1
|
Courchesne M, Manrique G, Bernier L, Moussa L, Cresson J, Gutzeit A, Froehlich JM, Koh DM, Chartrand-Lefebvre C, Matoori S. Gender Differences in Pharmacokinetics: A Perspective on Contrast Agents. ACS Pharmacol Transl Sci 2024; 7:8-17. [PMID: 38230293 PMCID: PMC10789139 DOI: 10.1021/acsptsci.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gender is an important risk factor for adverse drug reactions. Women report significantly more adverse drug reactions than men. There is a growing consensus that gender differences in drug PK is a main contributor to higher drug toxicity in women. These differences stem from physiological differences (body composition, plasma protein concentrations, and liver and kidney function), drug interactions, and comorbidities. Contrast agents are widely used to enhance diagnostic performance in computed tomography and magnetic resonance imaging. Despite their broad use, these contrast agents can lead to important adverse reactions including hypersensitivity reactions, nephropathy, and hyperthyroidism. Importantly, female gender is one of the main risk factors for contrast agent toxicity. As these adverse reactions may be related to gender differences in PK, this perspective aims to describe distribution and elimination pathways of commonly used contrast agents and to critically discuss gender differences in these processes.
Collapse
Affiliation(s)
- Myriam Courchesne
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Gabriela Manrique
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Laurie Bernier
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Leen Moussa
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Jeanne Cresson
- Clinical
Research Group, Klus Apotheke Zurich, 8032 Zurich, Switzerland
| | - Andreas Gutzeit
- Department
of Health Sciences and Medicine, University
of Lucerne, Frohburgstaße 3, 6002 Luzern, Switzerland
- Institute
of Radiology and Nuclear Medicine and Breast Center St. Anna, Hirslanden Klinik St. Anna, 6006 Lucerne, Switzerland
- Department
of Radiology, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Dow-Mu Koh
- Cancer Research
UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Carl Chartrand-Lefebvre
- Radiology
Department, Centre Hospitalier de l’Université
de Montréal (CHUM), Montreal, Quebec H2X 3E4, Canada
- Centre
de Recherche du Centre Hospitalier de l’Université de
Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Simon Matoori
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
2
|
Restrepo Y, Noto N, Speth R. CGP42112: the full AT2 receptor agonist and its role in the renin-angiotensin-aldosterone system: no longer misunderstood. Clin Sci (Lond) 2022; 136:1513-1533. [PMID: 36326719 PMCID: PMC9638965 DOI: 10.1042/cs20220261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2023]
Abstract
For years, the AT2R-selective ligand CGP42112 has been erroneously characterized as a partial agonist, partly due to its ability to also interact with the AT1R at high concentrations. As late as 2009, it was still being characterized as an antagonist as well. In this perspective/opinion piece, we try to resolve the ambiguity that surrounds the efficacy of this compound by extensively reviewing the literature, tracing its beginnings to 1989, showing that CGP42112 has never been convincingly shown to be a partial agonist or an antagonist at the AT2R. While CGP42112 is now routinely characterized as an AT2R agonist, regrettably, there is a paucity of studies that can validate its efficacy as a full agonist at the AT2R, leaving the door open for continuing speculation regarding the extent of its efficacy. Hopefully, the information presented in this perspective/opinion piece will firmly establish CGP42112 as a full agonist at the AT2R such that it can once again be used as a tool to study the AT2R.
