1
|
Azzolini F, Dolcetti E, Bruno A, Rovella V, Centonze D, Buttari F. Physical exercise and synaptic protection in human and pre-clinical models of multiple sclerosis. Neural Regen Res 2024; 19:1768-1771. [PMID: 38103243 PMCID: PMC10960279 DOI: 10.4103/1673-5374.389359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
In multiple sclerosis, only immunomodulatory and immunosuppressive drugs are recognized as disease-modifying therapies. However, in recent years, several data from pre-clinical and clinical studies suggested a possible role of physical exercise as disease-modifying therapy in multiple sclerosis. Current evidence is sparse and often conflicting, and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated. Data, mainly derived from pre-clinical studies, suggest that exercise could enhance long-term potentiation and thus neuroplasticity, could reduce neuroinflammation and synaptopathy, and dampen astrogliosis and microgliosis. In humans, most trials focused on direct clinical and MRI outcomes, as investigating synaptic, neuroinflammatory, and pathological changes is not straightforward compared to animal models. The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.
Collapse
Affiliation(s)
| | | | | | - Valentina Rovella
- Department of System Medicine, University of Tor Vergata, Rome, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| |
Collapse
|
2
|
Fernández Ó, Montalbán X, Agüera E, Aladro Y, Alonso A, Arroyo R, Brieva L, Calles C, Costa-Frossard L, Eichau S, García-Domínguez JM, Hernández MÁ, Landete L, Llaneza M, Llufriu S, Meca-Lallana JE, Meca-Lallana V, Moral E, Prieto JM, Ramió-Torrentà L, Téllez N, Romero-Pinel L, Vilaseca A, Rodríguez-Antigüedad A. [XVI Post-ECTRIMS Meeting: review of the new developments presented at the 2023 ECTRIMS Congress (II)]. Rev Neurol 2024; 79:51-66. [PMID: 38976584 PMCID: PMC11469095 DOI: 10.33588/rn.7902.2024174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 07/10/2024]
Abstract
The XVI Post-ECTRIMS meeting was held in Seville on 20 and 21 October 2023, where expert neurologists in multiple sclerosis (MS) summarised the main new developments presented at the ECTRIMS 2023 congress, which took place in Milan from 11 to 13 October. The aim of this article is to summarise the content presented at the Post-ECTRIMS Meeting, in an article in two parts. This second part covers the health of women and elderly MS patients, new trends in the treatment of cognitive impairment, focusing particularly on meditation, neuroeducation and cognitive rehabilitation, and introduces the concept of fatigability, which has been used to a limited extent in MS. The key role of digitalization and artificial intelligence in the theoretically near future is subject to debate, along with the potential these technologies can offer. The most recent research on the various treatment algorithms and their efficacy and safety in the management of the disease is reviewed. Finally, the most relevant data for cladribine and evobrutinib are presented, as well as future therapeutic strategies currently being investigated.
Collapse
Affiliation(s)
- Óscar Fernández
- Departamento de Farmacología. Facultad de Medicina. Universidad de Málaga, Málaga, EspañaUniversidad de MálagaUniversidad de MálagaMálagaEspaña
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, EspañaInstituto de Investigación Biomédica de Málaga (IBIMA)Instituto de Investigación Biomédica de Málaga (IBIMA)MálagaEspaña
- Hospital Universitario Regional de Málaga-Universidad de Málaga, Málaga, EspañaHospital Universitario Regional de Málaga-Universidad de MálagaHospital Universitario Regional de Málaga-Universidad de MálagaMálagaEspaña
| | - Xavier Montalbán
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Eduardo Agüera
- Servicio de Neurología. Hospital Reina Sofía. Córdoba, EspañaHospital Reina SofíaHospital Reina SofíaCórdobaEspaña
| | - Yolanda Aladro
- Servicio de Neurología. Hospital Universitario de Getafe. Getafe, EspañaHospital Universitario de GetafeHospital Universitario de GetafeGetafeEspaña
| | - Ana Alonso
- Unidad de Esclerosis Múltiple. Servicio de Neurología, Málaga, EspañaServicio de NeurologíaServicio de NeurologíaMálagaEspaña
| | - Rafael Arroyo
- Servicio de Neurología. Hospital Universitario Quirónsalud. Madrid, EspañaHospital Universitario QuirónsaludHospital Universitario QuirónsaludMadridEspaña
| | - Luis Brieva
- Hospital Universitari Arnau de Vilanova-Universitat de Lleida. Lleida, EspañaHospital Universitari Arnau de Vilanova-Universitat de LleidaHospital Universitari Arnau de Vilanova-Universitat de LleidaLleidaEspaña
| | - Carmen Calles
- Servicio de Neurología. Hospital Universitario Son Espases. Palma de Mallorca, EspañaHospital Universitario Son EspasesHospital Universitario Son EspasesPalma de MallorcaEspaña
| | - Lucienne Costa-Frossard
- CSUR de Esclerosis Múltiple. Hospital Universitario Ramón y Cajal. Madrid, EspañaHospital Universitario Ramón y CajalHospital Universitario Ramón y CajalMadridEspaña
| | - Sara Eichau
- Servicio de Neurología. Hospital Universitario Virgen Macarena. Sevilla, EspañaHospital Universitario Virgen MacarenaHospital Universitario Virgen MacarenaSevillaEspaña
| | - José M. García-Domínguez
- Hospital Universitario Gregorio Marañón. Madrid, EspañaHospital Universitario Gregorio MarañónHospital Universitario Gregorio MarañónMadridEspaña
| | - Miguel Á. Hernández
- Servicio de Neurología. Hospital Nuestra Señora de Candelaria. Santa Cruz de Tenerife, EspañaHospital Nuestra Señora de CandelariaHospital Nuestra Señora de CandelariaSanta Cruz de TenerifeEspaña
| | - Lamberto Landete
- Servicio de Neurología. Hospital Universitario Doctor Peset. Valencia, EspañaHospital Universitario Doctor PesetHospital Universitario Doctor PesetValenciaEspaña
| | - Miguel Llaneza
- Servicio de Neurología. Hospital Universitario Central de Asturias. Oviedo, EspañaHospital Universitario Central de AsturiasHospital Universitario Central de AsturiasOviedoEspaña
| | - Sara Llufriu
- Unidad de Neuroinmunología y Esclerosis Múltiple. Hospital Clínic de Barcelona e IDIBAPS. Barcelona, EspañaHospital Clínic de Barcelona e IDIBAPSHospital Clínic de Barcelona e IDIBAPSBarcelonaEspaña
| | - José E. Meca-Lallana
- Unidad de Neuroinmunología Clínica y CSUR Esclerosis Múltiple. Servicio de Neurología. Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca). Murcia, EspañaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaHospital Clínico Universitario Virgen de la Arrixaca (IMIB-ArrixacaMurciaEspaña
- Cátedra de Neuroinmunología Clínica y Esclerosis Múltiple. Universidad Católica San Antonio (UCAM). Murcia, EspañaUniversidad Católica San Antonio (UCAM)Universidad Católica San Antonio (UCAM)MurciaEspaña
| | - Virginia Meca-Lallana
- Servicio de Neurología. Hospital Universitario de La Princesa. Madrid, EspañaHospital Universitario de La PrincesaHospital Universitario de La PrincesaMadridEspaña
| | - Ester Moral
- Servicio de Neurología. Complejo Hospitalario Universitario Moisès Broggi. Sant Joan Despí, EspañaComplejo Hospitalario Universitario Moisès BroggiComplejo Hospitalario Universitario Moisès BroggiSant Joan DespíEspaña
| | - José M. Prieto
- Servicio de Neurología. Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS). Santiago de Compostela, EspañaInstituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)Santiago de CompostelaEspaña
| | - Lluís Ramió-Torrentà
- Unitat de Neuroimmunologia i Esclerosi Múltiple Territorial de Girona (UNIEMTG). Hospital Universitari Dr. Josep Trueta. Girona, EspañaHospital Universitari Dr. Josep TruetaHospital Universitari Dr. Josep TruetaGironaEspaña
- Hospital Santa Caterina. IDIBGI. Girona, EspañaHospital Santa CaterinaHospital Santa CaterinaGironaEspaña
- Grup Neurodegeneració i Neuroinflamació. IDIBGI. Girona, EspañaIDIBGIIDIBGIGironaEspaña
- Departamento de Ciencias Médicas. Universitat de Girona. Girona, EspañaUniversitat de GironaUniversitat de GironaGironaEspaña
| | - Nieves Téllez
- Hospital Clínico Universitario de Valladolid. Valladolid, EspañaHospital Clínico Universitario de ValladolidHospital Clínico Universitario de ValladolidValladolidEspaña
| | - Lucía Romero-Pinel
- Hospital Universitari de Bellvitge-IDIBELL. L’Hospitalet de Llobregat. Barakaldo, EspañaHospital Universitari de Bellvitge-IDIBELLHospital Universitari de Bellvitge-IDIBELLBarakaldoEspaña
| | - Andreu Vilaseca
- CEMCAT. Hospital Universitari Vall d’Hebron-Universitat Autònoma de Barcelona. Barcelona, EspañaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaHospital Universitari Vall d’Hebron-Universitat Autònoma de BarcelonaBarcelonaEspaña
| | - Alfredo Rodríguez-Antigüedad
- Servicio de Neurología. Hospital Universitario Cruces. Barakaldo, EspañaHospital Universitario CrucesHospital Universitario CrucesBarakaldoEspaña
| |
Collapse
|
3
|
Tramontano M, Argento O, Manocchio N, Piacentini C, Orejel Bustos AS, De Angelis S, Bossa M, Nocentini U. Dynamic Cognitive-Motor Training versus Cognitive Computer-Based Training in People with Multiple Sclerosis: A Preliminary Randomized Controlled Trial with 2-Month Follow-Up. J Clin Med 2024; 13:2664. [PMID: 38731193 PMCID: PMC11084403 DOI: 10.3390/jcm13092664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Recent studies underscore the intricate relationship between cognitive and motor impairments in Multiple Sclerosis (MS), often exacerbated by CNS damage compromising neural connections. These cognitive-motor deficits contribute to reduced efficiency in daily activities and heightened risks of falls and accidents. The combination of challenging cognitive-motor training in a more ecological setting could improve cognitive functions in people with MS (PwMS). Objective: This study aims to compare the impact of dynamic cognitive-motor training versus computer-based cognitive training on overall cognitive efficiency in PwMS. Methods: Thirty-eight PwMS were recruited through the neurorehabilitation services of an Institute of research and health. Twenty-four participants were randomly assigned to the Cognitive-Motor group (CMg) and Cognitive Therapy group (CTg). Participants underwent three training sessions per week for four weeks, each lasting 50 min. The primary outcome was a comprehensive cognitive assessment using the Cognitive Impairment Index (CII), and the secondary outcomes were the Multiple Sclerosis Quality of Life Questionnaire MSQOL-54 and the Stroop Color Word Interference Test (SCWT). Results: Significant differences in the CII scores across T0, T1, and T2, as indicated by Friedman's test (χ2(2) = 14.558, p = .001), were found in the CMg. A significant difference in the change in health subscale of the MSQOL-54 was observed when comparing the groups across T0, T1, and T2 (χ2(2) = 6.059, p = .048). There were also statistically significant differences for the emotional well-being (χ2(2) = 7.581, p = .023) and health distress (χ2(2) = 11.902, p = .003) subscales. Post hoc analysis showed a statistically significant improvement in health-related quality of life (HRQOL) for the former at T1 vs. T0 (Z = -2.502, p = .012 and for the latter at T2 vs. T0 (Z = -2.670, p = .008), respectively. Conclusions: Our results support the combination of cognitive-motor training to enhance cognitive functional outcomes and quality of life compared to computer-based cognitive training in PwMS.
