1
|
Sharma R, Raza GS, Sodum N, Walkowiak J, Herzig KH. Effect of hypoxia on GLP-1 secretion - an in vitro study using enteroendocrine STC-1 -cells as a model. Pflugers Arch 2024; 476:1613-1621. [PMID: 39075239 PMCID: PMC11381484 DOI: 10.1007/s00424-024-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland.
| |
Collapse
|
2
|
Ferraz-Bannitz R, Ozturk B, Cummings C, Efthymiou V, Casanova Querol P, Poulos L, Wang H, Navarrete V, Saeed H, Mulla CM, Pan H, Dreyfuss JM, Simonson DC, Sandoval DA, Patti ME. Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia. J Clin Invest 2024; 134:e180157. [PMID: 39264731 PMCID: PMC11527454 DOI: 10.1172/jci180157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUNDBariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1-3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin.METHODSTo identify mediators of disordered metabolism in PBH, we analyzed the plasma metabolome in the fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-Roux-en-Y gastric bypass (post-RYGB) (n = 10), and nonsurgical controls (n = 8).RESULTSIn the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone β-hydroxybutyrate were increased by 30%-80% in PBH versus asymptomatic. Conversely, multiple amino acids (branched-chain amino acids, tryptophan) and polyunsaturated lipids were reduced by 20%-50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced 2- to 10-fold in PBH in the fasting state. Postprandially, plasma serotonin was uniquely increased 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin.CONCLUSIONTogether these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target.FUNDINGNational Institutes of Health (NIH) grant R01-DK121995, NIH grant P30-DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo grant 2018/22111-2.
Collapse
Affiliation(s)
- Rafael Ferraz-Bannitz
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Berkcan Ozturk
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron Cummings
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Vissarion Efthymiou
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Pilar Casanova Querol
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsay Poulos
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hanna Wang
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Valerie Navarrete
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hamayle Saeed
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M. Mulla
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Donald C. Simonson
- Harvard Medical School, Boston, Massachusetts, USA
- Divsion of Endocrinology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Darleen A. Sandoval
- Section of Nutrition, Department of Pediatrics, Division of Endocrinology, Diabetes, and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary-Elizabeth Patti
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
4
|
Mangliar IA, Plante AS, Chabot M, Savard C, Lemieux S, Michaud A, Weisnagel SJ, Camirand Lemyre F, Veilleux A, Morisset AS. GLP-1 response during pregnancy: variations between trimesters and associations with appetite sensations and usual energy intake. Appl Physiol Nutr Metab 2024; 49:428-436. [PMID: 38095168 DOI: 10.1139/apnm-2023-0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Further research is required to understand hormonal regulation of food intake during pregnancy and its association with energy intake. The objectives are to (i) compare postprandial responses of plasma glucagon-like peptide-1 (GLP-1) between trimesters, (ii) compare postprandial appetite sensations between trimesters, and (iii) examine trimester-specific associations between GLP-1 levels, appetite sensations, and usual energy intake. At each trimester, participants (n = 26) consumed a standard test meal following a 12 h fast. Plasma GLP-1 levels were measured by enzyme-linked immunosorbent assay method at fasting and at 30, 60, 120, and 180 min postprandial. A visual analogue scale assessing appetite sensations was completed at fasting and at 15, 30, 45, 60, 90, 120, 150, and 180 min postprandial. Mean energy intake was assessed using three web-based 24 h dietary recalls at each trimester. Lower postprandial GLP-1 responses were observed in the 2nd (p = 0.004) and 3rd trimesters (p < 0.001) compared to the 1st trimester. Greater postprandial sensations of desire to eat, hunger, and prospective food consumption were noted in the 3rd trimester compared to the 1st trimester (p < 0.04, for all). Fasting GLP-1 was negatively associated with fasting appetite sensations (except fullness) at the 2nd trimester (p < 0.02, for all). Postprandially, significant associations were observed for incremental areas under the curve from 0 to 30 min between GLP-1 and fullness at the 2nd (p = 0.01) and 3rd trimesters (p = 0.03). No associations between fasting or postprandial GLP-1 and usual energy intake were observed. Overall, GLP-1 and appetite sensation responses significantly differ between trimesters, but few associations were observed between GLP-1, appetite sensations, and usual energy intake.
Collapse
Affiliation(s)
- Inès Auclair Mangliar
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Anne-Sophie Plante
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Myriam Chabot
- Mathematics Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claudia Savard
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Simone Lemieux
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Andréanne Michaud
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Quebec Heart and Lung Institute, Université Laval, Québec, QC, Canada
| | - S John Weisnagel
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Faculty of Medecine, Université Laval, Québec, QC, Canada
| | - Félix Camirand Lemyre
- Mathematics Department, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Veilleux
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
| | - Anne-Sophie Morisset
- School of Nutrition, Université Laval, Québec, QC, Canada
- Nutrition, Health and Society (NUTRISS) Research Centre, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, Canada
- Endocrinology and Nephrology Unit, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Chong SC, Sukor N, Robert SA, Ng KF, Kamaruddin NA. Fasting and stimulated glucagon-like peptide-1 exhibit a compensatory adaptive response in diabetes and pre-diabetes states: A multi-ethnic comparative study. Front Endocrinol (Lausanne) 2022; 13:961432. [PMID: 36157456 PMCID: PMC9501699 DOI: 10.3389/fendo.2022.961432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 12/26/2022] Open
Abstract
Background Impaired secretion of glucagon-like peptide-1 (GLP-1) among Caucasians contributes to reduced incretin effect in type 2 diabetes mellitus (T2DM) patients. However, studies emanating from East Asia suggested preserved GLP-1 levels in pre-diabetes (pre-DM) and T2DM. We aimed to resolve these conflicting findings by investigating GLP-1 levels during oral glucose tolerance test (OGTT) among Malay, Chinese, and Indian ethnicities with normal glucose tolerance (NGT), pre-DM, and T2DM. The association between total GLP-1 levels, insulin resistance, and insulin sensitivity, and GLP-1 predictors were also analyzed. Methods A total of 174 subjects were divided into NGT (n=58), pre-DM (n=54), and T2DM (n=62). Plasma total GLP-1 concentrations were measured at 0, 30, and 120 min during a 75-g OGTT. Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA of insulin sensitivity (HOMA-IS), and triglyceride-glucose index (TyG) were calculated. Results Total GLP-1 levels at fasting and 30 min were significantly higher in T2DM compared with pre-DM and NGT (27.18 ± 11.56 pmol/L vs. 21.99 ± 10.16 pmol/L vs. 16.24 ± 7.79 pmol/L, p=0.001; and 50.22 ± 18.03 pmol/L vs. 41.05 ± 17.68 pmol/L vs. 31.44 ± 22.59 pmol/L, p<0.001; respectively). Ethnicity was a significant determinant of AUCGLP-1, with the Indians exhibiting higher GLP-1 responses than Chinese and Malays. Indians were the most insulin resistant, whereas Chinese were the most insulin sensitive. The GLP-1 levels were positively correlated with HOMA-IR and TyG but negatively correlated with HOMA-IS. This relationship was evident among Indians who exhibited augmented GLP-1 responses proportionately to their high insulin-resistant states. Conclusion This is the first study that showed GLP-1 responses are augmented as IR states increase. Fasting and post-OGTT GLP-1 levels are raised in T2DM and pre-DM compared to that in NGT. This raises a possibility of an adaptive compensatory response that has not been reported before. Among the three ethnic groups, the Indians has the highest IR and GLP-1 levels supporting the notion of an adaptive compensatory secretion of GLP-1.