Collapse
Affiliation(s)
- Yazmin M. Restrepo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
| | - Natalia M. Noto
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
- Department of Physiology and Pharmacology, School of Medicine, Georgetown University, Washington, DC 20007, U.S.A
| |
Collapse
|
3
|
Estradiol Supplement or Induced Hypertension May Attenuate the Angiotensin II Type 1 Receptor Antagonist-Promoted Renal Blood Flow Response to Graded Angiotensin II Administration in Ovariectomized Rats. J Renin Angiotensin Aldosterone Syst 2022; 2022:3223008. [PMID: 35859805 PMCID: PMC9270140 DOI: 10.1155/2022/3223008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Backgrounds. Estrogen replacement therapy (ERT) and hypertension may influence females’ renin-angiotensin system (RAS) and its components. The angiotensin II (Ang II) type 1 receptor (AT1R) antagonist (losartan) may promote renal blood flow (RBF), and it is widely used in the clinic to control hypertension. The main objective of this study was the effects of estradiol or induced hypertension on RBF response to Ang II in losartan-treated ovariectomized (OVX) rats. Methods. Two groups of OVX rats were treated with placebo (group 1) and estradiol (group 2) for period of four weeks, and another group of OVX rats was subjected to induce hypertension by two-kidney one clip (2K1C) model (group 3). All the groups were subjected to the surgical procedure under anesthesia, and AT1R was blocked by losartan. RBF and renal vascular resistance (RVR) responses to Ang II administration were determined and compared. Results. Mean arterial (MAP) and renal perfusion (RPP) pressures in group 3 and uterus weight (UT) in group 2 were significantly more than other groups (
). Ang II infusion resulted in dose-related percentage change increase in RBF and decrease in RVR. However, these responses in the OVX-estradiol and OVX-hypertensive rats were significantly lower than in the OVX-control group (
). For instance, at the dose of 1000 ng/kg/min of Ang II administration, the percentage change of RBF was
,
, and
in the groups of 1 to 3, respectively. Conclusion. Losartan prescription in some conditions such as hypertension or ERT could worsen RBF and RVR responses to Ang II.
Collapse
|
4
|
Barsha G, Walton SL, Kwok E, Mirabito Colafella KM, Pinar AA, Hilliard Krause LM, Gaspari TA, Widdop RE, Samuel CS, Denton KM. Relaxin Attenuates Organ Fibrosis via an Angiotensin Type 2 Receptor Mechanism in Aged Hypertensive Female Rats. KIDNEY360 2021; 2:1781-1792. [PMID: 35373008 PMCID: PMC8785838 DOI: 10.34067/kid.0002722021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Background The antifibrotic effects of recombinant human relaxin (RLX) in the kidney are dependent on an interaction between its cognate receptor (RXFP1) and the angiotensin type 2 receptor (AT2R) in male models of disease. Whether RLX has therapeutic effects, which are also mediated via AT2R, in hypertensive adult and aged/reproductively senescent females is unknown. Thus, we determined whether treatment with RLX provides cardiorenal protection via an AT2R-dependent mechanism in adult and aged female stroke-prone spontaneously hypertensive rats (SHRSPs). Methods In 6-month-old (6MO) and 15-month-old ([15MO]; reproductively senescent) female SHRSP, systolic BP (SBP), GFR, and proteinuria were measured before and after 4 weeks of treatment with vehicle (Veh), RLX (0.5 mg/kg per day s.c.), or RLX+PD123319 (AT2R antagonist; 3 mg/kg per day s.c.). Aortic endothelium-dependent relaxation and fibrosis of the kidney, heart, and aorta were assessed. Results In 6MO SHRSP, RLX significantly enhanced GFR by approximately 25% (P=0.001) and reduced cardiac fibrosis (P=0.01) as compared with vehicle-treated counterparts. These effects were abolished or blunted by PD123319 coadministration. In 15MO females, RLX reduced interstitial renal (P=0.02) and aortic (P=0.003) fibrosis and lowered SBP (13±3 mm Hg; P=0.04) relative to controls. These effects were also blocked by PD123319 cotreatment (all P=0.05 versus RLX treatment alone). RLX also markedly improved vascular function by approximately 40% (P<0.001) in 15MO SHRSP, but this was not modulated by PD123319 cotreatment. Conclusions The antifibrotic and organ-protective effects of RLX, when administered to a severe model of hypertension, conferred cardiorenal protection in adult and reproductively senescent female rats to a great extent via an AT2R-mediated mechanism.