Collapse
Affiliation(s)
- Marco Tramontano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Università di Bologna, 40138 Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Ornella Argento
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
- Research Center CBPT, 00196 Rome, Italy
| | - Nicola Manocchio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Chiara Piacentini
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
| | - Amaranta Soledad Orejel Bustos
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Sara De Angelis
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
| | - Michela Bossa
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
| | - Ugo Nocentini
- Fondazione Santa Lucia IRCCS, 00179 Rome, Italy; (O.A.); (C.P.); (A.S.O.B.); (S.D.A.); (M.B.); (U.N.)
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
4
|
Spencer APC, Goodfellow M, Chakkarapani E, Brooks JCW. Resting-state functional connectivity in children cooled for neonatal encephalopathy. Brain Commun 2024; 6:fcae154. [PMID: 38741661 PMCID: PMC11089421 DOI: 10.1093/braincomms/fcae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/21/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Therapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic encephalopathy, reducing cases of death and severe disability such as cerebral palsy compared with normothermia management. However, when cooled children reach early school-age, they have cognitive and motor impairments which are associated with underlying alterations to brain structure and white matter connectivity. It is unknown whether these differences in structural connectivity are associated with differences in functional connectivity between cooled children and healthy controls. Resting-state functional MRI has been used to characterize static and dynamic functional connectivity in children, both with typical development and those with neurodevelopmental disorders. Previous studies of resting-state brain networks in children with hypoxic-ischaemic encephalopathy have focussed on the neonatal period. In this study, we used resting-state fMRI to investigate static and dynamic functional connectivity in children aged 6-8 years who were cooled for neonatal hypoxic-ischaemic without cerebral palsy [n = 22, median age (interquartile range) 7.08 (6.85-7.52) years] and healthy controls matched for age, sex and socioeconomic status [n = 20, median age (interquartile range) 6.75 (6.48-7.25) years]. Using group independent component analysis, we identified 31 intrinsic functional connectivity networks consistent with those previously reported in children and adults. We found no case-control differences in the spatial maps of these intrinsic connectivity networks. We constructed subject-specific static functional connectivity networks by measuring pairwise Pearson correlations between component time courses and found no case-control differences in functional connectivity after false discovery rate correction. To study the time-varying organization of resting-state networks, we used sliding window correlations and deep clustering to investigate dynamic functional connectivity characteristics. We found k = 4 repetitively occurring functional connectivity states, which exhibited no case-control differences in dwell time, fractional occupancy or state functional connectivity matrices. In this small cohort, the spatiotemporal characteristics of resting-state brain networks in cooled children without severe disability were too subtle to be differentiated from healthy controls at early school-age, despite underlying differences in brain structure and white matter connectivity, possibly reflecting a level of recovery of healthy resting-state brain function. To our knowledge, this is the first study to investigate resting-state functional connectivity in children with hypoxic-ischaemic encephalopathy beyond the neonatal period and the first to investigate dynamic functional connectivity in any children with hypoxic-ischaemic encephalopathy.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol BS2 8DX, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
- Department of Radiology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, UK
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK
- Neonatal Intensive Care Unit, St Michaels Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol BS2 8DX, UK
- University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
5
|
Saedmocheshi S, Yousfi N, Chamari K. Breaking boundaries: the transformative role of exercise in managing multiple sclerosis. EXCLI JOURNAL 2024; 23:475-490. [PMID: 38741722 PMCID: PMC11089092 DOI: 10.17179/excli2024-6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024]
Abstract
Multiple sclerosis (MS) is a prevalent cause of physical disability in adults, with inflammation-induced demyelination and neurodegeneration contributing to its etiology. This comprehensive review explores the multifaceted benefits of exercise in managing MS, including improvements in aerobic capacity, balance, muscle strength, immune and hormonal functions and mood. Various exercise modalities, such as aerobic, resistance, flexibility, and balance training, are discussed, along with tailored protocols for MS patients. Recommended exercise strategies are: aerobic exercise: 2-3x/week; 10-30 minutes (40 %-60 % of maximum heart rate (HRmax), HIIT: 1x/week, five 30-90-second intervals at 90 %-100 % HRmax, Resistance training: 2-3x/week, 5-10 exercises; 1-3 sets for each exercise, 8-15 repetitions/set. The review also examines the impact of exercise on neuroplasticity, cardiovascular responses, cytokine modulation, stress hormone regulation, brain structure, and function and fatigue perception. Emphasizing the importance of exercise in enhancing the quality of life for individuals with MS, the review proposes exercise prescriptions and highlights the promising link between physical activity, brain health, and improved hormonal and immune status in MS patients. This review aims to inform future research and guide clinical practices for effective MS management.
Collapse
Affiliation(s)
- Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, Iran
| | - Narimen Yousfi
- Tunisian Research Laboratory "Sport Performance Optimisation", (LR09SEP01) National Center of Medicine and Science in Sport, Tunis, Tunisia
| | - Karim Chamari
- Higher Institute of Sport and Physical Education, ISSEP Ksar Said, Manouba University, Tunis, Tunisia
| |
Collapse
|
6
|
Vasileiou ES, Fitzgerald KC. Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Curr Allergy Asthma Rep 2023; 23:481-496. [PMID: 37402064 DOI: 10.1007/s11882-023-01102-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE OF REVIEW In this review, we provide a comprehensive update on current scientific advances and emerging therapeutic approaches in the field of multiple sclerosis. RECENT FINDINGS Multiple sclerosis (MS) is a common disorder characterized by inflammation and degeneration within the central nervous system (CNS). MS is the leading cause of non-traumatic disability in the young adult population. Through ongoing research, an improved understanding of the disease underlying mechanisms and contributing factors has been achieved. As a result, therapeutic advancements and interventions have been developed specifically targeting the inflammatory components that influence disease outcome. Recently, a new type of immunomodulatory treatment, known as Bruton tyrosine kinase (BTK) inhibitors, has surfaced as a promising tool to combat disease outcomes. Additionally, there is a renewed interested in Epstein-Barr virus (EBV) as a major potentiator of MS. Current research efforts are focused on addressing the gaps in our understanding of the pathogenesis of MS, particularly with respect to non-inflammatory drivers. Significant and compelling evidence suggests that the pathogenesis of MS is complex and requires a comprehensive, multilevel intervention strategy. This review aims to provide an overview of MS pathophysiology and highlights the most recent advances in disease-modifying therapies and other therapeutic interventions.
Collapse
Affiliation(s)
- Eleni S Vasileiou
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kathryn C Fitzgerald
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Shah A, Panchal V, Patel K, Alimohamed Z, Kaka N, Sethi Y, Patel N. Pathogenesis and management of multiple sclerosis revisited. Dis Mon 2023; 69:101497. [PMID: 36280474 DOI: 10.1016/j.disamonth.2022.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple sclerosis is an autoimmune chronic inflammatory disease characterized by selective destruction of myelin in the CNS neurons (including optic nerve). It was first described in the 19th century and remained elusive owing to the disease's unique relapsing and remitting course. The widespread and debilitating prevalence of multiple sclerosis (MS) has prompted the development of various treatment modalities for its effective management. METHODS AND OBJECTIVES A literature review was conducted using the electronic databases PubMed and Google Scholar. The main objective of the review was to compile the advances in pathogenesis, classifications, and evolving treatment modalities for MS. RESULTS The understanding of the pathogenesis of MS and the potential drug targets for its precise treatment has evolved significantly over the past decade. The experimental developments are also motivating and present a big change coming up in the next 5 years. Numerous disease-modifying therapies (DMTs) have revolutionized the management of MS: interferon (IFN) preparations, monoclonal antibodies-natalizumab and ocrelizumab, immunomodulatory agents-glatiramer acetate, sphingosine 1-phosphate receptor 1 (S1PR1) modulators (Siponimod) and teriflunomide. The traditional parenteral drugs are now available as oral formulations improving patient acceptability. Repurposing various agents used for related diseases may reinforce the drug reserve to manage MS and are under trials. Although at a nascent phase, strategies to enhance re-myelination by stimulating oligodendrocytes are fascinating and hold promise for better outcomes in patients with MS. CONCLUSIONS The recent past has seen staggering inclusions to the management of multiple sclerosis catalyzing a significant turnabout in our approach to diagnosis, treatment, and prognosis. Since the advent of DMTs various other oral and injectable agents have been approved. The advances in MS therapeutics and diagnostics have laid the ground for further research and development to enhance the quality of life of afflicted patients.
Collapse
Affiliation(s)
- Abhi Shah
- Smt NHL MMC, Ahmedabad, Gujarat, 380006, India; PearResearch, India
| | - Viraj Panchal
- Smt NHL MMC, Ahmedabad, Gujarat, 380006, India; PearResearch, India
| | - Kashyap Patel
- Baroda Medical College, Vadodara, India; PearResearch, India
| | - Zainab Alimohamed
- Muhimbili University of Health and Allied Sciences (MUHAS), Tanzania; PearResearch, India
| | - Nirja Kaka
- PearResearch, India; GMERS Medical College, Himmatnagar, India
| | - Yashendra Sethi
- PearResearch, India; Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Neil Patel
- PearResearch, India; GMERS Medical College, Himmatnagar, India.
| |
Collapse
|
8
|
Goffredo M, Pagliari C, Turolla A, Tassorelli C, Di Tella S, Federico S, Pournajaf S, Jonsdottir J, De Icco R, Pellicciari L, Calabrò RS, Baglio F, Franceschini M. Non-Immersive Virtual Reality Telerehabilitation System Improves Postural Balance in People with Chronic Neurological Diseases. J Clin Med 2023; 12:jcm12093178. [PMID: 37176618 PMCID: PMC10179507 DOI: 10.3390/jcm12093178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND People with chronic neurological diseases, such as Parkinson's Disease (PD) and Multiple Sclerosis (MS), often present postural disorders and a high risk of falling. When difficulties in achieving outpatient rehabilitation services occur, a solution to guarantee the continuity of care may be telerehabilitation. This study intends to expand the scope of our previously published research on the impact of telerehabilitation on quality of life in an MS sample, testing the impact of this type of intervention in a larger sample of neurological patients also including PD individuals on postural balance. METHODS We included 60 participants with MS and 72 with PD. All enrolled subjects were randomized into two groups: 65 in the intervention group and 67 in the control group. Both treatments lasted 30-40 sessions (5 days/week, 6-8 weeks). Motor, cognitive, and participation outcomes were registered before and after the treatments. RESULTS All participants improved the outcomes at the end of the treatments. The study's primary outcome (Mini-BESTest) registered a greater significant improvement in the telerehabilitation group than in the control group. CONCLUSIONS Our results demonstrated that non-immersive virtual reality telerehabilitation is well tolerated and positively affects static and dynamic balance and gait in people with PD and MS.
