1
|
Network Pharmacology-Based Prediction of Mechanism of Shenzhuo Formula for Application to DKD. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623010. [PMID: 33968154 PMCID: PMC8081615 DOI: 10.1155/2021/6623010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Background Shenzhuo formula (SZF) is a traditional Chinese medicine (TCM) prescription which has significant therapeutic effects on diabetic kidney disease (DKD). However, its mechanism remains unknown. Therefore, this study aimed to explore the underlying anti-DKD mechanism of SZF. Methods The active ingredients and targets of SZF were obtained by searching TCMSP, TCMID, SwissTargetPrediction, HIT, and literature. The DKD target was identified from TTD, DrugBank, and DisGeNet. The potential targets were obtained and PPI network were built after mapping SZF targets and DKD targets. The key targets were screened out by network topology and the “SZF-key targets-DKD” network was constructed by Cytoscape. GO analysis and KEGG pathway enrichment analysis were performed by using DAVID, and the results were visualized by Omicshare Tools. Results We obtained 182 potential targets and 30 key targets. Furthermore, a “SZF-key targets-DKD” network topological analysis showed that active ingredients like M51, M21, M5, M71, and M28 and targets like EGFR, MMP9, MAPK8, PIK3CA, and STAT3 might play important roles in the process of SZF treating in DKD. GO analysis results showed that targets were mainly involved in positive regulation of transcription from RNA polymerase II promoter, inflammatory response, lipopolysaccharide-mediated signaling pathway, and other biological processes. KEGG showed that DKD-related pathways like TNF signaling pathway and PI3K-Akt signaling pathway were at the top of the list. Conclusion This research reveals the potential pharmacological targets of SZF in the treatment of DKD through network pharmacology and lays a foundation for further studies.
Collapse
|
2
|
Pituitary Adenylate Cyclase-Activating Polypeptide Alleviates Intestinal, Extra-Intestinal and Systemic Inflammatory Responses during Acute Campylobacter jejuni-induced Enterocolitis in Mice. Pathogens 2020; 9:pathogens9100805. [PMID: 33007819 PMCID: PMC7650764 DOI: 10.3390/pathogens9100805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
Human Campylobacter jejuni infections are emerging, and constitute a significant health burden worldwide. The ubiquitously expressed pituitary adenylate cyclase-activating polypeptide (PACAP) is well-known for its cell-protective and immunomodulatory effects. In our actual intervention study, we used an acute campylobacteriosis model and assessed the potential disease-alleviating effects of exogenous PACAP. Therefore, secondary abiotic IL-10-/- mice were perorally infected with C. jejuni and treated with synthetic PACAP38 intraperitoneally from day 2 until day 5 post-infection. Whereas PACAP did not interfere with the gastrointestinal colonization of the pathogen, mice from the PACAP group exhibited less severe clinical signs of C. jejuni-induced disease, as compared to mock controls, which were paralleled by alleviated apoptotic, but enhanced cell proliferative responses in colonic epithelia on day 6 post-infection. Furthermore, PACAP dampened the accumulation of macrophages and monocytes, but enhanced regulatory T cell responses in the colon, which were accompanied by less IFN-γ secretion in intestinal compartments in PACAP versus mock-treated mice. Remarkably, the inflammation-dampening properties of PACAP could also be observed in extra-intestinal organs, and strikingly, even the systemic circulation on day 6 post-infection. For the first time, we provide evidence that synthetic PACAP might be a promising candidate to combat acute campylobacteriosis and post-infectious sequelae.
Collapse
|
3
|
Perényi H, Szegeczki V, Horváth G, Hinnah B, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, Juhász T. Physical Activity Protects the Pathological Alterations of Alzheimer's Disease Kidneys via the Activation of PACAP and BMP Signaling Pathways. Front Cell Neurosci 2020; 14:243. [PMID: 32922265 PMCID: PMC7457084 DOI: 10.3389/fncel.2020.00243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with typical amyloid beta (Aβ) aggregations. Elimination of the Aβ precursors via the kidneys makes the organ a potential factor in the systemic degeneration leading to AD. Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neuroprotective effects in AD and plays a protective role in kidney pathologies. Increased physical activity is preventive of the formation of AD, but its detailed mechanism and possible connections with PACAP have not been clarified. In the kidneys of AD mice, the effects of physical activity were investigated by comparing wild-type and AD organs. Aβ plaque formation was reduced in AD kidneys after increased training (TAD). Mechanotransduction elevated PACAP receptor expression in TAD mice and normalized the protein kinase A (PKA)-mediated pathways. BMP4/BMPR1 elevation activated Smad1 expression and normalized collagen type IV in TAD animals. In conclusion, our data suggest that elevated physical activity can prevent the AD-induced pathological changes in the kidneys via, at least in part, the activation of PACAP-BMP signaling crosstalk.