Collapse
Affiliation(s)
- Shiau Chin Chong
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Norlela Sukor
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Sarah Anne Robert
- Department of Pharmacy, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| | - Kim Fong Ng
- Department of Cardiology, Hospital Sultanah Aminah Johor Bahru, Johor, Malaysia
| | - Nor Azmi Kamaruddin
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Qin W, Ying W, Hamaker B, Zhang G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr Rev Food Sci Food Saf 2021; 20:5173-5196. [PMID: 34350681 DOI: 10.1111/1541-4337.12808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Dysregulated glucose metabolism is associated with many chronic diseases such as obesity and type 2 diabetes mellitus (T2DM), and strategies to restore and maintain glucose homeostasis are essential to health. The incretin hormone of glucagon-like peptide-1 (GLP-1) is known to play a critical role in regulating glucose homeostasis and dietary nutrients are the primary stimuli to the release of intestinal GLP-1. However, the GLP-1 producing enteroendocrine L-cells are mainly distributed in the distal region of the gastrointestinal tract where there are almost no nutrients to stimulate the secretion of GLP-1 under normal situations. Thus, a dietary strategy to sustain the release of GLP-1 was proposed, and the slow digestion property and dipeptidyl peptidase IV (DPP-IV) inhibitory activity of food components, approaches to reduce the rate of food digestion, and mechanisms to sustain the release of GLP-1 were reviewed. A slow digestion-oriented dietary approach through encapsulation of nutrients, incorporation of viscous dietary fibers, and enzyme inhibitors of phytochemicals in a designed whole food matrix will be implemented to efficiently reduce the digestion rate of food nutrients, potentiate their distal deposition and a sustained secretion of GLP-1, which will be beneficial to improved glucose homeostasis and health.
Collapse
Affiliation(s)
- Wangyan Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wang Ying
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bruce Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
8
|
Circulating GLP-1 Levels as a Potential Indicator of Metabolic Syndrome Risk in Adult Women. Nutrients 2021; 13:nu13030865. [PMID: 33800785 PMCID: PMC8001839 DOI: 10.3390/nu13030865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone, plays an important role in regulating glucose homeostasis. In this study, the applicability of circulating GLP-1 levels as an early indicator of metabolic syndrome (MetS) risk was examined. Women without diagnosed diseases were grouped according to their number of MetS risk factors (MetS RFs) (no RFs as Super-healthy, n = 61; one or two RFs as MetS risk carriers, n = 60; 3 ≤ RFs as MetS, n = 19). The circulating GLP-1 levels and homeostasis model assessment insulin resistance (HOMA-IR) scores were significantly higher in the MetS group than in the other two groups. The GLP-1 levels correlated positively with adiposity, HOMA-IR, blood pressure, and high sensitivity C-reactive protein (hs-CRP), but not with fasting glucose and lipid profiles, whose significances were maintained after adjustments for age, smoking and drinking habits, menopausal status, and total calorie intake. The GLP-1 levels also increased proportionally with the number of MetS RFs. In the MetS group, the GLP-1 levels were much higher in individuals with obesity (body mass index ≥ 25 kg/m2). In conclusion, the circulating GLP-1 level may be applicable as a potential early indicator of MetS risk in women without diagnosed diseases. Further study with a large population is needed to confirm the conclusion.
Collapse
|
9
|
Diet-induced obesity enhances postprandial glucagon-like peptide-1 secretion in Wistar rats, but not in diabetic Goto-Kakizaki rats. Br J Nutr 2020; 126:518-530. [PMID: 33143769 DOI: 10.1017/s000711452000433x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is postprandially secreted from enteroendocrine L-cells and enhances insulin secretion. Currently, it is still controversial whether postprandial GLP-1 responses are altered in obesity and diabetes. To address the issue and to find out possible factors related, we compared postprandial GLP-1 responses in normal rats and in diabetic rats chronically fed an obesogenic diet. Male Wistar rats and diabetic Goto-Kakizaki (GK) rats were fed either a control diet or a high-fat/high-sucrose (HFS, 30 % fat and 40 % sucrose) diet for 26 weeks. Meal tolerance tests were performed for monitoring postprandial responses after a liquid diet administration (62·76 kJ/kg body weight) every 4 or 8 weeks. Postprandial glucose, GLP-1 and insulin responses in Wistar rats fed the HFS diet (WH) were higher than Wistar rats fed the control diet (WC). Although GK rats fed the HFS diet (GH) had higher glycaemic responses than GK rats fed the control diet (GC), these groups had similar postprandial GLP-1 and insulin responses throughout the study. Jejunal and ileal GLP-1 contents were increased by the HFS diet only in Wistar rats. Furthermore, mRNA expression levels of fatty acid receptors (Ffar1) in the jejunum were mildly (P = 0·053) increased by the HFS diet in Wistar rats, but not in GK rats. These results demonstrate that postprandial GLP-1 responses are enhanced under an obesogenic status in normal rats, but not in diabetic rats. Failure of adaptive enhancement of GLP-1 response in GK rats could be partly responsible for the development of glucose intolerance.