Collapse
Affiliation(s)
- Michela Goffredo
- Neurorehabilitation Research Laboratory, Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Chiara Pagliari
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Andrea Turolla
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, 40138 Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Sonia Di Tella
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Sara Federico
- Laboratory of Healthcare Innovation Technology, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Sanaz Pournajaf
- Neurorehabilitation Research Laboratory, Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | | | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Headache Science & Neurorehabilitation Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | | | | | | | - Marco Franceschini
- Neurorehabilitation Research Laboratory, Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, 00166 Rome, Italy
| |
Collapse
|
9
|
Ploughman M, Melam GR, Buragadda S, Lohse KR, Clift F, Stefanelli M, Levin M, Donkers SJ. Translingual neurostimulation combined with physical therapy to improve walking and balance in multiple sclerosis (NeuroMSTraLS): Study protocol for a randomized controlled trial. Contemp Clin Trials 2023; 127:107142. [PMID: 36878390 DOI: 10.1016/j.cct.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Physical rehabilitation restores lost function and promotes brain plasticity in people with Multiple Sclerosis (MS). Research groups worldwide are testing the therapeutic effects of combining non-invasive neuromodulation with physical therapy (PT) to further improve functional outcomes in neurological disorders but with mixed results. Whether such devices enhance function is not clear. We present the rationale and study design for a randomized controlled trial evaluating if there is additional benefit to the synergistic pairing of translingual neurostimulation (TLNS) with PT to improve walking and balance in MS. METHODS AND ANALYSIS A parallel group [PT + TLNS or PT + Sham], quadruple-blinded, randomized controlled trial. Participants (N = 52) with gait and balance deficits due to relapsing-remitting or progressive MS, who are between 18 and 70 years of age, will be recruited through patient registries in Newfoundland & Labrador and Saskatchewan, Canada. All participants will receive 14 weeks of PT while wearing either a TLNS or sham device. Dynamic Gait Index is the primary outcome. Secondary outcomes include fast walking speed, subjective ratings of fatigue, MS impact, and quality of life. Outcomes are assessed at baseline (Pre), after 14 weeks of therapy (Post), and 26 weeks (Follow Up). We employ multiple methods to ensure treatment fidelity including activity and device use monitoring. Primary and secondary outcomes will be analyzed using linear mixed-effect models. We will control for baseline score and site to test the effects of Time (Post vs. Follow-Up), Group and the Group x Time interaction as fixed effects. A random intercept of participant will account for the repeated measures in the Time variable. Participants must complete the Post testing to be included in the analysis. ETHICS AND DISSEMINATION The Human Research Ethics Boards in Newfoundland & Labrador (HREB#2021.085) & Saskatchewan (HREB Bio 2578) approved the protocol. Dissemination avenues include peer-reviewed journals, conferences and patient-oriented communications.
Collapse
Affiliation(s)
- Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada.
| | - Ganeswara Rao Melam
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada
| | - Syamala Buragadda
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada
| | - Keith R Lohse
- Program in Physical Therapy, Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Fraser Clift
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Levin
- Department of Neurology and Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Sarah J Donkers
- School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
10
|
Santana K, França E, Sato J, Silva A, Queiroz M, de Farias J, Rodrigues D, Souza I, Ribeiro V, Caparelli-Dáquer E, Teixeira AL, Charvet L, Datta A, Bikson M, Andrade S. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul 2023; 16:100-107. [PMID: 36693536 PMCID: PMC9867562 DOI: 10.1016/j.brs.2023.01.1672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND and purpose: Fatigue is among the most common persistent symptoms following post-acute sequelae of Sars-COV-2 infection (PASC). The current study investigated the potential therapeutic effects of High-Definition transcranial Direct Current Stimulation (HD-tDCS) associated with rehabilitation program for the management of PASC-related fatigue. METHODS Seventy patients with PASC-related fatigue were randomized to receive 3 mA or sham HD-tDCS targeting the left primary motor cortex (M1) for 30 min paired with a rehabilitation program. Each patient underwent 10 sessions (2 sessions/week) over five weeks. Fatigue was measured as the primary outcome before and after the intervention using the Modified Fatigue Impact Scale (MFIS). Pain level, anxiety severity and quality of life were secondary outcomes assessed, respectively, through the McGill Questionnaire, Hamilton Anxiety Rating Scale (HAM-A) and WHOQOL. RESULTS Active HD-tDCS resulted in significantly greater reduction in fatigue compared to sham HD-tDCS (mean group MFIS reduction of 22.11 points vs 10.34 points). Distinct effects of HD-tDCS were observed in fatigue domains with greater effect on cognitive (mean group difference 8.29 points; effect size 1.1; 95% CI 3.56-13.01; P < .0001) and psychosocial domains (mean group difference 2.37 points; effect size 1.2; 95% CI 1.34-3.40; P < .0001), with no significant difference between the groups in the physical subscale (mean group difference 0.71 points; effect size 0.1; 95% CI 4.47-5.90; P = .09). Compared to sham, the active HD-tDCS group also had a significant reduction in anxiety (mean group difference 4.88; effect size 0.9; 95% CI 1.93-7.84; P < .0001) and improvement in quality of life (mean group difference 14.80; effect size 0.7; 95% CI 7.87-21.73; P < .0001). There was no significant difference in pain (mean group difference -0.74; no effect size; 95% CI 3.66-5.14; P = .09). CONCLUSION An intervention with M1 targeted HD-tDCS paired with a rehabilitation program was effective in reducing fatigue and anxiety, while improving quality of life in people with PASC.
Collapse
Affiliation(s)
| | | | - João Sato
- Center of Mathematics, Computing and Cognition, Federal University of ABC, Santo André, Brazil
| | - Ana Silva
- Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | - Iara Souza
- Federal University of Paraíba, João Pessoa, Brazil
| | - Vanessa Ribeiro
- Department of Health, Government of Paraíba, João Pessoa, Brazil
| | - Egas Caparelli-Dáquer
- Nervous System Electric Stimulation Lab, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Antonio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States,Faculdade Santa Casa BH, Belo Horizonte, Brazil
| | - Leigh Charvet
- Department of Neurology, New York University Langone Health, New York, United States
| | - Abhishek Datta
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States,Research & Development, Soterix Medical, Inc., New York, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, United States
| | | |
Collapse
|
11
|
Tahedl M, Levine SM, Weissert R, Kohl Z, Lee DH, Linker RA, Schwarzbach JV. Early remission in multiple sclerosis is linked to altered coherence of the Cerebellar Network. J Transl Med 2022; 20:488. [PMID: 36303221 PMCID: PMC9615296 DOI: 10.1186/s12967-022-03576-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/06/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The development of permanent disability in multiple sclerosis (MS) is highly variable among patients, and the exact mechanisms that contribute to this disability remain unknown. METHODS Following the idea that the brain has intrinsic network organization, we investigated changes of functional networks in MS patients to identify possible links between network reorganization and remission from clinical episodes in MS. Eighteen relapsing-remitting MS patients (RRMS) in their first clinical manifestation underwent resting-state functional MRI and again during remission. We used ten template networks, identified from independent component analysis, to compare changes in network coherence for each patient compared to those of 44 healthy controls from the Human Connectome Project test-retest dataset (two-sample t-test of pre-post differences). Combining a binomial test with Monte Carlo procedures, we tested four models of how functional coherence might change between the first clinical episode and remission: a network can change its coherence (a) with itself ("one-with-self"), (b) with another network ("one-with-other"), or (c) with a set of other networks ("one-with-many"), or (d) multiple networks can change their coherence with respect to one common network ("many-with-one"). RESULTS We found evidence supporting two of these hypotheses: coherence decreased between the Executive Control Network and several other networks ("one-with-many" hypothesis), and a set of networks altered their coherence with the Cerebellar Network ("many-with-one" hypothesis). CONCLUSION Given the unexpected commonality of the Cerebellar Network's altered coherence with other networks (a finding present in more than 70% of the patients, despite their clinical heterogeneity), we conclude that remission in MS may result from learning processes mediated by the Cerebellar Network.
Collapse
Affiliation(s)
- Marlene Tahedl
- grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany ,grid.7727.50000 0001 2190 5763Institute for Psychology, University of Regensburg, 93053 Regensburg, Germany
| | - Seth M. Levine
- grid.5252.00000 0004 1936 973XDepartment of Psychology, LMU Munich, 80802 Munich, Germany ,grid.411095.80000 0004 0477 2585NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, 80336 Munich, Germany
| | - Robert Weissert
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Zacharias Kohl
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - De-Hyung Lee
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Ralf A. Linker
- grid.7727.50000 0001 2190 5763Department of Neurology, University of Regensburg, 93053 Regensburg, Germany
| | - Jens V. Schwarzbach
- grid.7727.50000 0001 2190 5763Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Integrated Cognitive Rehabilitation Home-Based Protocol to Improve Cognitive Functions in Multiple Sclerosis Patients: A Randomized Controlled Study. J Clin Med 2022; 11:jcm11123560. [PMID: 35743631 PMCID: PMC9224682 DOI: 10.3390/jcm11123560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cognitive impairment (CI) occurs in about 40-65% of people with multiple sclerosis (MS) during the disease course. Cognitive rehabilitation has produced non-univocal results in MS patients. OBJECTIVE The present study aimed to evaluate whether an Integrated Cognitive Rehabilitation Program (ICRP) in MS patients might significantly improve CI. METHODS Forty patients with three phenotypes of MS were randomly assigned into two groups: the experimental group (EG, n = 20), which participated in the ICRP for 10 weeks of training; and the control group (CG, n = 20). All participants' cognitive functions were assessed at three timepoints (baseline, post-treatment, and 3-month follow-up) with the California Verbal Learning (CVLT), Brief Visuospatial Memory (BVMTR), Numerical Stroop, and Wisconsin tests. RESULTS When compared to CG patients, EG patients showed significant improvements in several measures of cognitive performance after ICRP, including verbal learning, visuospatial memory, attention, and executive functions. CONCLUSIONS Home-based ICRP can improve cognitive functions and prevent the deterioration of patients' cognitive deficits. As an integrated cognitive rehabilitation program aimed at potentiation of restorative and compensatory mechanisms, this approach might suggest an effective role in preserving neuronal flexibility as well as limiting the progression of cognitive dysfunction in MS.
Collapse
|
13
|
Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait in Multiple Sclerosis Patients: A Machine Learning Approach. J Clin Med 2022; 11:jcm11123505. [PMID: 35743575 PMCID: PMC9224780 DOI: 10.3390/jcm11123505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has emerged as an appealing rehabilitative approach to improve brain function, with promising data on gait and balance in people with multiple sclerosis (MS). However, single variable weights have not yet been adequately assessed. Hence, the aim of this pilot randomized controlled trial was to evaluate the tDCS effects on balance and gait in patients with MS through a machine learning approach. In this pilot randomized controlled trial (RCT), we included people with relapsing−remitting MS and an Expanded Disability Status Scale >1 and <5 that were randomly allocated to two groups—a study group, undergoing a 10-session anodal motor cortex tDCS, and a control group, undergoing a sham treatment. Both groups underwent a specific balance and gait rehabilitative program. We assessed as outcome measures the Berg Balance Scale (BBS), Fall Risk Index and timed up-and-go and 6-min-walking tests at baseline (T0), the end of intervention (T1) and 4 (T2) and 6 weeks after the intervention (T3) with an inertial motion unit. At each time point, we performed a multiple factor analysis through a machine learning approach to allow the analysis of the influence of the balance and gait variables, grouping the participants based on the results. Seventeen MS patients (aged 40.6 ± 14.4 years), 9 in the study group and 8 in the sham group, were included. We reported a significant repeated measures difference between groups for distances covered (6MWT (meters), p < 0.03). At T1, we showed a significant increase in distance (m) with a mean difference (MD) of 37.0 [−59.0, 17.0] (p = 0.003), and in BBS with a MD of 2.0 [−4.0, 3.0] (p = 0.03). At T2, these improvements did not seem to be significantly maintained; however, considering the machine learning analysis, the Silhouette Index of 0.34, with a low cluster overlap trend, confirmed the possible short-term effects (T2), even at 6 weeks. Therefore, this pilot RCT showed that tDCS may provide non-sustained improvements in gait and balance in MS patients. In this scenario, machine learning could suggest evidence of prolonged beneficial effects.