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Sarah L. Walton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Edmund Kwok
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Katrina M. Mirabito Colafella
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Anita A. Pinar
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Lucinda M. Hilliard Krause
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Tracey A. Gaspari
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Robert E. Widdop
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Kate M. Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Renal Vascular Response to Angiotensin II Administration in Two Kidneys-One Clip Hypertensive Rats Treated with High Dose of Estradiol: The Role of Mas Receptor. Int J Vasc Med 2021; 2021:6643485. [PMID: 33747565 PMCID: PMC7943267 DOI: 10.1155/2021/6643485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 01/13/2023] Open
Abstract
Backgrounds High blood pressure is one of the most important causes of death around the world. The renin-angiotensin system (RAS) and estradiol are two important items that regulate arterial blood pressure in women. However, hypertension, RAS, and sex hormone estradiol may influence renal vascular responses. This study was designed to determine the role of Mas receptor (MasR) on renal vascular response to angiotensin II (Ang II) administration in two kidneys-one clip (2K1C) hypertensive rats treated with estradiol. Method The ovariectomized rats were subjected to 2K1C or non-2K1C and simultaneously treated with estradiol (500 μg/kg/weekly) or placebo for a period of 4 weeks. Subsequently, under anesthesia, renal vascular responses to graded doses of Ang II administration with MasR blockade (A779) or its vehicle were determined. Results A779 or its vehicle did not alter mean arterial pressure (MAP), renal perfusion pressure (RPP), and renal blood flow (RBF). However, in non-2K1C rats, Ang II infusion decreased RBF and increased renal vascular resistance (RVR) responses in a dose-related manner (Ptreat < 0.0001). The greatest responses were found in ovariectomized estradiol-treated rats that received A779 (Pgroup < 0.05) in non-2K1C rats. Such findings were not detected in 2K1C hypertensive rats. For example, in estradiol-treated rats that received A779, at 1000 ng/kg/min of Ang II infusion, RBF reduced from 1.6 ± 0.2 to 0.89 ± 0.19 ml/min in non-2K1C rats, and it reduced from 1.6 ± 0.2 to 1.2 ± 0.2 ml/min in 2K1C rats. Conclusion Hypertension induced by 2K1C may attenuate the role of A779 and estradiol in renal vascular responses to Ang II infusion. Perhaps, this response can be explained by the reduction of Ang II type 1 receptor (AT1R) expression in the 2K1C hypertensive rats.
Collapse
|
6
|
Kenarkoohi A, Maleki M, Safari T, Kafashian M, Saljoughi F, Sohrabipour S. Angiotensin-converting Enzyme 2 roles in the Pathogenesis of COVID-19. Curr Hypertens Rev 2020; 17:207-216. [PMID: 32778033 DOI: 10.2174/1573402116666200810134702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
The new pandemic Coronavirus Disease 2019 (COVID-19) causes a wide range of clinical consequences, from asymptomatic infection to acute respiratory failure and it is very heterogeneous. The renin-angiotensin system (RAS) is well recognized as a key regulating system in circulatory homeostasis that play prominent roles in pathophysiological processes in abnormal activation for instance renal and cardiovascular diseases, obesity, and stroke. Angiotensin converting enzyme 2(ACE2) as a component of the RAS system. However, unlike the ACE, its activity is not inhibited by the ACE inhibitors. The major product of ACE2 is Ang1-7, known as a vasodilator peptide and part of the depressant arm of the RAS. There are two form of ACE2. Coronavirus cover with some proteins in order to help viral attachment to the cell membrane ACE2 as a receptor and then fuse and enter the cells. ACE2 was expressed in oral Cavity, salivary glands of the mouth, esophagus, myocardial cells, kidney, and enterocytes, along all the respiratory tract, intestine, and blood vessels. In this article, we explain the renin-angiotensin system and its components. Also, we shortly explain the organs involved in COVID-19 disease and we will talk about the possible causes of damage to these organs. We also reviewed the probable mechanism of using ACE2 in viral attachment and the probable treatment processes will also be discussed based on the surface proteins of the virus and ACE2. In addition, we briefly discuss the anti-angiotensin drugs and why patients with chronic disease are more susceptible to COVID-19 infection and show worse progression.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Tahereh Safari