Collapse
|
10
|
van Sloun B, Goossens GH, Erdos B, Lenz M, van Riel N, Arts ICW. The Impact of Amino Acids on Postprandial Glucose and Insulin Kinetics in Humans: A Quantitative Overview. Nutrients 2020; 12:E3211. [PMID: 33096658 PMCID: PMC7594055 DOI: 10.3390/nu12103211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Different amino acids (AAs) may exert distinct effects on postprandial glucose and insulin concentrations. A quantitative comparison of the effects of AAs on glucose and insulin kinetics in humans is currently lacking. PubMed was queried to identify intervention studies reporting glucose and insulin concentrations after acute ingestion and/or intravenous infusion of AAs in healthy adults and those living with obesity and/or type 2 diabetes (T2DM). The systematic literature search identified 55 studies that examined the effects of l-leucine, l-isoleucine, l-alanine, l-glutamine, l-arginine, l-lysine, glycine, l-proline, l-phenylalanine, l-glutamate, branched-chain AAs (i.e., l-leucine, l-isoleucine, and l-valine), and multiple individual l-AAs on glucose and insulin concentrations. Oral ingestion of most individual AAs induced an insulin response, but did not alter glucose concentrations in healthy participants. Specific AAs (i.e., leucine and isoleucine) co-ingested with glucose exerted a synergistic effect on the postprandial insulin response and attenuated the glucose response compared to glucose intake alone in healthy participants. Oral AA ingestion as well as intravenous AA infusion was able to stimulate an insulin response and decrease glucose concentrations in T2DM and obese individuals. The extracted information is publicly available and can serve multiple purposes such as computational modeling.
Collapse
Affiliation(s)
- Bart van Sloun
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Gijs H. Goossens
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Balazs Erdos
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Michael Lenz
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, D 55099 Mainz, Germany;
- Preventive Cardiology and Preventive Medicine-Centre for Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, D 55131 Mainz, Germany
| | - Natal van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Ilja C. W. Arts
- TiFN, 6700 AN Wageningen, The Netherlands; (G.H.G.); (B.E.); (I.C.W.A.)
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Xu Y, Curtasu MV, Bach Knudsen KE, Hedemann MS, Theil PK, Lærke HN. Dietary fibre and protein do not synergistically influence insulin, metabolic or inflammatory biomarkers in young obese Göttingen minipigs. Br J Nutr 2020; 125:1-13. [PMID: 32778179 DOI: 10.1017/s0007114520003141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of dietary fibre (DF) and protein on insulin response, lipidaemia and inflammatory biomarkers were studied in a model experiment with juvenile obese Göttingen minipigs. After 20 weeks feeding on a high-fat fructose-rich low-DF diet, forty-three 30-week-old minipigs (31·3 (sem 4·0) kg body weight) were allocated to low- or high-DF and -protein diets for 8 weeks in a 2 × 2 factorial design. High DF contents decreased (P = 0·006) while high protein increased (P < 0·001) the daily gain. High protein contents increased fasting plasma concentrations of glucose (P = 0·008), NEFA (P = 0·015), ghrelin (P = 0·008) and non-fasting LDL:HDL ratios (P = 0·015). High DF increased ghrelin (P = 0·036) and C-peptide levels (P = 0·011) in the non-fasting state. High protein increased the gene expression of fructose-bisphosphatase 1 in liver tissue (P = 0·043), whereas DF decreased fatty acid synthase expression in adipose tissue (P = 0·035). Interactions between DF and protein level were observed in the expression of leptin receptor in adipose tissue (P = 0·031) and of PPARγ in muscle (P = 0·018) and adipose tissue (P = 0·004). In conclusion, high DF intake reduced weight gain and had potential benefit on β-cell secretory function, but without effect on the lipid profile in this young obese model. High dietary protein by supplementing with whey protein did not improve insulin sensitivity or lipidaemia, and combining high DF with high protein did not alleviate the risk of metabolic abnormalities.
Collapse
Affiliation(s)
- Yetong Xu
- Department of Animal Science, Aarhus University, DK-8830Tjele, Denmark
| | | | | | | | | | | |
Collapse
|
12
|
Dunislawska A, Siwek M, Slawinska A, Lepczynski A, Herosimczyk A, Kolodziejski PA, Bednarczyk M. Metabolic Gene Expression in the Muscle and Blood Parameters of Broiler Chickens Stimulated In Ovo with Synbiotics. Animals (Basel) 2020; 10:ani10040687. [PMID: 32326487 PMCID: PMC7222801 DOI: 10.3390/ani10040687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Poultry production plays a major role in providing meat products to global markets. Hence, there is a continued interest of researchers in the possibilities of improving the production parameters of broiler chickens. A direct response from muscles and their metabolism to in ovo synbiotic stimulation on day 12 of egg incubation has already been widely documented. However, it is necessary to analyze the molecular mechanisms determining the phenotypic effects. The present research aimed to explain the molecular background of the quality of broiler chicken meat after injection of synbiotics based on Lactobacillus strains into the air chamber of the egg. Characterization of the meat quality is based on the signature of the metabolic gene expression closely related to muscles and basic physiological parameters. Abstract To better understand the effects of synbiotics administered at early stages of embryonic development in poultry, it is necessary to analyze direct effects (meat quality) and the molecular background. The molecular interpretation of poultry meat properties after in ovo administration of synbiotics remains to be reported. The purpose of the present study was to analyze the molecular background of meat quality based on gene expression and basic physiological parameters. Eggs were injected with (S1) Lactobacillus salivarius with galacto-oligosaccharides or (S2) Lactobacillus plantarum with raffinose family oligosaccharides. The pectoral muscle was collected at two time points (day 7 and day 42) and subjected to RNA isolation. Gene expression analysis was performed by RT-qPCR for a panel of eight genes associated with metabolism. The concentration of glucose and hormones (insulin, glucagon, and leptin (S1 p = 0.04)) was also increased. The obtained results showed that metabolic gene expression in the muscle was more differential due to synbiotic stimulation on day 7 (FST in S1 p = 0.03; PDK4 in S1 p = 0.02 and S2 p = 0.01; CEBPB in S1 p = 0.01 and S2 p = 0.008; PHKB in S1 p = 0.01; PRKAG3 in S1 p = 0.02) than on day 42 (PDK4 in S1 p = 0.04). On the basis of the results obtained, it can be concluded that in ovo stimulation with S1 triggered the most potent and favorable changes in the pectoral muscle gene expression in broiler chickens.
Collapse
Affiliation(s)
- Aleksandra Dunislawska
- UTP, Department of Animal Biotechnology and Genetics, University of Science and Technology, 85-084 Bydgoszcz, Poland; (M.S.); (A.S.); (M.B.)
- Correspondence:
| | - Maria Siwek
- UTP, Department of Animal Biotechnology and Genetics, University of Science and Technology, 85-084 Bydgoszcz, Poland; (M.S.); (A.S.); (M.B.)
| | - Anna Slawinska
- UTP, Department of Animal Biotechnology and Genetics, University of Science and Technology, 85-084 Bydgoszcz, Poland; (M.S.); (A.S.); (M.B.)
| | - Adam Lepczynski
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270 Szczecin, Poland; (A.L.); (A.H.)