Collapse
|
14
|
Developing the Rationale for Including Virtual Reality in Cognitive Rehabilitation and Exercise Training Approaches for Managing Cognitive Dysfunction in MS. NEUROSCI 2022. [DOI: 10.3390/neurosci3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cognitive impairment is a common and detrimental consequence of multiple sclerosis (MS) and current rehabilitation methods are insufficient. Cognitive rehabilitation (CR) and exercise training (ET) are the most promising behavioral approaches to mitigate cognitive deficits, but effects are small and do not effectively translate to improvements in everyday function. This article presents a conceptual framework supporting the use of virtual reality (VR) as an ideal, common adjuvant traditional CR and ET in MS. VR could strengthen the effects of CR and ET by increasing sensory input and promoting multisensory integration and processing during rehabilitation. For ET specifically, VR can also help incorporate components of CR into exercise sessions. In addition, VR can enhance the transfer of cognitive improvements to everyday functioning by providing a more ecologically valid training environment. There is a clear interest in adding VR to traditional rehabilitation techniques for neurological populations, a stronger body of evidence of this unique approach is needed in MS. Finally, to better understand how to best utilize VR in rehabilitation for cognitive deficits in MS, more systematic research is needed to better understand the mechanism(s) of action of VR with CR and ET.
Collapse
|
15
|
Frieske J, Pareto D, García-Vidal A, Cuypers K, Meesen RL, Alonso J, Arévalo MJ, Galán I, Renom M, Vidal-Jordana Á, Auger C, Montalban X, Rovira À, Sastre-Garriga J. Can cognitive training reignite compensatory mechanisms in advanced multiple sclerosis patients? An explorative morphological network approach. Neuroscience 2022; 495:86-96. [DOI: 10.1016/j.neuroscience.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
16
|
Seebacher B, Helmlinger B, Pinter D, Ehling R, Hegen H, Ropele S, Reishofer G, Enzinger C, Brenneis C, Deisenhammer F. Effects of actual and imagined music-cued gait training on motor functioning and brain activity in people with multiple sclerosis: protocol of a randomised parallel multicentre trial. BMJ Open 2022; 12:e056666. [PMID: 35131834 PMCID: PMC8823210 DOI: 10.1136/bmjopen-2021-056666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Motor imagery (MI) refers to the mental rehearsal of a physical action without muscular activity. Our previous studies showed that MI combined with rhythmic-auditory cues improved walking, fatigue and quality of life (QoL) in people with multiple sclerosis (pwMS). Largest improvements were seen after music and verbally cued MI. It is unclear whether actual cued gait training achieves similar effects on walking as cued MI in pwMS. Furthermore, in pwMS it is unknown whether any of these interventions leads to changes in brain activation. The purpose of this study is therefore to compare the effects of imagined and actual cued gait training and a combination thereof on walking, brain activation patterns, fatigue, cognitive and emotional functioning in pwMS. METHODS AND ANALYSIS A prospective double-blind randomised parallel multicentre trial will be conducted in 132 pwMS with mild to moderate disability. Randomised into three groups, participants will receive music, metronome and verbal cueing, plus MI of walking (1), MI combined with actual gait training (2) or actual gait training (3) for 30 min, 4× per week for 4 weeks. Supported by weekly phone calls, participants will practise at home, guided by recorded instructions. Primary endpoints will be walking speed (Timed 25-Foot Walk) and distance (2 min Walk Test). Secondary endpoints will be brain activation patterns, fatigue, QoL, MI ability, anxiety, depression, cognitive functioning, music-induced motivation-to-move, pleasure, arousal and self-efficacy. Data will be collected at baseline, postintervention and 3-month follow-up. MRI reference values will be generated using 15 matched healthy controls. ETHICS AND DISSEMINATION This study follows the Standard Protocol Items: Recommendations for Interventional Trials-PRO Extension. Ethical approval was received from the Ethics Committees of the Medical Universities of Innsbruck (1347/2020) and Graz (33-056 ex 20/21), Austria. Results will be disseminated via national and international conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER DRKS00023978.
Collapse
Affiliation(s)
- Barbara Seebacher
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
| | - Birgit Helmlinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria
- Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria
| | - Rainer Ehling
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology; Division of Neuroradiology; Department of Radiology, Medical University of Graz, Graz, Austria
| | - Christian Brenneis
- Karl Landsteiner Institute for Interdisciplinary Rehabilitation Research, Münster, Austria
- Department of Neurology, Clinic for Rehabilitation Münster, Münster, Austria
| | - Florian Deisenhammer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Carotenuto A, Costabile T, Pontillo G, Moccia M, Falco F, Petracca M, Petruzzo M, Russo CV, Di Stasi M, Paolella C, Perillo T, Vola EA, Cipullo MB, Cocozza S, Lanzillo R, Brescia Morra V, Saccà F. Cognitive trajectories in multiple sclerosis: a long-term follow-up study. Neurol Sci 2022; 43:1215-1222. [PMID: 34105018 PMCID: PMC8789689 DOI: 10.1007/s10072-021-05356-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Cognitive impairment occurs in multiple sclerosis (MS) and undergoes a progressive worsening over disease course. However, clinicians still struggle to predict the course of cognitive function. To evaluate baseline clinical and imaging predictors of cognitive abilities worsening over time, we performed a latent trajectory analysis for cognitive performances in MS patients, up to 15 years from disease onset. METHODS We collected age, sex, education, dominant and non-dominant 9-hole peg test (9HP) and timed 25-foot walk (T25-FW) as well as MRI measures (grey matter volume and lesion load) within 6 months from disease diagnosis for relapsing-remitting MS (RR-MS) patients. At diagnosis and over the follow-up, we also assessed cognitive status through the symbol digit modalities test (SDMT). Cognitive impairment was defined by applying age-, gender- and education-adjusted normative values. Group-based trajectory analysis was performed to determine trajectories, and the predictive value of clinical and imaging variables at baseline was assessed through multinomial logistic regression. RESULTS We included 148 RR-MS (98 females and 50 males). Over 11 ± 4 year follow-up, 51.4% remained cognitively stable whereas 48.6% cognitively worsened. Cognitively worsening patients had a higher T25FW time (p = 0.004) and a reduced hippocampal volume at baseline (p = 0.04). CONCLUSION Physical disability as well as hippocampal atrophy might depict patients at risk of cognitive worsening over the disease course. Therefore, using such predictors, clinicians may select patients to carefully evaluate for cognitive impairment as to eventually introduce cognitive rehabilitation treatments.
Collapse
Affiliation(s)
- Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy.
| | - Teresa Costabile
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Moccia Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Fabrizia Falco
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Martina Petruzzo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Cinzia Valeria Russo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Martina Di Stasi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Chiara Paolella
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Elena Augusta Vola
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | | | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
18
|
Weyer-Jamora C, Brie MS, Luks TL, Smith EM, Hervey-Jumper SL, Taylor JW. Postacute Cognitive Rehabilitation for Adult Brain Tumor Patients. Neurosurgery 2021; 89:945-953. [PMID: 33586764 PMCID: PMC8600173 DOI: 10.1093/neuros/nyaa552] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/04/2020] [Indexed: 11/14/2022] Open
Abstract
Intrinsic brain tumors often occur within functional neural networks, leading to neurological impairment and disability of varying degrees. Advances in our understanding of tumor-network integration, human cognition and language processing, and multiparametric imaging, combined with refined intraoperative tumor resection techniques, have enhanced surgical management of intrinsic brain tumors within eloquent areas. However, cognitive symptoms impacting health-related quality of life, particularly processing speed, attention, concentration, working memory, and executive function, often persist after the postoperative recovery period and treatment. Multidisciplinary cognitive rehabilitation is the standard of care for addressing cognitive impairments in many neurological diseases. There is promising research to support the use of cognitive rehabilitation in adult brain tumor patients. In this review, we summarize the history and usefulness of postacute cognitive rehabilitation for adult brain tumor patients.
Collapse
Affiliation(s)
- Christina Weyer-Jamora
- Department of Neurological Surgery, University of CaliforniaSan Francisco, San Francisco, California
- Department of Psychiatry, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Melissa S Brie
- Department of Neurological Surgery, University of CaliforniaSan Francisco, San Francisco, California
- Department of Psychiatry, Zuckerberg San Francisco General Hospital, San Francisco, California
| | - Tracy L Luks
- Department of Radiology and Biomedical Imaging, University of CaliforniaSan Francisco, San Francisco, California
| | - Ellen M Smith
- Department of Neurological Surgery, University of CaliforniaSan Francisco, San Francisco, California
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of CaliforniaSan Francisco, San Francisco, California
| | - Jennie W Taylor
- Department of Neurological Surgery, University of CaliforniaSan Francisco, San Francisco, California
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Santisteban L, Teremetz M, Irazusta J, Lindberg PG, Rodriguez-Larrad A. Outcome measures used in trials on gait rehabilitation in multiple sclerosis: A systematic literature review. PLoS One 2021; 16:e0257809. [PMID: 34591875 PMCID: PMC8483298 DOI: 10.1371/journal.pone.0257809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Multiple Sclerosis (MS) is associated with impaired gait and a growing number of clinical trials have investigated efficacy of various interventions. Choice of outcome measures is crucial in determining efficiency of interventions. However, it remains unclear whether there is consensus on which outcome measures to use in gait intervention studies in MS. Objective We aimed to identify the commonly selected outcome measures in randomized controlled trials (RCTs) on gait rehabilitation interventions in people with MS. Additional aims were to identify which of the domains of the International Classification of Functioning, Disability and Health (ICF) are the most studied and to characterize how outcome measures are combined and adapted to MS severity. Methods Pubmed, Cochrane Central, Embase and Scopus databases were searched for RCT studies on gait interventions in people living with MS according to PRISMA guidelines. Results In 46 RCTs, we identified 69 different outcome measures. The most used outcome measures were 6-minute walking test and the Timed Up and Go test, used in 37% of the analyzed studies. They were followed by gait spatiotemporal parameters (35%) most often used to inform on gait speed, cadence, and step length. Fatigue was measured in 39% of studies. Participation was assessed in 50% of studies, albeit with a wide variety of scales. Only 39% of studies included measures covering all ICF levels, and Participation measures were rarely combined with gait spatiotemporal parameters (only two studies). Conclusions Selection of outcome measures remains heterogenous in RCTs on gait rehabilitation interventions in MS. However, there is a growing consensus on the need for quantitative gait spatiotemporal parameter measures combined with clinical assessments of gait, balance, and mobility in RCTs on gait interventions in MS. Future RCTs should incorporate measures of fatigue and measures from Participation domain of ICF to provide comprehensive evaluation of trial efficacy across all levels of functioning.
Collapse
Affiliation(s)
- L. Santisteban
- Department of Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- * E-mail: ,
| | - M. Teremetz
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - J. Irazusta
- Department of Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - P. G. Lindberg
- Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A. Rodriguez-Larrad
- Department of Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain
| |
Collapse
|
20
|
Cao C, Huang Y, Chen A, Xu G, Song J. Improvement in Attention Processing After Surgical Treatment in Functional Pituitary Adenomas: Evidence From ERP Study. Front Neurol 2021; 12:656255. [PMID: 34659078 PMCID: PMC8517483 DOI: 10.3389/fneur.2021.656255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
Cognitive abilities are impaired in patients with pituitary adenoma. However, studies on attention processing impairment in preoperative patients and attention processing recovery after transsphenoidal adenomectomy are lacking. The study aims to identify the electrophysiological change that relates to attention processing in pituitary patients before and after treatment. Twenty five preoperative pituitary patients and 25 follow-up postoperative patients were recruited. 27 healthy controls (HCs) were matched to the patients with age, gender, and education. Event-related potentials were used to investigate the attention processing in the preoperative patients, postoperative patients, and HCs. Across three groups, all emotional stimuli evoked P200 components. Compared with the HCs or postoperative patients, the amplitudes of P200 in the preoperative patients were higher. Moreover, The amplitudes of P200 decreased in the postoperative patients, which were similar to that in the HCs. The attention processing was improved after surgery, but no significant differences were detected between the postoperative patients and HCs. Abnormal hormone levels may be relevant to the factor that impair attention processing. Compared with that of the HCs and postoperative patients, the P200 component elicited by negative stimuli is higher in preoperative patients, which may illustrate compensatory activity after attention impairments. Furthermore, these data indicate that improvements in attention processing may be attributed to the amelioration of endocrine disorders. This study shows that the P200 component may be used to diagnose attention processing in preoperative pituitary patients and prove the improvement of attention processing in postoperative patients.