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan. Iran
| | - Mohamadreza Kafashian
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam. Iran
| | - Fateme Saljoughi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas. Iran
| | - Shahla Sohrabipour
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas. Iran
| |
Collapse
|
7
|
Lakzaei H, Safari T, Komeili GR. Interaction of Sex Hormones and the Renin-Angiotensin System in Ovariectomized Rats Subjected to Ischemia-Reperfusion Induction. Adv Biomed Res 2019; 8:64. [PMID: 31737581 PMCID: PMC6839270 DOI: 10.4103/abr.abr_172_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 01/25/2023] Open
Abstract
Backgrounds: Ischemia-reperfusion (IR) injuries occur in a variety of clinical conditions, which lead to kidney damage. Most of the tissue damages after IR are due to the activation of the renin–angiotensin system (RAS). Hence, in this study, the interaction of sex hormones and RAS in ovariectomized (OV) rats subjected to IR induction has been studied. Materials and Methods: The animals were divided into different groups. Groups 1 (OV + E, OV rat + estradiol) and 2 (OV rat) each one consisted of three separate IR-induced subgroups treated with losartan, angiotensin 1–7 (Ang 1–7), and their combination, Group 3, as control and Group 4, as sham. Next, 72 h after IR, blood samples were collected, the right kidneys were homogenized, and left kidneys were fixed in 10% formalin. Results: Findings show that serum blood urea nitrogen, creatinine, and kidney tissue damage score levels increased significantly with induction of IR (P < 0.05). Mean serum levels of these factors in OV + E groups are higher than those of the OV. The presence or absence of estradiol did not affect the levels of antioxidants in the different groups receiving Los, Ang 1–7, and their combination. Los, Ang 1–7, and their combination reduced serum and kidney malondialdehyde levels in both OV and OV + E groups. Conclusion: Estrogen not only fails to improve renal functioning but it can also exacerbate it. While the treatments used in this study, in the absence of estradiol, it had a better effect on kidney damages and improved its functions.
Collapse
Affiliation(s)
- Halimeh Lakzaei
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Tahereh Safari
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholam Reza Komeili
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
8
|
Shieh E, Marzinke MA, Fuchs EJ, Hamlin A, Bakshi R, Aung W, Breakey J, Poteat T, Brown T, Bumpus NN, Hendrix CW. Transgender women on oral HIV pre-exposure prophylaxis have significantly lower tenofovir and emtricitabine concentrations when also taking oestrogen when compared to cisgender men. J Int AIDS Soc 2019; 22:e25405. [PMID: 31692269 PMCID: PMC6832671 DOI: 10.1002/jia2.25405] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Oral HIV Pre-Exposure Prophylaxis (PrEP) with tenofovir (TFV) disoproxil fumarate (TDF)/emtricitabine (FTC) is highly effective. Transgender women (TGW) have increased HIV risk, but have been underrepresented in trials. For TGW on oestrogens for gender-affirming hormone treatment (GAHT), TDF/FTC-oestrogen interactions may negatively affect HIV prevention or gender-affirming goals. Our aim was to evaluate any pharmacokinetic drug-drug interaction between GAHT and TDF/FTC. METHODS We performed a pharmacokinetic study, in an urban outpatient setting in 2016 to 2018, of the effects of GAHT on TFV, FTC and the active forms TFV diphosphate (TFV-DP) and FTC triphosphate (FTC-TP) in eight TGW and eight cisgender men (CGM). At screening, participants were HIV negative. TGW were to maintain their GAHT regimens and have plasma oestradiol concentrations >100 pg/mL. Under direct observation, participants took oral TDF/FTC daily for seven days. At the last dose, blood was collected pre-dose, one, two, four, six, eight and twenty-four hours, and colon biopsies were collected at 24 hours to measure drug concentration. TGW versus CGM concentration comparisons