process is well-documented to promote immunopathology, but can also enhance the replication of the pathogen. Both the specific granulocytes responsible for increasing mycobacterial burden and the underlying mechanisms remain obscure. We report that the known immunomodulatory effects of these cells, such as suppression of protective T-cell responses, play a limited role in altering host control of mycobacterial replication in susceptible mice. Instead, we find that the adaptive immune response preferentially restricts the burden of bacteria within monocytes and macrophages compared to granulocytes. Specifically, mycobacteria within inflammatory lesions are preferentially found within long-lived granulocytes that express intermediate levels of the Ly6G marker and low levels of antimicrobial genes. These cells progressively accumulate in the lung and correlate with bacterial load and disease severity, and the ablation of Ly6G-expressing cells lowers mycobacterial burden. These observations suggest a model in which dysregulated granulocytic influx promotes disease by creating a permissive intracellular niche for mycobacterial growth and persistence.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Christina E Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Clare M Smith
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
5
|
Jakubek P, Cieślewicz J, Bartoszek A. MicroRNAs as novel bioactive components of human breastmilk. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs are short, non-coding oligonucleotides that regulate gene expression at the post-transcriptional level. These small molecules participate in the control of various cellular processes and signalling pathways. Since 2010 microRNAs have been recognized as a new bioactive component of breastmilk, which is an exceptionally rich source of these oligonucleotides. In infants fed with breastmilk, microRNAs are involved in the growth and proper development as well as maturation of the immune system. It has been demonstrated that microRNAs are resistant to harsh conditions during in vitro digestion in simulated gastrointestinal tract of a newborn and, therefore, may be absorbed by the intestinal cells. Protection against RNase activity and low pH is provided by exosomes, which are carriers of microRNAs in skim milk or by fat globules and milk cells. It has been reported that, in contrast to human milk, infant formulas contain only a few microRNAs, which have been derived from other organisms, such as cow or soy. It may be presumed that supplementing infant formulas with microRNAs identical
with those which occur naturally in breastmilk may constitute a new way of designing
artificial substitutes for human breastmilk.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
| | - Joanna Cieślewicz
- Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
| | - Agnieszka Bartoszek
- Katedra Chemii, Technologii i Biotechnologii Żywności, Wydział Chemiczny, Politechnika Gdańska, Gdańsk
| |
Collapse
|
6
|
Nguyen TKT, Niaz Z, d'Aigle J, Hwang SA, Kruzel ML, Actor JK. Lactoferrin reduces mycobacterial M1-type inflammation induced with trehalose 6,6'-dimycolate and facilitates the entry of fluoroquinolone into granulomas. Biochem Cell Biol 2020; 99:73-80. [PMID: 32402212 DOI: 10.1139/bcb-2020-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Primary infection with Mycobacterium tuberculosis (Mtb) results in the formation of a densely packed granulomatous response that essentially limits the entry and efficacy of immune effector cells. Furthermore, the physical nature of the granuloma does not readily permit the entry of therapeutic agents to sites where organisms reside. The Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), is a physiologically relevant molecule for modelling macrophage-mediated events during the establishment of the tuberculosis-induced granuloma pathogenesis. At present, there are no treatments for tuberculosis that focus on modulating the host's immune responses. Previous studies showed that lactoferrin (LF), a natural iron-binding protein proven to modulate inflammation, can ameliorate the cohesiveness of granuloma. This led to a series of studies that further examined the effects of recombinant human LF (rHLF) on the histological progression of TDM-induced pathology. Treatment with rHLF demonstrated significant reduction in size and number of inflammatory foci following injections of TDM, together with reduced levels pulmonary pro-inflammatory cytokines TNF-α and IL-1β. LF facilitated greater penetration of fluoroquinolone to the sites of pathology. Mice treated with TDM alone demonstrated exclusion of ofloxacin to regions of inflammatory response, whereas the animals treated with rHLF demonstrated increased penetration to inflammatory foci. Finally, recent findings support the hypothesis that this mycobacterial mycolic acid can specifically recruit M1-like polarized macrophages; rHLF treatment was shown to limit the level of this M1-like phenotypic recruitment, corresponding highly with decreased inflammatory response.