Collapse
Affiliation(s)
- Chenglong Cao
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht, Netherlands
- The First School of Clinical Medical University, Southern Medical University, Guangzhou, China
| | - Yujing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou, China
| | - Aobo Chen
- The First School of Clinical Medical University, Southern Medical University, Guangzhou, China
| | - Guozheng Xu
- The First School of Clinical Medical University, Southern Medical University, Guangzhou, China
| | - Jian Song
- Department of Neurosurgery, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, China
| |
Collapse
|
21
|
Cao C, Wang Y, Liu J, Chen A, Lu J, Xu G, Song J. Altered Connectivity of the Frontoparietal Network During Attention Processing in Prolactinomas. Front Neurol 2021; 12:638851. [PMID: 34526949 PMCID: PMC8435841 DOI: 10.3389/fneur.2021.638851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Prolactinomas have been reported for the failure of cognitive functions. However, the electrophysiological mechanisms of attention processing in prolactinomas remain unclear. In a visual mission, we monitored the scalp electroencephalography (EEG) of the participants. Compared with the healthy controls (HCs), larger frontoparietal theta and alpha coherence were found in the patients, especially in the right-lateralized hemisphere, which indicated a deficit in attention processing. Moreover, the frontoparietal coherence was positively correlated with altered prolactin (PRL) levels, implying the significance of PRL for adaptive brain compensation in prolactinomas. Taken together, this research showed the variations in attention processing between the HCs and prolactinomas. The coherence between frontal and parietal regions may be one of the possible electrophysiological biomarkers for detecting deficient attention processing in prolactinomas.
Collapse
Affiliation(s)
- Chenglong Cao
- Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Yu Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jia Liu
- Foreign Linguistics and Applied Linguistics, Research Institute of Foreign Languages, Beijing Foreign Studies University, Beijing, China
| | - Aobo Chen
- Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinjiang Lu
- Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guozheng Xu
- Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Jian Song
- Department of Neurosurgery, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| |
Collapse
|
22
|
Bučková B, Kopal J, Řasová K, Tintěra J, Hlinka J. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci 2021; 15:662784. [PMID: 34121992 PMCID: PMC8192961 DOI: 10.3389/fnins.2021.662784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Barbora Bučková
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Jakub Kopal
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czechia
| | - Kamila Řasová
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Tintěra
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
- Department of Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
23
|
Neurological update: cognitive rehabilitation in multiple sclerosis. J Neurol 2021; 268:4908-4914. [PMID: 34028615 DOI: 10.1007/s00415-021-10618-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Cognitive impairment is a common and debilitating symptom in multiple sclerosis (MS). There is limited evidence that disease-modifying therapies are effective in treating cognitive dysfunction. Cognitive rehabilitation is a promising approach to treat cognitive dysfunction in MS, gaining empirical support over the last 10 years. The current review will provide a brief overview of cognitive rehabilitation in MS. Overall, there is evidence that cognitive rehabilitation programs (either restorative or compensatory) are efficacious in treating MS-related cognitive dysfunction. Clinicians should consider this low-cost, low-risk, yet effective treatment approach for their patients.
Collapse
|
24
|
Weyer-Jamora C, Brie MS, Luks TL, Smith EM, Braunstein SE, Villanueva-Meyer JE, Bracci PM, Chang S, Hervey-Jumper SL, Taylor JW. Cognitive impact of lower-grade gliomas and strategies for rehabilitation. Neurooncol Pract 2021; 8:117-128. [PMID: 33898046 PMCID: PMC8049427 DOI: 10.1093/nop/npaa072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Outcomes for patients with lower-grade gliomas (LrGGs) continue to improve with advances in molecular characterization and treatment. However, cognitive sequela from the tumor and its treatment leave a significant impact on health-related quality of life for these patients. Several factors affect each patient's cognition, such as tumor location, treatment, medication, and comorbidities. However, impairments of processing speed, attention, concentration, working memory, and executive function are common across LrGG patients. Cognitive rehabilitation strategies, well established in traumatic brain injury and stroke populations, are based on neural plasticity and functional reorganization. Adapting these strategies for implementation in patients with brain tumors is an active area of research. This article provides an overview of cognitive domains commonly impaired in LrGG patients and evidence for the use of cognitive rehabilitation strategies to address these impairments with the goal of improving health-related quality of life in this patient population.
Collapse
Affiliation(s)
- Christina Weyer-Jamora
- Department of Neurological Surgery, University of California San Francisco
- Department of Psychiatry and Behavioral Sciences, Zuckerberg San Francisco General Hospital, California
| | - Melissa S Brie
- Department of Neurological Surgery, University of California San Francisco
- Department of Psychiatry and Behavioral Sciences, Zuckerberg San Francisco General Hospital, California
| | - Tracy L Luks
- Department of Radiology and Biomedical Imaging, University of California San Francisco
| | - Ellen M Smith
- Department of Neurological Surgery, University of California San Francisco
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco
| | | | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco
| | | | - Jennie W Taylor
- Department of Neurological Surgery, University of California San Francisco
- Department of Neurology, University of California San Francisco
| |
Collapse
|
25
|
Mark VW. Retention of Physical Gains in the Community Following Physical Training for Multiple Sclerosis: A Systematic Review and Implications. Semin Neurol 2021; 41:177-188. [PMID: 33690875 DOI: 10.1055/s-0041-1725139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is a progressive neurological illness whose typically young adult onset results in a nearly entire lifetime of worsening disability. But despite being an unrelenting neurodegenerative disease, numerous clinical trials over the past 40 years for MS have vigorously attempted to improve or at least stabilize declining physical function. Although the vast majority of the studies assessed training effects only within controlled laboratory or clinic settings, in recent years a growing interest has emerged to test whether newer therapies can instead benefit real-life activities in the community. Nonetheless, comparatively little attention has been paid to whether the training gains can be retained for meaningful periods. This review discusses the comparative success of various physical training methods to benefit within-community activities in MS, and whether the gains can be retained long afterward. This review will suggest future research directions toward establishing efficacious treatments that can allow persons with MS to reclaim their physical abilities and maximize functionality for meaningful periods.
Collapse
Affiliation(s)
- Victor W Mark
- Departments of Physical Medicine and Rehabilitation, Neurology, and Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
ŘasovÁ K, BuČkovÁ B, ProkopiusovÁ T, ProchÁzkovÁ M, Angel G, MarkovÁ M, HruŠkovÁ N, ŠtĚtkÁŘovÁ I, ŠpaŇhelovÁ Š, MareŠ J, TintĚra J, Zach P, Musil V, Hlinka J. A Three-Arm Parallel-Group Exploratory Trial documents balance improvement without much evidence of white matter integrity changes in people with multiple sclerosis following two months ambulatory neuroproprioceptive "facilitation and inhibition" physical therapy. Eur J Phys Rehabil Med 2021; 57:889-899. [PMID: 33565742 DOI: 10.23736/s1973-9087.21.06701-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Changes of white matter integrity in people with multiple sclerosis (MS) were documented following mainly motor/skill acquisitions physical therapy, while following neuroproprioceptive "facilitation, inhibition" (neurofacilitation) only by two pilot studies. Neurofacilitation has potential to induce white matter changes due to possibility to interfere with the neuronal tactility threshold, but stronger evidence is missing. AIM This study investigates whether neurofacilitation (three physical therapy types) induce white matter changes and if they relate to clinical improvement. DESIGN The Three-Arm Parallel-Group Exploratory Trial (NCT04355663). SETTING Each group underwent different kind of two months ambulatory therapy (Motor Program Activating Therapy, Vojta's reflex locomotion, and Functional Electric Stimulation in Posturally Corrected Position). POPULATION MS people with moderate disability. METHODS At baseline and after the program, participants underwent magnetic resonance diffusion tensor imaging (DTI) and clinical assessment. Fractional anisotropy maps obtained from DTI were further analyzed using tract-based spatial statistic exploring the mean values in the whole statistic skeleton. Moreover, additional exploratory analysis in 48 regions of white matter was done. RESULTS 92 people were recruited. DTI data from 61 were analysed. The neurofacilitation (irrespective type of therapy) resulted in significant improvement on the Berg Balance Scale (p=0.0089), mainly driven by the Motor Program Activating Therapy. No statistically significant change in the whole statistic skeleton was observed (only a trend for decrement of fractional anisotropy after Vojta's reflex locomotion). Additional exploratory analysis confirmed significant decrement of fractional anisotropy in the right anterior corona radiata. CONCLUSIONS Neurofacilitation improved balance without much evidence of white matter integrity changes in people with MS. CLINICAL REHABILITATION IMPACT The study results point to the importance of neuroproprioceptive "facilitation and inhibition" physical therapy in management of balance in people with multiple sclerosis and the potential to induce white matter changes due to possibility to interfere with the neuronal tactility threshold.
Collapse
Affiliation(s)
- Kamila ŘasovÁ
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic -
| | - Barbora BuČkovÁ
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Terezie ProkopiusovÁ
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie ProchÁzkovÁ
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gabriela Angel
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Magdaléna MarkovÁ
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natália HruŠkovÁ
- Department of Rehabilitation, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana ŠtĚtkÁŘovÁ
- Department of Neurology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Šárka ŠpaŇhelovÁ
- Department of Rehabilitation and Sport Medicine, Motol University Hospital, Prague, Czech Republic
| | - Jan MareŠ
- Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czech Republic
| | - Jaroslav TintĚra
- Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Praha, Czech Republic
| | - Petr Zach
- Department of Anatomy, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimír Musil
- Centre of Scientific Information, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Hlinka
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.,Applied Neurosciences and Brain Imaging, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
27
|
Morelli N, Morelli H. Dual task training effects on gait and balance outcomes in multiple sclerosis: A systematic review. Mult Scler Relat Disord 2021; 49:102794. [PMID: 33540278 DOI: 10.1016/j.msard.2021.102794] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND People with Multiple Sclerosis (PwMS) exhibit deteriorated balance and gait performance during dual task (DT) conditions. Impaired dual tasking is related to increased fall risk and lower quality of life in PwMS. While dual task interventions have proven effective in various patient populations, evidence is lacking to support the use of DT interventions to improve clinical measures of balance and gait in PwMS. Therefore, the purpose of this systematic review was to synthesize the effectiveness of DT intervention at improving balance and gait in PwMS. METHODS A systematic search was completed using CINHAL, PubMed and MEDLINE. Methodological quality, level of evidence and recommendations for included studies was assessed by two reviewers. Effect sizes with 95% confidence intervals comparing single and DT outcomes were calculated for all balance and gait variables. RESULTS Five randomized control trials (RCTs) were included for review. Of the 23 effect sizes calculated, three had 95% confidence intervals which did not pass zero and were therefore interpreted as strong. Due to inconsistent level one evidence of DT interventions being superior to single task balance and gait interventions a grade B recommendation was given. CONCLUSION There is inconsistent evidence supporting the use of DT interventions to improve clinical balance measures in PwMS. There is supportive evidence for the use of DT interventions to improve both single and DT gait speed. However, there was heterogeneity between interventions and dosage among RCTs. Despite multiple promising findings, DT interventions appear to have minimal impact on clinical balance and gait measures in PwMS.