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, 71-270 Szczecin, Poland; (A.L.); (A.H.)
| | - Pawel A. Kolodziejski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 60-637 Poznan, Poland;
| | - Marek Bednarczyk
- UTP, Department of Animal Biotechnology and Genetics, University of Science and Technology, 85-084 Bydgoszcz, Poland; (M.S.); (A.S.); (M.B.)
| |
Collapse
|
13
|
Abstract
The discovery that glucagon-like peptide 1 (GLP-1) mediates a significant proportion of the incretin effect during the postprandial period and the subsequent observation that GLP-1 bioactivity is retained in type 2 diabetes (T2D) led to new therapeutic strategies being developed for T2D treatment based on GLP-1 action. Although owing to its short half-life exogenous GLP-1 has no use therapeutically, GLP-1 mimetics, which have a much longer half-life than native GLP-1, have proven to be effective for T2D treatment since they prolong the incretin effect in patients. These GLP-1 mimetics are a desirable therapeutic option for T2D since they do not provoke hypoglycaemia or weight gain and have simple modes of administration and monitoring. Additionally, over more recent years, GLP-1 action has been found to mediate systemic physiological beneficial effects and this has high clinical relevance due to the post-diagnosis complications of T2D. Indeed, recent studies have found that certain GLP-1 analogue therapies improve the cardiovascular outcomes for people with diabetes. Furthermore, GLP-1-based therapies may enable new therapeutic strategies for diseases that can also arise independently of the clinical manifestation of T2D, such as dementia and Parkinson's disease. GLP-1 functions by binding to its receptor (GLP-1R), which expresses mainly in pancreatic islet beta cells. A better understanding of the mechanisms and signalling pathways by which acute and chronic GLP-1R activation alleviates disease phenotypes and induces desirable physiological responses during healthy conditions will likely lead to the development of new therapeutic GLP-1 mimetic-based therapies, which improve prognosis to a greater extent than current therapies for an array of diseases.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Stephen C. Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | | |
Collapse
|
14
|
Le TD, Nguyen NPT, Nguyen ST, Nguyen HT, Tran HTT, Nguyen THL, Nguyen CD, Nguyen GT, Nguyen XT, Nguyen BD, Trinh ST, Ngo TA, Do BN, Luong TC. The Association Between Femoral Artery Intima-Media Thickness and Serum Glucagon-Like Peptide-1 Levels Among Newly Diagnosed Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:3561-3570. [PMID: 33116707 PMCID: PMC7548854 DOI: 10.2147/dmso.s264876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Endothelium dysfunction and decrease of incretin effects occur early in type 2 diabetes mellitus and these changes contribute to diabetic cardiovascular complications such as atherosclerosis, thick intima-media, coronary, and peripheral arterial diseases. In patients with diabetes, the femoral artery is a site of a high incidence of injury in peripheral vascular diseases, and atherosclerotic changes may appear earlier in the femoral artery compared to the carotid artery. This study was conducted to determine the prevalence of increased femoral artery intima-media thickness (IMT) and atherosclerotic plaque and their correlation with serum glucagon-like peptide-1 (GLP-1) levels in newly-diagnosed patients with type 2 diabetes mellitus. MATERIALS AND METHODS A cross-sectional study was conducted on 332 patients with nT2D in the National Endocrinology Hospital, Vietnam from January 2015 to May 2018. IMT was measured by Doppler ultrasound and GLP-1 by enzyme-linked immunosorbent assay (ELISA). All data were analyzed with SPSS version 26 for Windows (SPSS Inc, Chicago, IL). RESULTS Prevalence of thick femoral artery IMT and atherosclerotic plaque was 38.2 and 22.3%, respectively. There was a relationship between IMT and age, waist to hip ratio (WHR), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting GLP-1, high sensitive CRP (hsCRP) and 24-hour microalbuminuria secretion (24-h MAUS). The fasting serum GLP-1 (fGLP-1) levels were reduced significantly in patients with thickness and atherosclerosis femoral artery (p = 0.001). After adjusting with other related factors, namely, DBP and estimated glomerular filtration rate (eGFR), whilst hsCRP and 24-h MAUS showed a significantly positive correlation to IMT (Standardized B and p of 0.242, 0.004 and 0.178, 0.043, respectively), fGLP-1 showed a significantly negative correlation to IMT (Standardized B = -0.288, p = 0.001). CONCLUSION Among n2TD, the percentage for femoral artery thick IMT and atherosclerosis was 38.2% and 22.3% respectively, and serum GLP-1 was negatively correlated with thick IMT and atherosclerosis.
Collapse
Affiliation(s)
- Tuan Dinh Le
- Department of Internal Medicine, Thai Binh University of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Nga Phi Thi Nguyen
- Department of Endocrinology, Military Hospital 103, Ha Noi, Vietnam
- Department of Rheumatology and Endocrinology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Son Tien Nguyen
- Department of Endocrinology, Military Hospital 103, Ha Noi, Vietnam
- Department of Rheumatology and Endocrinology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Hien Thi Nguyen
- Department of Physiology, Thai Binh university of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Hoa Thanh Thi Tran
- Department of Intensive Care Unit, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Thi Ho Lan Nguyen
- Department of Internal Medicine, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Cuong Duy Nguyen
- Department of Intensive Care Unit, Thai Binh university of Medicine and Pharmacy, Thai Binh, Vietnam
| | - Giang Thi Nguyen
- Department of Internal Medicine, National Hospital of Endocrinology, Ha Noi, Vietnam
| | - Xuan Thanh Nguyen
- Department of Vascular Cardiology, Military Hospital 103, Ha Noi, Vietnam
| | - Bac Duy Nguyen
- Department of Anatomy, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Son The Trinh
- Military Institute of ClinicalEmbryology and Histology, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Tuan Anh Ngo
- Department of Health Economic, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Binh Nhu Do
- Department of Infectious Disease, Vietnam Military Medical University, Ha Noi, Vietnam
- Division of Military Science, Military Hospital 103, Ha Noi, Vietnam
| | - Thuc Cong Luong
- Department of Vascular Cardiology, Military Hospital 103, Ha Noi, Vietnam
- Director Office, Military Hospital 103, Ha Noi, Vietnam
- Correspondence: Thuc Cong Luong; Son The Trinh Email ;
| |
Collapse
|
15
|
Fujiwara Y, Eguchi S, Murayama H, Takahashi Y, Toda M, Imai K, Tsuda K. Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinol Diabetes Metab 2019; 2:e00068. [PMID: 31294084 PMCID: PMC6613229 DOI: 10.1002/edm2.68] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