Collapse
Affiliation(s)
- Thao K T Nguyen
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Zainab Niaz
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - John d'Aigle
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shen-An Hwang
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Marian L Kruzel
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
7
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
8
|
Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol 2017; 8:1438. [PMID: 29163511 PMCID: PMC5681489 DOI: 10.3389/fimmu.2017.01438] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Much progress has been achieved to elucidate the function of lactoferrin (LTF), an iron-binding glycoprotein, in the milieu of immune functionality. This review represents a unique examination of LTF toward its importance in physiologic homeostasis as related to development of disease-associated pathology. The immunomodulatory nature of this protein derives from its unique ability to "sense" the immune activation status of an organism and act accordingly. Underlying mechanisms are proposed whereby LTF controls disease states, thereby pinpointing regions of entry for LTF in maintenance of various physiological pathways to limit the magnitude of tissue damage. LTF is examined as a first line mediator in immune defense and response to pathogenic and non-pathogenic injury, as well as a molecule critical for control of oxidative cell function. Mechanisms of interaction of LTF with its receptors are examined, with a focus on protective effects via regulation of enzyme activities and reactive oxygen species production, immune deviation, and prevention of cell apoptosis. Indeed, LTF serves as a critical control point in physiologic homeostasis, functioning as a sensor of immunological performance related to pathology. Specific mediation of tissue pathophysiology is described for maintenance of intestinal integrity during endotoxemia, elicited airway inflammation due to allergens, and pulmonary damage during tuberculosis. Finally, the role of LTF to alter differentiation of adaptive immune function is examined, with specific recognition of its utility as a vaccine adjuvant to control subsequent lymphocytic reactivity. Overall, it is clear that while the ability of LTF to both sequester iron and to direct reactive oxygen intermediates is a major factor in lessening damage due to excessive inflammatory responses, further effects are apparent through direct control over development of higher order immune functions that regulate pathology due to insult and injury. This culminates in attenuation of pathological damage during inflammatory injury.
Collapse
Affiliation(s)
- Marian L. Kruzel
- McGovern Medical School, University of Texas, Health Science Center, Houston, TX, United States
| | - Michal Zimecki
- Polish Academy of Sciences, Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Jeffrey K. Actor
- McGovern Medical School, University of Texas, Health Science Center, Houston, TX, United States
| |
Collapse
|
9
|
Recombinant human lactoferrin modulates human PBMC derived macrophage responses to BCG and LPS. Tuberculosis (Edinb) 2016; 101S:S53-S62. [PMID: 27727130 DOI: 10.1016/j.tube.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lactoferrin, an iron-binding glycoprotein found in mammalian mucosal secretions and granules of neutrophils, possesses several immune modulatory properties. Published reports indicate that lactoferrin enhances the efficacy of the tuberculosis vaccine, BCG (Bacillus Calmette Guerin), both by increasing macrophage and dendritic cell ability to stimulate receptive T cells and by modulating the inflammatory response. This report is the first to demonstrate the effects of a recombinant human lactoferrin (10 μg/mL) on human PBMC derived CD14+ and CD16+ macrophages stimulated with a strong (LPS, 10 ng/mL) or weaker (BCG, MOI 1:1) stimulator of inflammation. After 3 days culture, LPS and human lactoferrin treated CD14+ cells significantly increased production of IL-10, IL-6, and MCP-1 compared to the LPS only group. In contrast, similarly treated CD16+ macrophages increased production of IL-12p40 and IL-10 and decreased TNF-α. Limited changes were observed in BCG stimulated CD14+ and CD16+ macrophages with and without lactoferrin. Analysis of surface expression of antigen presentation and co-stimulatory molecules demonstrated that CD14+ macrophages, when stimulated with BCG or LPS and cultured with lactoferrin, increased expression of CD86. CD16+ macrophages treated with lactoferrin showed a similar trend of increase in CD86 expression, but only when stimulated with BCG.
Collapse
|
10
|
Hwang SA, Kruzel ML, Actor JK. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology. Biochem Cell Biol 2016; 95:148-154. [PMID: 28165282 DOI: 10.1139/bcb-2016-0061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse-1. At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)-1·mouse-1) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Collapse
Affiliation(s)
- Shen-An Hwang
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Marian L Kruzel
- b Department of Integrative Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Jeffrey K Actor
- a Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|