Collapse
Affiliation(s)
- Nathan Morelli
- Rehabilitation Sciences, College of Health Sciences, University of Kentucky, 900 S Limestone, Lexington, KY 40536, USA.
| | - Haley Morelli
- Rehabilitation Department, Chandler Medical Center at University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Chard DT, Alahmadi AAS, Audoin B, Charalambous T, Enzinger C, Hulst HE, Rocca MA, Rovira À, Sastre-Garriga J, Schoonheim MM, Tijms B, Tur C, Gandini Wheeler-Kingshott CAM, Wink AM, Ciccarelli O, Barkhof F. Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nat Rev Neurol 2021; 17:173-184. [PMID: 33437067 DOI: 10.1038/s41582-020-00439-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
MRI studies have provided valuable insights into the structure and function of neural networks, particularly in health and in classical neurodegenerative conditions such as Alzheimer disease. However, such work is also highly relevant in other diseases of the CNS, including multiple sclerosis (MS). In this Review, we consider the effects of MS pathology on brain networks, as assessed using MRI, and how these changes to brain networks translate into clinical impairments. We also discuss how this knowledge can inform the targeting of MS treatments and the potential future directions for research in this area. Studying MS is challenging as its pathology involves neurodegenerative and focal inflammatory elements, both of which could disrupt neural networks. The disruption of white matter tracts in MS is reflected in changes in network efficiency, an increasingly random grey matter network topology, relative cortical disconnection, and both increases and decreases in connectivity centred around hubs such as the thalamus and the default mode network. The results of initial longitudinal studies suggest that these changes evolve rather than simply increase over time and are linked with clinical features. Studies have also identified a potential role for treatments that functionally modify neural networks as opposed to altering their structure.
Collapse
Affiliation(s)
- Declan T Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK. .,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.
| | - Adnan A S Alahmadi
- Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Bertrand Audoin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France.,AP-HM, University Hospital Timone, Department of Neurology, Marseille, France
| | - Thalis Charalambous
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Christian Enzinger
- Department of Neurology, Research Unit for Neuronal Repair and Plasticity, Medical University of Graz, Graz, Austria.,Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Hanneke E Hulst
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Carmen Tur
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Neurology, Luton and Dunstable University Hospital, Luton, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Alle Meije Wink
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ciccarelli
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.,National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK
| | - Frederik Barkhof
- National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre, London, UK.,Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Institutes of Neurology and Healthcare Engineering, University College London, London, UK
| | | |
Collapse
|
29
|
Pilloni G, Choi C, Shaw MT, Coghe G, Krupp L, Moffat M, Cocco E, Pau M, Charvet L. Walking in multiple sclerosis improves with tDCS: a randomized, double-blind, sham-controlled study. Ann Clin Transl Neurol 2020; 7:2310-2319. [PMID: 33080122 PMCID: PMC7664269 DOI: 10.1002/acn3.51224] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate whether multiple sessions of transcranial direct current stimulation (tDCS) applied to the primary motor (M1) cortex paired with aerobic exercise can improve walking functions in multiple sclerosis (MS). METHODS MS participants were recruited for a double-blind, parallel-arm, randomized, sham-controlled trial and assigned to 10 sessions (5 d/wk for 2 weeks) of either active or sham tDCS paired with unloaded cycling for 20 minutes. Stimulation was administered over the left M1 cortex (2.5 mA; anode over C3/cathode over FP2). Gait spatiotemporal parameters were assessed using a wearable inertial sensor (10-meter and 2-minute walking tests). Measurements were collected at baseline, end of tDCS intervention, and 4-week postintervention to test for duration of any benefits. RESULTS A total of 15 participants completed the study, nine in the active and six in the sham condition. The active and sham groups were matched according to gender (50% vs. 40% female), neurologic disability (median EDSS 5.5 vs. 5), and age (mean 52.1 ± 12.9 vs. 53.7 ± 9.8 years). The active group had a significantly greater increase in gait speed (0.87 vs. 1.20 m/s, p < 0.001) and distance covered during the 2-minute walking test (118.53 vs. 133.06 m, p < 0.001) at intervention end compared to baseline. At 4-week follow-up, these improvements were maintained (baseline vs. follow-up: gait speed 0.87 vs. 1.18 m/s, p < 0.001; distance traveled 118.53 vs. 143.82 m, p < 0.001). INTERPRETATION Multiple sessions of tDCS paired with aerobic exercise lead to cumulative and persisting improvements in walking and endurance in patients with MS.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, NYU Langone Health, New York, NY, USA.,Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Claire Choi
- Department of Medicine, SUNY Downstate, New York, NY, USA
| | - Michael T Shaw
- Department of Psychology, Binghamton University, New York, NY, USA
| | - Giancarlo Coghe
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lauren Krupp
- Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Marilyn Moffat
- Department of Physical Therapy, New York University, New York, NY, USA
| | - Eleonora Cocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Leigh Charvet
- Department of Neurology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
30
|
Prochazkova M, Tintera J, Spanhelova S, Prokopiusova T, Rydlo J, Pavlikova M, Prochazka A, Rasova K. Brain activity changes following neuroproprioceptive "facilitation, inhibition" physiotherapy in multiple sclerosis: a parallel group randomized comparison of two approaches. Eur J Phys Rehabil Med 2020; 57:356-365. [PMID: 32935954 DOI: 10.23736/s1973-9087.20.06336-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Imaging methods bring new possibilities for describing the brain plasticity processes that underly the improvement of clinical function after physiotherapy in people with multiple sclerosis (pwMS). Although these processes have been described mainly in connection with task-oriented physiotherapy and aerobic training, they have not been properly verified in neuroproprioceptive "facilitation, inhibition" (facilitation) approaches. AIM The study determined whether facilitation physiotherapy could enhance brain plasticity, compared two facilitation methods and looked for any relation to clinical improvement in pwMS. DESIGN The study was designed as parallel group randomized comparison of two kinds of physiotherapeutic interventions referred to healthy controls. SETTING Thirty-eight outpatients were involved in the study. POPULATION The study had 80 participants (38 pwMS and 42 healthy controls). METHODS PwMS were divided into two groups and underwent a two-month physiotherapy program: Vojta reflex locomotion (VRL) or Motor program activating therapy (MPAT), (1 hour, twice a week). Functional magnetic resonance imaging (fMRI) and clinical examination was performed before and after therapy. Healthy controls underwent one fMRI examination. RESULTS Physiotherapy in pwMS leads to extension of brain activity in specific brain areas (cerebellum, supplementary motor areas and premotor areas) in connection with the improvement of the clinical status of individual patients after therapy (P=0.05). Greater changes (P=0.001) were registered after MPAT than after VRL. The extension of activation was a shift to the examined activation of healthy controls, whose activation was higher in the cerebellum and secondary visual area (P=0.01). CONCLUSIONS Neuroproprioceptive "facilitation, inhibition" physiotherapy may enhance brain activity and could involve processes connected with the processing of motion activation. CLINICAL REHABILITATION IMPACT The study showed that facilitation approach can modulate brain activity. This could be useful for developing of effective physiotherapeutic treatment in MS.
Collapse
Affiliation(s)
- Marie Prochazkova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Tintera
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Sarka Spanhelova
- Department of Rehabilitation, Motol Faculty Hospital, Prague, Czech Republic
| | - Terezie Prokopiusova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Rydlo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marketa Pavlikova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Antonin Prochazka
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Rasova
- Department of Rehabilitation Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic -
| |
Collapse
|
31
|
Naser Moghadasi A. The role of the brain in the treatment of multiple sclerosis as a connectomopathy. Med Hypotheses 2020; 143:110090. [PMID: 32679428 DOI: 10.1016/j.mehy.2020.110090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/18/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) causing a variety of symptoms. Although MS is recognized by the demyelinating process, the axonal injury can occur from the start of the disease and lead to neurodegenerative process in the disease. Although MS appears to damage the brain locally, the progressive and neurodegenerative nature of the disease indicate the general and global brain damage. Various studies have indicated this global damage at all areas of white and gray matter. Moreover, the earlier stages of mentioned disease can affect the structural and functional brain connections. Demyelinating lesions, which are local at first glance, lead to a global damage to the functional connections of the brain. Therefore, it seems that the brain network or brain connectome are broadly affected by this disease; therefore, MS can be referred as a connectomopathy. The drugs used in this disease all seek to suppress or regulate the immune system, and the human brain has always been considered as a therapeutic target. However, if the brain is generally involved in the disease, so the treatment should be general. In fact, the treatment process should target the connectomopathy. One of the methods that can be used to achieve the mentioned goal is attending to the role of the brain in its treatment.
Collapse
Affiliation(s)
- Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Prosperini L, Di Filippo M. Beyond clinical changes: Rehabilitation-induced neuroplasticity in MS. Mult Scler 2020; 25:1348-1362. [PMID: 31469359 DOI: 10.1177/1352458519846096] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neural plasticity represents the substrate by which the damaged central nervous system (CNS) re-learns lost behaviors in response to rehabilitation. In persons with multiple sclerosis (MS), rehabilitation can therefore exploit the potential of neural plasticity to restore CNS functions beyond the spontaneous mechanisms of recovery from MS-related damage. METHODS Here, we reviewed the currently available evidence on the occurrence of mechanisms of structural and functional plasticity following rehabilitation, motor, and/or cognitive training. We presented both data gained from basic laboratory research on animal models and data on persons with MS obtained by advanced magnetic resonance imaging (MRI) techniques. RESULTS Studies on physical and environmental enrichment in experimental MS models showed beneficial effects mediated by both immune modulation and activity-dependent plasticity, lowering tissue destruction and restoring of CNS network function. Translational researches in MS people demonstrated structural and/or functional MRI changes after various interventions, but their heterogeneity and small sample sizes (5-42 patients) raise concerns about the interpretation and generalization of the obtained results. DISCUSSION We highlighted the limitations of published studies, focusing on the knowledge gaps to be filled in terms of neuropathological correlations between changes detected in animal models and changes detected in vivo by neuroimaging.
Collapse
Affiliation(s)
- Luca Prosperini
- Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | | |
Collapse
|
33
|
García-Alba J, Rubio-Valdehita S, Sánchez MJ, García AIM, Esteba-Castillo S, Gómez-Caminero M. Cognitive training in adults with intellectual disability: pilot study applying a cognitive tele-rehabilitation program. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2020; 68:301-308. [PMID: 35602993 PMCID: PMC9122373 DOI: 10.1080/20473869.2020.1764242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION This pilot study analyzes the effect of a cognitive training program in adults with intellectual disability (ID). METHOD Twenty subjects (mean age 52.7 ± 9.77 years) with mild and moderate ID were divided in control and experimental group. Only the experimental group received the training program. This program was applied through the GNPT® (Guttmann, NeuroPersonalTrainer®) platform for people with ID. RESULTS The results revealed a significant improvement in the Kaufman Brief Intelligence Test-2 scores (Matrices subtest) in the experimental group [Z = 2.12; p = .03] after the intervention, indicating an enhancement in fluid ability due to effect of cognitive training program. CONCLUSION Findings provide evidence of the importance of applying these programs in a systematized way in adults with ID.