The rapid rise in the prevalence of type 2 diabetes mellitus (T2DM) poses a huge healthcare burden across the world. Although there are several antihyperglycaemic agents (AHAs) available including addition of new drug classes to the treatment algorithm, more than 50% of patients with T2DM do not achieve glycaemic targets, suggesting an urgent need for treatment strategies focusing on prevention and progression of T2DM and its long-term complications. Lifestyle changes including implementation of healthy diet and physical activity are cornerstones for the management of T2DM. The positive effects of diet and exercise on incretin hormones such as glucagon-like peptide-1 (GLP-1) have been reported. We hypothesize an IDEP concept (Interaction between Diet/Exercise and Pharmacotherapy) aimed at modifying the diet and lifestyle, along with pharmacotherapy to enhance the GLP-1 levels, would result in good glycaemic control in patients with T2DM. Consuming protein-rich food, avoiding saturated fatty acids and making small changes in eating habits such as eating slowly with longer mastication time can have a positive impact on the GLP-1 secretion and insulin levels. Further the type of physical activity (aerobic/resistance training), intensity of exercise, duration, time and frequency of exercise have shown to improve GLP-1 levels. Apart from AHAs, a few antihypertensive drugs and lipid-lowering drugs have also shown to increase endogenous GLP-1 levels, however, due to quick degradation of GLP-1 by dipeptidyl peptidase-4 (DPP-4) enzyme, treatment with DPP-4 inhibitors would protect GLP-1 from degradation and prolong its activity. Thus, IDEP concept can be a promising treatment strategy, which positively influences the GLP-1 levels and provide additive benefits in terms of improving metabolic parameters in patients with T2DM and slowing the progression of T2DM and its associated complications.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Shunsuke Eguchi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Hiroki Murayama
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Yuri Takahashi
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Mitsutoshi Toda
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kota Imai
- Medical Division, Cardio‐Metabolic Medical Franchise DepartmentNovartis Pharma K.KTokyoJapan
| | - Kinsuke Tsuda
- Faculty of Human SciencesTezukayama Gakuin UniversityOsakaJapan
| |
Collapse
|
16
|
3-Deoxyglucosone interferes with insulin signaling and attenuates insulin action on glucose-induced GLP-1 secretion in the enteroendocrine L cell line STC-1. Mol Biol Rep 2019; 46:4799-4808. [PMID: 31228040 DOI: 10.1007/s11033-019-04926-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Maintenance of glucose homeostasis is reciprocally regulated by insulin and glucagon-like peptide-1 (GLP-1). We previously reported that GLP-1 secretion in response to an oral glucose load was impaired following an administration of 3-deoxyglucosone (3DG), an independent factor associated with the development of pre-diabetes. Here we investigated the effects of 3DG on insulin signaling and insulin-induced GLP-1 secretion under high-glucose conditions in the enteroendocrine L cell line STC-1. STC-1 cells were exposed to 3DG (80, 300, and 1000 ng/ml) in the presence of 10-7 M insulin and 25 mM glucose. GLP-1 secretion was determined by ELISA, glucose uptake was monitored with 2-NBDG (2-(N(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose), glucose consumption was detected by glucoseoxidase, and protein expression of insulin signaling molecules was examined by western blot. Results showed a decrease in insulin-induced GLP-1 secretion and insulin receptor phosphorylation after 3DG treatment. Concomitantly, 3DG treatment inhibited insulin-induced phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway activation. In the presence, but not absence, of insulin, 3DG treatment decreased insulin-stimulated glucose consumption. Inhibition of PI3K with Wortmannin attenuated insulin-induced increment in glucose transporter 2 (GLUT2) expression and 2-NBDG uptake. Accordingly, insulin-induced increase in GLUT2 expression and 2-NBGD uptake was significantly inhibited by 3DG treatment. 3DG-mediated reduction in GLUT2 expression contributes to the attenuation of insulin-induced GLP-1 secretion under high-glucose conditions in part through the insulin-PI3K/Akt/GLUT2 pathway in STC-1 cells. We conclude that 3DG interferes with insulin signaling and attenuates insulin action on glucose-induced GLP-1 secretion in STC-1 cells.
Collapse
|
17
|
Pinyo J, Hira T, Hara H. Continuous feeding of a combined high-fat and high-sucrose diet, rather than an individual high-fat or high-sucrose diet, rapidly enhances the glucagon-like peptide-1 secretory response to meal ingestion in diet-induced obese rats. Nutrition 2019; 62:122-130. [PMID: 30878816 DOI: 10.1016/j.nut.2019.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Glucagon-like peptide-1 (GLP-1) is secreted by enteroendocrine L-cells in response to nutrient ingestion. To date, GLP-1 secretion in diet-induced obesity is not well characterized. We aimed to examine GLP-1 secretion in response to meal ingestion during the progression of diet-induced obesity and determinewhether a combined high-fat and high-sucrose (HFS) diet, an individual high-fat (HiFat), or a high-sucrose (HiSuc) diet affect adaptive changes in the postprandial GLP-1 response. METHODS Rats were fed a control, HiFat diet (30% weight), HiSuc diet (40% weight), or HFS (30% fat and 40% sucrose) diet for 5 wk. Meal tolerance tests were conducted to determine postprandial glucose, insulin, and GLP-1 responses to standard (control) diet ingestion every 2 wk. RESULTS After 5 wk, body weight gain of the HiFat (232.3 ± 7.8 g; P = 0.021) and HFS groups (228.0 ± 7.8; P = 0.039), but not the HiSuc group (220.3 ± 7.9; P = 0.244), were significantly higher than that of the control group (200.7 ± 5.4 g). In meal tolerance tests after 2 wk, GLP-1 concentration was significantly elevated in the HFS group only (17.2 ± 2.6 pM; P < 0.001) in response to meal ingestions, but the HiFat group (16.6 ± 3.7 pM; P = 0.156) had a similar response as the HFS group. After 4 wk, GLP-1 concentrations were similarly elevated at 15min in the HFS (14.1 ± 4.4; P = 0.010), HiFat (13.2 ± 2.0; P < 0.001), and HiSuc (13.0 ± 3.3; P = 0.016) groups, but the HFS (9.8 ± 1.0; P = 0.019) and HiFat (8.3 ± 1.5; P = 0.010) groups also had significant elevation at 30min. CONCLUSIONS These results demonstrate that the continuous ingestion of excessive fat and sucrose rapidly enhances the GLP-1 secretory response to luminal nutrients, and the HiFat diet may have a potent effect compared with the HiSuc diet on GLP-1 secretory responses. The increment of postprandial GLP-1 and insulinsecretion may have a role in normalizing postprandial glycaemia and slowing the establishment of glucose intolerance.