used non-parametric tests. Blood and colon tissue were also obtained to assess kinase expression. RESULTS Plasma TFV and FTC C24 (trough) concentrations in TGW were lower by 32% (p = 0.010) and 32% (p = 0.038) respectively, when compared to CGM. Plasma TFV and FTC 24-hr area under the concentration-time curve in TGW trended toward and was significantly lower by 27% (p = 0.065) and 24% (p = 0.028) respectively. Peak plasma TFV and FTC concentrations, as well as all other pharmacokinetic measures, were not statistically significant when comparing TGW to CGM. Oestradiol concentrations were not different comparing before and after TDF/FTC dosing. Plasma oestrogen concentration, renal function (estimated creatinine clearance and glomerular filtration rate), and TFV and FTC plasma concentrations (trough and area under the concentration-time curve) were all correlated. CONCLUSIONS GAHT modestly reduces both TFV and FTC plasma concentrations. In TGW taking GAHT, it is unknown if this reduction will impact the HIV protective efficacy of a daily PrEP regimen. However, the combination of an on demand (2 + 1 + 1) PrEP regimen and GAHT may result in concentrations too low for reliable prevention of HIV infection.
Collapse
Affiliation(s)
- Eugenie Shieh
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Mark A Marzinke
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Edward J Fuchs
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Allyson Hamlin
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Rahul Bakshi
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Wutyi Aung
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jennifer Breakey
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tonia Poteat
- Department of Social MedicineUniversity of North Carolina Chapel HillChapel HillNorth CarolinaUSA
| | - Todd Brown
- Department of Medicine (Endocrinology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Namandjé N Bumpus
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Craig W Hendrix
- Department of Medicine (Clinical Pharmacology)Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
9
|
Mishra JS, Gopalakrishnan K, Kumar S. Pregnancy upregulates angiotensin type 2 receptor expression and increases blood flow in uterine arteries of rats. Biol Reprod 2019; 99:1091-1099. [PMID: 29860295 DOI: 10.1093/biolre/ioy130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/31/2018] [Indexed: 01/06/2023] Open
Abstract
Normal pregnancy is associated with decreased uterine vascular contraction and increased blood flow even though angiotensin II (AngII) levels are increased. AngII not only activates the angiotensin type 1 receptor (AT1R) to mediate vasoconstriction but also angiotensin type 2 receptor (AT2R) to cause vasodilation. We hypothesized that upregulation of AT2R expression and function accounts for increased uterine artery blood flow during pregnancy. Virgin, pregnant (at different days of gestation) and post-partum Sprague-Dawley rats were used to determine uterine artery hemodynamics using micro ultrasound and plasma angiotensin II levels by ELISA. Isolated uterine arteries were examined for AT1R and AT2R expression and isometric contraction/relaxation. Plasma AngII levels were steady up to mid-pregnancy, increased as pregnancy advanced, reaching a peak in late pregnancy, and then restored to pre-pregnant levels after delivery. The pattern of increase in AngII levels mirrored a parallel increase in uterine blood flow. AT1R expression did not change, but AT2R expression increased during pregnancy correlating with uterine blood flow increase. Treatment with the AT2R antagonist PD123319 reduced uterine arterial blood flow. Vasoconstriction to angiotensin II was blunted in pregnant rats. Treatment with PD123319 caused greater enhancement of AngII contraction in pregnant than virgin rats. Ex vivo exposure of estradiol to uterine arterial rings dose dependently upregulated AT2R expression, that was inhibited by estrogen receptor antagonist. These results demonstrate that elevated AngII levels during gestation induce an increase in uterine blood flow via heightened AT2R-mediated signaling. Estrogens appear to directly upregulate uterine vascular AT2R independent of any endogenous factors.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathirvel Gopalakrishnan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|