Collapse
Affiliation(s)
- Javier García-Alba
- Research and Psychology in Education Department, Complutense University of Madrid, Madrid, Spain
| | - Susana Rubio-Valdehita
- Department of Social, Work and Differential Psychology, Complutense University of Madrid, Madrid, Spain
| | - M. Julia Sánchez
- Psychology Department, Juan XXIII Roncalli Foundation, Madrid, Spain
| | - Amelia I. M. García
- Department of Social, Work and Differential Psychology, Complutense University of Madrid, Madrid, Spain
| | - Susanna Esteba-Castillo
- Specialized Department in Mental Health and Intellectual Disability, Parc Hospitalari Martí I Julia, Girona, Spain
| | | |
Collapse
|
34
|
Péran P, Nemmi F, Dutilleul C, Finamore L, Falletta Caravasso C, Troisi E, Iosa M, Sabatini U, Grazia Grasso M. Neuroplasticity and brain reorganization associated with positive outcomes of multidisciplinary rehabilitation in progressive multiple sclerosis: A fMRI study. Mult Scler Relat Disord 2020; 42:102127. [PMID: 32438326 DOI: 10.1016/j.msard.2020.102127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/06/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is characterized by a range of symptoms, including motor, sensorimotor and cognitive impairments, that limit the quality of life. A multidisciplinary rehabilitation approach in people affected by multiple sclerosis was recently reported to improve the functional abilities of MS patients in daily activities. The purpose of the study was to assess the effect of multidisciplinary rehabilitation on the whole brain of MS patients by means of functional magnetic resonance imaging (fMRI). METHODS Thirty individuals affected by MS (49.9 ± 12.1 years; disease duration: 16.0 ± 8.5 years) with a medium-high severity of disease were enrolled. The fMRI examination assessed a range of action-related tasks involving passive movement, mental simulation of action and miming of action triggered by external stimuli, such as object photography. The three tasks were performed using each arm separately. The fMRI acquisitions were performed at T1 (inclusion in the study), T2 (3 months later, at the start of rehabilitation) and T3 (after 3 months of multidisciplinary rehabilitation). RESULTS The fMRI results revealed a significant reduction in the activity of brain areas related to task-specific networks as well as the activation of cerebral regions not usually involved in task-specific related network, such as the medial prefrontal area. CONCLUSIONS The effectiveness of multidisciplinary rehabilitation on activity and participation has been established in previous studies. Our study sheds new light on the effect of such treatment on brain reorganization.
Collapse
Affiliation(s)
- Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; Santa Lucia Foundation IRCCS, Rome, Italy
| | - Charlotte Dutilleul
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Licia Finamore
- Santa Lucia Foundation IRCCS, Rome, Italy; Neurology Department, Cittadella Hospital, Padua, Italy
| | | | | | - Marco Iosa
- Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Umberto Sabatini
- Santa Lucia Foundation IRCCS, Rome, Italy; Neuroradiology Unit, University "Magna Graecia", Catanzaro, Italy
| | | |
Collapse
|
35
|
Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat Rev Neurol 2020; 16:319-332. [PMID: 32372033 DOI: 10.1038/s41582-020-0355-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 01/19/2023]
Abstract
Cognitive impairment is a common and devastating manifestation of multiple sclerosis (MS). Although disease-modifying therapies have been efficacious for reducing relapse rates in MS, such treatments are ineffective for treating cognitive dysfunction. Alternative treatment approaches for mitigating cognitive problems are greatly needed in this population. To date, cognitive rehabilitation and exercise training have been identified as possible candidates for treating MS-related cognitive impairment; however, cognitive dysfunction is still often considered to be poorly managed in patients with MS. This Review provides a comprehensive overview of recent developments in the treatment and management of cognitive impairment in people with MS. We describe the theoretical rationales, current states of the science, field-wide challenges and recent advances in cognitive rehabilitation and exercise training for treating MS-related cognitive impairment. We also discuss future directions for research into the treatment of cognitive impairment in MS that should set the stage for the inclusion of cognitive rehabilitation and exercise training into clinical practice within the next decade.
Collapse
|
36
|
Nasios G, Bakirtzis C, Messinis L. Cognitive Impairment and Brain Reorganization in MS: Underlying Mechanisms and the Role of Neurorehabilitation. Front Neurol 2020; 11:147. [PMID: 32210905 PMCID: PMC7068711 DOI: 10.3389/fneur.2020.00147] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, inflammatory, and degenerative disease of the central nervous system (CNS) that affects both white and gray matter. Various mechanisms throughout its course, mainly regarding gray matter lesions and brain atrophy, result in cognitive network dysfunction and can cause clinically significant cognitive impairment in roughly half the persons living with MS. Altered cognition is responsible for many negative aspects of patients' lives, independently of physical disability, such as higher unemployment and divorce rates, reduced social activities, and an overall decrease in quality of life. Despite its devastating impact it is not included in clinical ratings and decision making in the way it should be. It is interesting that only half the persons with MS exhibit cognitive dysfunction, as this implies that the other half remain cognitively intact. It appears that a dynamic balance between brain destruction and brain reorganization is taking place. This balance acts in favor of keeping brain systems functioning effectively, but this is not so in all cases, and the effect does not last forever. When these systems collapse, functional brain reorganization is not effective anymore, and clinically apparent impairments are evident. It is therefore important to reveal which factors could make provision for the subpopulation of patients in whom cognitive impairment occurs. Even if we manage to detect this subpopulation earlier, effective pharmaceutical treatments will still be lacking. Nevertheless, recent evidence shows that cognitive rehabilitation and neuromodulation, using non-invasive techniques such as transcranial magnetic or direct current stimulation, could be effective in cognitively impaired patients with MS. In this Mini Review, we discuss the mechanisms underlying cognitive impairment in MS. We also focus on mechanisms of reorganization of cognitive networks, which occur throughout the disease course. Finally, we review theoretical and practical issues of neurorehabilitation and neuromodulation for cognition in MS as well as factors that influence them and prevent them from being widely applied in clinical settings.
Collapse
Affiliation(s)
- Grigorios Nasios
- Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christos Bakirtzis
- Department of Neurology, The Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Messinis
- Neuropsychology Section, Departments of Neurology and Psychiatry, University of Patras Medical School, Patras, Greece
| |
Collapse
|
37
|
Efficacy of inpatient personalized multidisciplinary rehabilitation in multiple sclerosis: behavioural and functional imaging results. J Neurol 2020; 267:1744-1753. [DOI: 10.1007/s00415-020-09768-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/23/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023]
|
38
|
Castelli L, De Giglio L, Haggiag S, Traini A, De Luca F, Ruggieri S, Prosperini L. Premorbid functional reserve modulates the effect of rehabilitation in multiple sclerosis. Neurol Sci 2020; 41:1251-1257. [PMID: 31919697 DOI: 10.1007/s10072-019-04237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Premorbid physically and intellectually enriching lifestyles have increasingly been recognized as able to mitigate the risk of disease-related disability in patients with multiple sclerosis (MS). OBJECTIVE To explore if premorbid physical activity, cognitive reserve and trait personality act as proxies for functional reserve that contributes to rehabilitation outcome. METHODS We recruited all patients previously enrolled in two pilot trials investigating the effect of home-based video game training in improving balance (Study 1) and attention (Study 2) for additional assessments with the Historical Leisure Activity Questionnaire (HLAQ; a proxy for premorbid physical activity), Cognitive Reserve Index Questionnaire (CRIQ), and Temperament and Character Inventory (TCI). Hierarchical logistic regression (HLR) analyses tested the association of HLAQ, CRIQ, and TCI with training effect on balance (static posturography) and on attention (Symbol Digit Modalities Test). RESULTS We identified 94% (34/36) and 74% (26/35) of patients participating at the original Study 1 and Study 2, respectively. HLR analyses showed an exclusive "intra-modal" modulation of rehabilitation outcome by functional reserve, given that (1) larger training effect on balance was associated with higher HLAQ (OR = 2.03, p = 0.031); (2) larger training effect on attention was associated with higher CRIQ (OR = 1.27, p = 0.033). Furthermore, we found specific personality traits associated with (1) greater training effect on balance (self-directedness; OR = 1.40, p = 0.051) and lower training effect on attention (harm avoidance; OR = 0.66, p = 0.075). CONCLUSION We hypothesize that premorbid physical and intellectual activities not only act as a buffer for limiting the MS-related damage but also as functional reserve that can be retrieved by task-oriented training to promote recovery through rehabilitation.
Collapse
Affiliation(s)
- Letizia Castelli
- IRCCS Don Carlo Gnocchi Foundation, Piazzale Morandi 6, 20121, Milan, Italy
| | - Laura De Giglio
- S. Filippo Neri Hospital, Via G. Martinotti 20, 00135, Roma, Italy.,Department of Human Neuroscience, Sapienza University, viale dell'Università 30, 00185, Rome, Italy
| | - Shalom Haggiag
- S. Camillo-Forlanini Hospital, C.ne Gianicolense 87, 00152, Rome, Italy
| | - Arianna Traini
- Physical Therapy Unit, S. Andrea Hospital, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Francesca De Luca
- Department of Psychology, Sapienza University, Viale dell'Università 30, 00185, Rome, Italy
| | - Serena Ruggieri
- S. Camillo-Forlanini Hospital, C.ne Gianicolense 87, 00152, Rome, Italy
| | - Luca Prosperini
- S. Camillo-Forlanini Hospital, C.ne Gianicolense 87, 00152, Rome, Italy.
| |
Collapse
|
39
|
Huang MH, Fry D, Doyle L, Burnham A, Houston N, Shea K, Smith H, Wiske L, Goode J, Khitrik E, Kolanda M. Effects of inspiratory muscle training in advanced multiple sclerosis. Mult Scler Relat Disord 2020; 37:101492. [DOI: 10.1016/j.msard.2019.101492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022]
|
40
|
Brandstadter R, Sand IK, Sumowski JF. Beyond rehabilitation: A prevention model of reserve and brain maintenance in multiple sclerosis. Mult Scler 2019; 25:1372-1378. [PMID: 31469354 PMCID: PMC6719722 DOI: 10.1177/1352458519856847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Persons with multiple sclerosis (MS) experience cognitive and physical decline despite more effective disease-modifying therapies (DMTs), and symptomatic treatments currently have limited efficacy. The best treatment of MS disability may, therefore, be prevention of decline. Here, we present a working model of reserve and brain maintenance, with a focus on modifiable risk and protective factors. At disease onset, patients have varying degrees of reserve, broadly conceptualized as the dynamic availability of cerebral resources to support functional capacity. A clinical focus on prevention aims to minimize factors that deplete reserve (e.g. disease burden, comorbidities) and maximize factors that preserve reserve (e.g. DMTs, cardiovascular health). We review evidence for cardiovascular health, diet, and sleep as three potentially important modifiable factors that may modulate cerebral reserve generally, but also in disease-specific ways. We frame the brain as a limited capacity system in which inefficient usage of available cerebral capacity (reserve) leads to or exacerbates functional deficits, and we provide examples of factors that may lead to such inefficiency (e.g. poor mood, obesity, cognitive-motor dual-tasking). Finally, we discuss the challenges and responsibilities of MS neurologists and patients in pursuing comprehensive brain maintenance as a preventive approach.
Collapse
Affiliation(s)
- Rachel Brandstadter
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| | - James F. Sumowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corinne Goldsmith Dickinson Center for MS, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
41
|
Feys P, Straudi S. Beyond therapists: Technology-aided physical MS rehabilitation delivery. Mult Scler 2019; 25:1387-1393. [DOI: 10.1177/1352458519848968] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last decade, rehabilitation technology has been developed, investigated, and entered specialized clinical settings. In this chapter, we first discuss the potential of rehabilitation technology to support the achievement of key factors in motor recovery, such as delivering massed practice with good movement quality but also question task-specificity and cognitive motor control mechanisms. Second, we discuss available technology-supported rehabilitation methods for improving gait, balance and fitness, and upper limb function. Finally, we discuss considerations in relation to the professional workforce in order to deliver optimal rehabilitation.