Collapse
Affiliation(s)
- Jukkrapong Pinyo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tohru Hira
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Hiroshi Hara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Kumar R, Sahoo JP, Pottakat B, Kamalanathan S, Mohan P, Kate V, Kar SS, Selviambigapathy J. Effect of Frey's procedure on islet cell function in patients with chronic calcific pancreatitis. Hepatobiliary Pancreat Dis Int 2018; 17:358-362. [PMID: 30029953 DOI: 10.1016/j.hbpd.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/04/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Frey's procedure involves both drainage and resection of the pancreas in subjects with chronic calcific pancreatitis (CCP). The procedure may affect the pancreatic endocrine function after surgery. The present study was to evaluate the effect of Frey's procedure on both beta and alpha cell function in CCP patients. METHODS Thirty CCP patients who underwent Frey's procedure were included. According to the glycemic status, patients were divided into the diabetes mellitus (DM), prediabetes, and normal glucose tolerance (NGT) groups. Islet cell function was assessed before and 3 months after surgery. RESULTS At baseline, there was a significant difference in beta cell function among the three groups [NGT group 1.71 (1.64-2.07) vs prediabetes group1.50 (0.83-1.61) vs DM group 0.33 (0.12-0.55), P < 0.0001], but the insulin resistance was not different among them. Post glucose hyperglucagonemia representing alpha-cell dysfunction during oral glucose tolerance test was present in all of them, but showed no significant difference [NGT group 0.15 (0.06-0.31) vs prediabetes group 0.32 (0.05-0.70) vs DM group 0.07 (0.02-0.18), P = 0.20]. Frey's procedure did not change beta cell function and insulin resistance. However, alpha-cell dysfunction deteriorated after surgery [0.10 (0.03-0.27) vs 0.33 (0.09-0.68), P = 0.004]. CONCLUSIONS Although Frey's procedure does not affect the beta cell function and insulin resistance in CCP patients, the alpha-cell dysfunction deteriorates after surgery.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Endocrinology & Metabolism, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Jaya Prakash Sahoo
- Department of Endocrinology & Metabolism, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | - Biju Pottakat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology & Metabolism, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Pazhanivel Mohan
- Department of Medical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Vikram Kate
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Sitanshu Sekhar Kar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| | - Jayakumar Selviambigapathy
- Department of Endocrinology & Metabolism, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India
| |
Collapse
|
19
|
Mihai BM, Mihai C, Cijevschi-Prelipcean C, Grigorescu ED, Dranga M, Drug V, Sporea I, Lăcătușu CM. Bidirectional Relationship between Gastric Emptying and Plasma Glucose Control in Normoglycemic Individuals and Diabetic Patients. J Diabetes Res 2018; 2018:1736959. [PMID: 30402500 PMCID: PMC6192082 DOI: 10.1155/2018/1736959] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/14/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Gastric emptying and glycemic control pathways are closely interrelated processes. Gastric chyme is transferred into the duodenum with velocities depending on its solid or liquid state, as well as on its caloric and nutritional composition. Once nutrients enter the intestine, the secretion of incretins (hormonal products of intestinal cells) is stimulated. Among incretins, glucagon-like peptide-1 (GLP-1) has multiple glycemic-regulatory effects that include delayed gastric emptying, thus triggering a feedback loop lowering postprandial serum glucose levels. Glycemic values also influence gastric emptying; hyperglycemia slows it down, and hypoglycemia accelerates it, both limiting glycemic fluctuations. Disordered gastric emptying in diabetes mellitus is understood today as a complex pathophysiological condition, with both irreversible and reversible components and high intra- and interindividual variability of time span and clinical features. While limited delays may be useful for reducing postprandial hyperglycemias, severely hindered gastric emptying may be associated with higher glycemic variability and worsened long-term glycemic control. Therapeutic approaches for both gastric emptying and glycemic control include dietary modifications of meal structure or content and drugs acting as GLP-1 receptor agonists. In the foreseeable future, we will probably witness a wider range of dietary interventions and more incretin-based medications used for restoring both gastric emptying and glycemic levels to nearly physiological levels.
Collapse
Affiliation(s)
- Bogdan Mircea Mihai
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Cătălina Mihai
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Cristina Cijevschi-Prelipcean
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Elena-Daniela Grigorescu
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Mihaela Dranga
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Vasile Drug
- “Grigore T. Popa” University of Medicine and Pharmacy, Institute of Gastroenterology and Hepatology, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| | - Ioan Sporea
- Gastroenterology, “Victor Babes” University of Medicine and Pharmacy Timișoara, Romania
| | - Cristina Mihaela Lăcătușu
- “Grigore T. Popa” University of Medicine and Pharmacy, Clinical Centre of Diabetes, Nutrition and Metabolic Diseases, “Sf. Spiridon” Clinical Hospital, Iași, Romania
| |
Collapse
|
20
|
Eid HM, Wright ML, Anil Kumar NV, Qawasmeh A, Hassan STS, Mocan A, Nabavi SM, Rastrelli L, Atanasov AG, Haddad PS. Significance of Microbiota in Obesity and Metabolic Diseases and the Modulatory Potential by Medicinal Plant and Food Ingredients. Front Pharmacol 2017; 8:387. [PMID: 28713266 PMCID: PMC5493053 DOI: 10.3389/fphar.2017.00387] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/02/2017] [Indexed: 01/11/2023] Open
Abstract
Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term "diabesity." Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.
Collapse
Affiliation(s)
- Hoda M. Eid
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
- Department of Pharmacognosy, University of Beni-SuefBeni-Suef, Egypt
| | - Michelle L. Wright
- Nell Hodgson Woodruff School of Nursing, Emory UniversityAtlanta, GA, United States
| | - N. V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal UniversityManipal, India
| | | | - Sherif T. S. Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences BrnoBrno, Czechia
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hatieganu University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary MedicineCluj-Napoca, Romania
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of SalernoFisciano, Italy
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Pierre S. Haddad
- Natural Health Products and Metabolic Diseases Laboratory, Department of Pharmacology and Physiology, Université de MontréalMontréal, QC, Canada
- Canadian Institutes of Health Research Team in Aboriginal Antidiabetic MedicinesMontréal, QC, Canada
| |
Collapse
|
21
|
Cai Y, Liu Y, Culhane KJ, DeVree BT, Yang Y, Sunahara RK, Yan ECY. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor. PLoS One 2017; 12:e0179568. [PMID: 28609478 PMCID: PMC5469476 DOI: 10.1371/journal.pone.0179568] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.
Collapse
Affiliation(s)
- Yingying Cai
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Yuting Liu
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| | - Kelly J. Culhane
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Brian T. DeVree
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yang Yang
- Nanobiology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Roger K. Sunahara
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Elsa C. Y. Yan
- Department of Chemistry, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
22
|
Soare A, Khazrai YM, Fontana L, Del Toro R, Lazzaro MC, Di Rosa C, Buldo A, Fioriti E, Maddaloni E, Angeletti S, Di Mauro A, Gesuita R, Skrami E, Tuccinardi D, Fallucca S, Pianesi M, Pozzilli P. Treatment of reactive hypoglycemia with the macrobiotic Ma-pi 2 diet as assessed by continuous glucose monitoring: The MAHYP randomized crossover trial. Metabolism 2017; 69:148-156. [PMID: 28285645 DOI: 10.1016/j.metabol.2017.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Nutritional therapy is recommended for management of reactive hypoglycemia (RH), a condition characterized by hypoglycemia that occurs within four hours after a meal. The macrobiotic Ma-Pi 2 diet improves glycemic control in subjects with type 2 diabetes. We explored the effect of this diet on outcomes in non-diabetic individuals with RH. MATERIALS AND METHODS Twelve subjects with RH were randomized to the Ma-Pi 2 diet for three days and a control diet for three days in a randomized crossover design. Subjects received snacks on two days out of each three-day period only, and were monitored using continuous glucose monitoring. The 24-h period was divided into daytime (08:00-22:30h [subdivided into 'daytime without snacks' and 'daytime with snacks']) and night-time (22:31-07:59h). The effects of the two diets on the number of RH events (blood glucose <70mg/dL [3.9mmol/L]) and the percentage distribution of glucose readings within each of 16 glycemic intervals from <40mg/dL (2.2mmol/L) to >180mg/dL (4.4mmol/L) were determined. RESULTS There were significantly fewer RH events on the Ma-Pi 2 diet than the control diet during daytime without snacks (-2.5 events; 95% CI: -7.5, 0.0; P=0.022) and daytime with snacks (-4.25 events; 95% CI: -7.5; -2.0; P=0.013) but no difference at night. The percentage of glucose readings in the interval 71-80mg/dL (3.9-4.4mmol/L) was significantly higher on the control diet during daytime with and without snacks (P=0.03 for both), while the percentage of glucose readings in the interval 91-100mg/dL (5.1-5.6mmol/L) was significantly higher on the Ma-Pi 2 diet during daytime without snacks (P=0.02). CONCLUSIONS The macrobiotic Ma-Pi 2 diet reduced blood glucose excursions during the day, thereby facilitating glycemic control in subjects with RH. The Ma-Pi 2 diet represents an effective nutritional tool for management of RH.
Collapse
Affiliation(s)
- Andreea Soare
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Yeganeh Manon Khazrai
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Lucia Fontana
- Unit of Dietology and Diabetology, Sandro Pertini Hospital, Rome, Italy
| | - Rossella Del Toro
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Maria Concetta Lazzaro
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Claudia Di Rosa
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Antonia Buldo
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Elvira Fioriti
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ernesto Maddaloni
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Silvia Angeletti
- Laboratory of Clinical Pathology and Microbiology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Antonio Di Mauro
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rosaria Gesuita
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic Marche University, Ancona, Italy
| | - Edlira Skrami
- Center of Epidemiology, Biostatistics and Medical Information Technology, Polytechnic Marche University, Ancona, Italy
| | - Dario Tuccinardi
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Sara Fallucca
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mario Pianesi
- International Study Center for Environment, Agriculture, Food, Health and Economics, Tolentino, Italy
| | - Paolo Pozzilli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy; Centre for Immunobiology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Wang XL, Ye F, Li J, Zhu LY, Feng G, Chang XY, Sun K. Impaired secretion of glucagon-like peptide 1 during oral glucose tolerance test in patients with newly diagnosed type 2 diabetes mellitus. Saudi Med J 2017; 37:48-54. [PMID: 26739974 PMCID: PMC4724679 DOI: 10.15537/smj.2016.1.12035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objectives: To assess glucagon-like peptide 1 (GLP-1) secretion after oral glucose tolerance tests (OGTTs) in subjects with newly diagnosed type 2 diabetes mellitus (T2DM), impaired glucose tolerance (IGT), and normal glucose tolerance (NGT) to clarify changes in GLP-1 secretion during the course of T2DM. Methods: In this cross sectional study, 80 subjects were divided into the NGT, IGT, and T2DM groups after undergoing a 75 g OGTT from March to December 2014 at the School of Medicine, First Affiliated Hospital, Shihezi University, Xinjiang, China. Plasma total GLP-1 was measured at 0, 30, 60, 120, and 180 minutes. Homeostasis model assessment of insulin resistance (HOMA-IR), islet β-cell function (HOMA-β), Gutt index, Matsuda index, incremental GLP-1 (ΔGLP-1), and areas under the curves of GLP-1 (AUCglp-1), glucose (AUCg), and insulin (AUCins) were calculated. Results: Plasma total GLP-1 at 30-120 minutes and ΔGLP-1 at 30-120 minutes were lower in the T2DM group than in the IGT and NGT groups (p<0.05). Peak GLP-1 levels were 35% lower in the T2DM group than in the NGT group. Plasma total GLP-1, ΔGLP-1, and AUCglp-1 correlated negatively with HOMA-IR and AUCg, and positively with HOMA-β, Gutt index, Matsuda index, and AUCins (p<0.05). Conclusion: The GLP-1 secretion after 75 g OGTT was impaired in newly diagnosed T2DM patients, inversely proportional to IR and hyperglycemia, and positively correlated with β-cell function and insulin sensitivity.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Endocrinology and Metabolism, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nohra EA, Guerra JJ, Bochicchio GV. Glycemic management in critically ill patients. World J Surg Proced 2016; 6:30-39. [DOI: 10.5412/wjsp.v6.i3.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia associated with critical illness, also called “stress hyperglycemia” or “stress diabetes”, is a consequence of many pathophysiologic hormonal responses including increased catecholamines, cortisol, glucagon, and growth hormone. Alterations in multiple biochemical pathways result in increased hepatic and peripheral insulin resistance with an uncontrolled activation of gluconeogenesis and glycogenolysis. Hyperglycemia has a negative impact on the function of the immune system, on the host response to illness or injury, and on infectious and overall outcomes. The degree of glucose elevation is associated with increased disease severity. Large randomized controlled trials including the Van den Berghe study, the NICE-SUGAR trial, VISEP and GLUCONTROL have shown that the control of glucose levels in critically ill patients has implications on outcome and that both hyperglycemia and hypoglycemia are detrimental and should be avoided. Glucose variability has also been shown to be detrimental. Aggressive glucose control strategies have changed due to the concerns of hypoglycemia and therefore intermediate target glucose control strategies are most often adopted. Different patient populations may vary with regards to optimal glucose targets, timing and approach for glucose control, and with regards to the prognostic significance of glucose excursions and variability. Medical, surgical, and trauma patients may benefit at different rates from glucose control and the approach may need to be adapted to various medical settings and to correspond to the workflow of health providers. Effect modifiers for the success of insulin therapy for hyperglycemia include the methods of nutritional supplementation and exogenous glucose administration. Further research is required to improve insulin protocols for glucose control, to further define glucose targets, and to enhance the accuracy of glucose measuring technologies.