Collapse
Affiliation(s)
- Peter Feys
- REVAL/BIOMED, Faculty of Rehabilitation Sciences, UHasselt, Diepenbeek, Belgium
| | - Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Ferrara, Italy
| |
Collapse
|
42
|
Verhelst H, Giraldo D, Vander Linden C, Vingerhoets G, Jeurissen B, Caeyenberghs K. Cognitive Training in Young Patients With Traumatic Brain Injury: A Fixel-Based Analysis. Neurorehabil Neural Repair 2019; 33:813-824. [DOI: 10.1177/1545968319868720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background. Traumatic brain injury (TBI) is associated with altered white matter organization and impaired cognitive functioning. Objective. We aimed to investigate changes in white matter and cognitive functioning following computerized cognitive training. Methods. Sixteen adolescents with moderate-to-severe TBI (age 15.6 ± 1.8 years, 1.2-4.6 years postinjury) completed the 8-week BrainGames program and diffusion weighted imaging (DWI) and cognitive assessment at time point 1 (before training) and time point 2 (after training). Sixteen healthy controls (HC) (age 15.6 ± 1.8 years) completed DWI assessment at time point 1 and cognitive assessment at time point 1 and 2. Fixel-based analyses were used to examine fractional anisotropy (FA), mean diffusivity (MD), and fiber cross-section (FC) on a whole brain level and in tracts of interest. Results. Patients with TBI showed cognitive impairments and extensive areas with decreased FA and increased MD together with an increase in FC in the body of the corpus callosum and left superior longitudinal fasciculus (SLF) at time point 1. Patients improved significantly on the inhibition measure at time point 2, whereas the HC group remained unchanged. No training-induced changes were observed on the group level in diffusion metrics. Exploratory correlations were found between improvements on verbal working memory and reduced MD of the left SLF and between increased performance on an information processing speed task and increased FA of the right precentral gyrus. Conclusions. Results are indicative of positive effects of BrainGames on cognitive functioning and provide preliminary evidence for neuroplasticity associated with cognitive improvements following cognitive intervention in TBI.
Collapse
Affiliation(s)
| | - Diana Giraldo
- University of Antwerp, Antwerp, Belgium
- Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
43
|
Bonzano L, Pedullà L, Tacchino A, Brichetto G, Battaglia MA, Mancardi GL, Bove M. Upper limb motor training based on task-oriented exercises induces functional brain reorganization in patients with multiple sclerosis. Neuroscience 2019; 410:150-159. [DOI: 10.1016/j.neuroscience.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
44
|
Aguirre N, Cruz-Gómez ÁJ, Miró-Padilla A, Bueichekú E, Broseta Torres R, Ávila C, Sanchis-Segura C, Forn C. Repeated Working Memory Training Improves Task Performance and Neural Efficiency in Multiple Sclerosis Patients and Healthy Controls. Mult Scler Int 2019; 2019:2657902. [PMID: 31139470 PMCID: PMC6500632 DOI: 10.1155/2019/2657902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/OBJECTIVE To explore the effectiveness of a specific working memory (WM) training program in MS patients and healthy controls (HC). METHOD 29 MS patients and 29 matched HC were enrolled in the study. MS and HC were randomly split into two groups: nontraining groups (15HC/14 MS) and training groups (14 HC/15 MS). Training groups underwent adaptive n-back training (60 min/day; 4 days). Functional magnetic resonance imaging (fMRI) was used to monitor brain activity during n-back performance (conditions: 0-back, 2-back, and 3-back) at 3 time points: (1) baseline, (2) post-training (+7days), and (3) follow-up (+35days). RESULTS In post-training and follow-up fMRI sessions, trained groups (HC and MS patients) exhibited significant reaction time (RT) reductions and increases in Correct Responses (CRs) during 2-back and 3-back performance. This improvement of task performance was accompanied by a decrease in brain activation in the WM frontoparietal network. The two effects were significantly correlated. CONCLUSIONS After WM training, both cognitively preserved MS patients and HC participants showed task performance improvement made possible by neuroplastic processes that enhanced neural efficiency.
Collapse
Affiliation(s)
- Naiara Aguirre
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | - Álvaro Javier Cruz-Gómez
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | - Anna Miró-Padilla
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | - Elisenda Bueichekú
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | | | - César Ávila
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | - Carla Sanchis-Segura
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| | - Cristina Forn
- Universitat Jaume I. Departament de Psicología Bàsica, Clínica i Psicobiología, Castelló de la Plana 12006, Spain
| |
Collapse
|
45
|
Kalatha T, Arnaoutoglou M, Koukoulidis T, Hatzifilippou E, Bouras E, Baloyannis S, Koutsouraki E. Does cognitive dysfunction correlate with neurofilament light polypeptide levels in the CSF of patients with multiple sclerosis? J Int Med Res 2019; 47:2187-2198. [PMID: 30982375 PMCID: PMC6567748 DOI: 10.1177/0300060519840550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate whether neurofilament light polypeptide (NfL) level in cerebrospinal fluid (CSF), currently a prognostic biomarker of neurodegeneration in patients with multiple sclerosis (MS), may be a potential biomarker of cognitive dysfunction in MS. Methods This observational case–control study included patients with MS. CSF levels of NfL were determined using enzyme-linked immunosorbent assay. Cognitive function was measured with the Brief International Cognitive Assessment for MS (BICAMS) battery and Paced Auditory Serial Addition Test (PASAT3), standardized to the Greek population. Results Of 39 patients enrolled (aged 42.7 ± 13.6 years), 36% were classified as cognitively impaired according to BICAMS z-scores (–0.34 ± 1.13). Relapsing MS was significantly better than progressive forms regarding BICAMS z-score (mean difference [MD] 1.39; 95% confidence interval [CI] 0.54, 2.24), Symbol Digit Modality Test score (MD 1.73; 95% CI 0.46, 3.0) and Greek Verbal Learning Test (MD 1.77; 95% CI 0.82, 2.72). An inversely proportional association between CSF NfL levels and BICAMS z-scores was found in progressive forms of MS (rp = –0.944). Conclusions This study provides preliminary evidence for an association between CSF NfL levels and cognition in progressive forms of MS, which requires validation in larger samples.
Collapse
Affiliation(s)
- Thaleia Kalatha
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Koukoulidis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Hatzifilippou
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanouil Bouras
- 2 Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Baloyannis
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Effrosyni Koutsouraki
- 1 First Neurology Clinic, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
46
|
Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Neuroimage 2019; 190:32-45. [DOI: 10.1016/j.neuroimage.2017.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 02/07/2023] Open
|
47
|
Fling BW, Martini DN, Zeeboer E, Hildebrand A, Cameron M. Neuroplasticity of the sensorimotor neural network associated with walking aid training in people with multiple sclerosis. Mult Scler Relat Disord 2019; 31:1-4. [PMID: 30875527 DOI: 10.1016/j.msard.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
Abstract
The objective of this pilot study was to identify neural descriptors and correlates of participation in a multicomponent walking aid program, the Assistive Device Selection, Training and Education Program (ADSTEP), in people with multiple sclerosis, as reflected by resting state functional MRI. Fourteen people with multiple sclerosis who used a walking aid at baseline and reported falling at least once in the prior year were recruited from the multiple sclerosis clinic in a Veterans Affairs and the surrounding community to participate in a trial of ADSTEP, a multicomponent program of walking aid selection, fitting and six weekly progressive task-oriented walking aid training sessions and undergo resting state functional brain MRI. The functional MRI was performed at baseline and at program completion to assess for changes in neural connectivity of the sensorimotor neural network. Compared to baseline, following ADSTEP participation, functional connectivity between the supplementary motor areas and both the primary somatosensory cortices and the putamen was increased; whereas functional connectivity between the supplementary motor areas and the cerebellum was decreased. This study provides preliminary support for supraspinal sensorimotor neuroplasticity in response to rehabilitation interventions such as task-oriented walking aid training, suggests specific neural targets for future mobility interventions, and supports the need for full-scale randomized controlled trials in this area.
Collapse
Affiliation(s)
- Brett W Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA; Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO, USA.
| | - Douglas N Martini
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Eline Zeeboer
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | | | - Michelle Cameron
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
48
|
Sandroff BM, DeLuca J. Will behavioral treatments for cognitive impairment in multiple sclerosis become standards-of-care? Int J Psychophysiol 2019; 154:67-79. [PMID: 30825477 DOI: 10.1016/j.ijpsycho.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023]
Abstract
Cognitive impairment is common and debilitating in persons with multiple sclerosis (MS), and further is poorly-managed by pharmacotherapy. Cognitive rehabilitation and exercise training have been identified as promising behavioral approaches for managing MS-related cognitive impairment based on systematic reviews and meta-analyses. However, each body of literature is associated with similar sets of methodological shortcomings, as has been identified by periodic systematic reviews and meta-analyses. Thus, there is little generalizability or transportability research supporting either behavioral approach for managing cognitive dysfunction in this population under real-world conditions (i.e., as a standard-of-care). To that end, this paper aims to catalyze the advancement of cognitive rehabilitation and exercise training research in MS, respectively, towards the successful implementation of generalizability/transportability trials. This first involves critical examinations of the respective cognitive rehabilitation and exercise training literatures in MS from a chronological perspective, with particular emphasis on how the fields have each evolved in response to systematic reviews and meta-analyses. Accordingly, the current paper then provides a roadmap for harmonizing research in those areas to systematically and efficiently inform the development of generalizability/transportability trials for behavioral approaches to manage MS-related cognitive dysfunction. This involves the recognition of overlapping facilitators and impediments for progress in each field, including considerations for the implementation of neuroimaging. Ultimately, the provision of such a framework aims to shorten the timeline for research to influence clinical practice and improve the lives of cognitively-impaired persons with MS.
Collapse
Affiliation(s)
- Brian M Sandroff
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers Medical School, Newark, NJ, USA
| |
Collapse
|
49
|
Zare L, Baharvand H, Javan M. Trichostatin A Promotes the Conversion of Astrocytes to Oligodendrocyte Progenitors in a Defined Culture Medium. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:286-295. [PMID: 31089363 PMCID: PMC6487402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The generation of oligodendrocyte progenitor cells (OPCs) offers tremendous opportunities for cell replacement therapy in demyelinating diseases such as multiple sclerosis (MS) and spinal cord injury. Recently, the prospect of reprogramming terminally differentiated adult cells towards another mature somatic cell or progenitor cells without an intermediate pluripotent state has been of interest. Trichostatin A is a histone deacetylase inhibitor which opens the chromatin and facilitates the transcription of silence genes. In this study, we have treated human astrocytes line U87 and primary culture of mouse astrocytes with TSA for 12 h, prior their transfer to OPC induction medium. Then we evaluated the morphology and the fate of the treated astrocytes at post-treatment days. Both cell lines acquired OPC morphology and expressed OPC specific markers. Following transfer to differentiation medium, U87-derived iOPCs differentiated to oligodendrocyte like cells and expressed PLP as a mature oligodendrocyte marker. Our results introduced TSA as an inducer for production of OPCs from astrocytes and could be considered a potential way for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran.
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Brain and Cognitive Sciences Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Corresponding author: E-mail:
| |
Collapse
|
50
|
Rocca MA, Preziosa P, Filippi M. Application of advanced MRI techniques to monitor pharmacologic and rehabilitative treatment in multiple sclerosis: current status and future perspectives. Expert Rev Neurother 2018; 19:835-866. [PMID: 30500303 DOI: 10.1080/14737175.2019.1555038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Advances in magnetic resonance imaging (MRI) technology and analyses are improving our understanding of the pathophysiology of multiple sclerosis (MS). Due to their ability to grade the presence of irreversible tissue loss, microstructural tissue abnormalities, metabolic changes and functional plasticity, the application of these techniques is also expanding our knowledge on the efficacy and mechanisms of action of different pharmacological and rehabilitative treatments. Areas covered: This review discusses recent findings derived from the application of advanced MRI techniques to evaluate the structural and functional substrates underlying the effects of pharmacologic and rehabilitative treatments in patients with MS. Current applications as outcome in clinical trials and observational studies, their interpretation and possible pitfalls in their use are discussed. Finally, how these techniques could evolve in the future to improve monitoring of disease progression and treatment response is examined. Expert commentary: The number of treatments currently available for MS is increasing. The application of advanced MRI techniques is providing reliable and specific measures to better understand the targets of different treatments, including neuroprotection, tissue repair, and brain plasticity. This is a fundamental progress to move toward personalized medicine and individual treatment selection.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University , Milan , Italy
| |
Collapse
|