Collapse
|
25
|
Sista F, Abruzzese V, Clementi M, Carandina S, Cecilia M, Amicucci G. The effect of sleeve gastrectomy on GLP-1 secretion and gastric emptying: a prospective study. Surg Obes Relat Dis 2016; 13:7-14. [PMID: 27692912 DOI: 10.1016/j.soard.2016.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/23/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rapid gastric emptying has been proposed to justify the increase in glucagon-like polypeptide-1 (GLP-1) after laparoscopic sleeve gastrectomy (LSG). OBJECTIVES To assess gastric emptying changes after LSG and their relationship with GLP-1 secretion. SETTING San Salvatore Hospital general surgery unit, University of L'Aquila, Italy. METHODS 52 patients underwent gastric emptying scintigraphy for liquid and solid foods, before and 3 months after LSG. Twenty-six patients were in the liquid group (L group) and the remaining in the solid group (S group). We evaluated the half time of gastric emptying (T1/2) and percentage of gastric retention (%GR) at 15, 30, and 60 minutes for liquids and at 30, 60, 90, and 120 minutes for solids. GLP-1 plasma concentrations were measured in each group before and after LSG and related to %GR. Statistical analysis was performed by Χ2 test and Pearson correlation(r). RESULTS After surgery, T1/2 was significantly accelerated: 15.2±13 min and 33.5±18 min in the L group and S group, respectively (P<.05). In both groups, GLP-1 plasma concentrations were increased at each blood sampling time: 2.91±2.9 pg/mL, 3.06±3.1 pg/mL and 3.21±2.6 pg/mL at 15, 30, and 60 minutes, respectively, (P<.05) for L group and 2.72±1.5 pg/mL, 2.89±2.1 pg/mL, 2.93±1.8 pg/mL, and 2.95±1.9 pg/mL at 30, 60, 90, and 120 minutes, respectively, (P< .05) for the S group. After LSG, GLP-1 and %GR presented a negative linear correlation (r) at each blood sampling time in both groups. CONCLUSION The rapid gastric emptying 3 months after LSG upregulates the production of GLP-1 in the distal bowel. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Federico Sista
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie (DISCAB), Ospedale civile San Salvatore, University of L'Aquila, L'Aquila, Italy.
| | - Valentina Abruzzese
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie (DISCAB), Ospedale civile San Salvatore, University of L'Aquila, L'Aquila, Italy
| | - Marco Clementi
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie (DISCAB), Ospedale civile San Salvatore, University of L'Aquila, L'Aquila, Italy
| | - Sergio Carandina
- Service de Chirurgie Digestive, Hôpital Avicenne , Université Paris XIII, Bobigny, France
| | - Manuela Cecilia
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie (DISCAB), Ospedale civile San Salvatore, University of L'Aquila, L'Aquila, Italy
| | - Gianfranco Amicucci
- Dipartimento di Scienze Cliniche Applicate e Biotecnologie (DISCAB), Ospedale civile San Salvatore, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
26
|
Sarraju A, Kim SH, Knowles JW. Cardiometabolic Effects of Glucagon-Like Peptide-1 Agonists. Curr Atheroscler Rep 2016; 18:7. [PMID: 26782825 DOI: 10.1007/s11883-016-0558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the leading cause of death among adults in the USA. Both type 1 (T1DM) and type 2 diabetes mellitus (T2DM) are known risk factors for cardiovascular disease. Despite the development of numerous effective anti-glycemic therapies, we have been unable to completely mitigate cardiovascular risk with glucose lowering alone, and prevention of cardiovascular disease in patients with diabetes is primarily achieved with the use of medications that address other risk factors such as anti-hypertensives or statins. Glucagon-like peptide-1 (GLP-1) is a key hormone in the pathophysiology of diabetes. GLP-1 agonists have been recently approved for the treatment of T2DM as well as for chronic weight management. In this review, we aim to explore the effects of GLP-1 agonists on cardiovascular health with a focus on cardiometabolic variables and cardiac function.
Collapse
Affiliation(s)
- Ashish Sarraju
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sun H Kim
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Falk CVRC, Room CV273, MC 5406, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
27
|
Bryson A, Jennings PE, Deak L, Paveliu FS, Lawson M. The efficacy and safety of teneligliptin added to ongoing metformin monotherapy in patients with type 2 diabetes: a randomized study with open label extension. Expert Opin Pharmacother 2016; 17:1309-16. [PMID: 27181910 DOI: 10.1080/14656566.2016.1190334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The study investigated the efficacy and tolerability of teneligliptin co-administered to patients with type 2 diabetes mellitus (T2DM) who were inadequately controlled by stable metformin monotherapy ≥ 1000 mg/day. METHODS A total of 447 patients from 55 European centers who completed a 14-day screening and 14-day run-in phase, received randomized double-blind treatment with 5, 10, 20 or 40 mg teneligliptin or placebo once daily, for 24 weeks. 364 patients continued treatment in a 28-week open label extension during which they received teneligliptin 20 mg once daily. RESULTS Co-administration of teneligliptin (5 to 40 mg) with metformin demonstrated dose-related and statistically significant reductions in HbA1c after 24 weeks (-0.30 to -0.63% placebo adjusted) of double-blind treatment. The greatest reduction in HbA1c was seen with teneligliptin at 40 mg (-0.63%) at Week 24. There was also a dose-dependent increase in proportion of responders achieving HbA1c < 7.0% at this endpoint. Responses were maintained throughout 28 weeks open label treatment with 20 mg teneligliptin. Treatment was well tolerated to Week 52 and the overall incidence of hypoglycemia during 52 weeks was 2.3%. CONCLUSIONS Teneligliptin co-administered with metformin produced significant reductions in HbA1c in patients with T2DM without increasing the risk of hypoglycemia.
Collapse
Affiliation(s)
- Andrew Bryson
- a Clinical Department , Mitsubishi Tanabe Pharma Europe Ltd , London , UK
| | - Paul E Jennings
- b Center for Diabetes and Endocrinology , York Teaching Hospital NHS Foundation Trust Ringgold , York , UK
| | - Laszlo Deak
- c Department of Internal Medicine , Kaposi Mor County Hospital , Kaposvar , Hungary
| | - Fraga S Paveliu
- d Department of Nutrition and Endocrinology , Societatea Civila Medicala , Bucharest , Romania
| | - Matt Lawson
- a Clinical Department , Mitsubishi Tanabe Pharma Europe Ltd , London , UK
| |
Collapse
|
28
|
Diet-induced disorders in rats are more efficiently attenuated by initial rather than delayed supplementation with polyphenol-rich berry fibres. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|