Collapse
Affiliation(s)
- Helga Perényi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Horváth
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Barbara Hinnah
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Tamás
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Zsolt Radák
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dóra Ábrahám
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|
5
|
The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is Protective in Inflammation and Oxidative Stress-Induced Damage in the Kidney. Int J Mol Sci 2019; 20:ijms20194944. [PMID: 31591326 PMCID: PMC6801442 DOI: 10.3390/ijms20194944] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide with a widespread distribution throughout the entire body including the urinary system. PACAP exerts protective actions in different injury models related to several organ systems. Its protective effect is mainly based on its antiapoptotic, anti-inflammatory and antioxidant effects. The present review aims to summarize the effects of PACAP in pathologies associated with inflammation and oxidative stress-induced damage in the kidney. Both in vitro and in vivo data are available proving its protective actions against oxidative stress, hypoxia, renal ischemia/reperfusion, diabetic nephropathy, myeloma kidney injury, amyloidosis and different types of drug-induced nephropathies. Data showing the nephroprotection by PACAP emphasize the potential of PACAP’s therapeutic use in various renal pathologies.
Collapse
|
6
|
Xiao X, Qiu P, Gong H, Chen X, Sun Y, Hong A, Ma Y. PACAP ameliorates hepatic metabolism and inflammation through up-regulating FAIM in obesity. J Cell Mol Med 2019; 23:5970-5980. [PMID: 31270932 PMCID: PMC6714231 DOI: 10.1111/jcmm.14453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Obesity is considered a chronic inflammatory disease, the inflammatory factors, such as interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) and small inducible cytokine A5 (RANTES), are elevated in obese individuals. Pituitary adenylate cyclase-activating polypeptide (PACAP) suppresses anti-inflammatory cytokines and ameliorates glucose and lipid metabolism. Our previous study showed that Fas apoptosis inhibitory molecule (FAIM) is a new mediator of Akt2 signalling, increases the insulin signalling pathway and lipid metabolism. In this study, we found that PACAP promoted the expression of FAIM protein in a human hepatocyte cell line (L02). Overexpression of FAIM with lentivirus suppressed the expression of the inflammatory factor interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) and tumour necrosis factor alpha (TNF-α). Following treatment of obese mice with FAIM or PACAP for 2 weeks, inflammation was alleviated and the bodyweight and blood glucose levels were decreased. Overexpression of FAIM down-regulated the expression of adipogenesis proteins, including SREBP1, SCD1, FAS, SREBP2 and HMGCR, and up-regulated glycogen synthesis proteins, including Akt2 (Ser474) phosphorylation, GLUT2 and GSK-3β, in the liver of obese mice. However, down-regulation of FAIM with shRNA promotes obesity. Altogether, our data identified that FAIM mediates the function of PACAP in anti-inflammation, glucose regulation and lipid metabolism in obese liver.
Collapse
Affiliation(s)
- Xing Xiao
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - Pei Qiu
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - Hui‐Zhen Gong
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - Xue‐Ming Chen
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - Yan Sun
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - An Hong
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National engineering research center of genetic Medicine, Key laboratory of Bioengineering Medicine of Guangdong ProvinceJinan UniversityGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
7
|
Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019; 35:1085-1096. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor and non-motor dysfunctions. Currently, dopamine replacement therapy is mainly used to relieve the motor symptoms, while its long-term application can lead to various complications and does not cure the disease. Numerous studies have demonstrated that many brain-gut peptides have neuroprotective effects in vivo and in vitro, and may be a promising treatment for PD. In recent years, some progress has been made in studies on the neuroprotective effects of some newly-discovered brain-gut peptides, such as glucagon-like peptide 1, pituitary adenylate cyclase activating polypeptide, nesfatin-1, and ghrelin. However, there is still no systematic review on the neuroprotective effects common to these peptides. Thus, here we review the neuroprotective effects and the associated mechanisms of these four peptides, as well as other brain-gut peptides related to PD, in the hope of providing new ideas for the treatment of PD and related clinical research.
Collapse
Affiliation(s)
- Dong Dong
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology and Pathophysiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Sun ZP, Wu SP, Liang CD, Zhao CX, Sun BY. The synovial fluid neuropeptide PACAP may act as a protective factor during disease progression of primary knee osteoarthritis and is increased following hyaluronic acid injection. Innate Immun 2019; 25:255-264. [PMID: 30935267 PMCID: PMC6830887 DOI: 10.1177/1753425919839125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/15/2022] Open
Abstract
The correlation of serum and synovial fluid (SF) pituitary adenylate cyclase-activating polypeptide (PACAP) levels with disease progression of primary knee osteoarthritis (OA) was explored. Radiographic severity of OA was determined by Kellgren-Lawrence (K-L) grades. PACAP levels were measured by ELISA before treatment, and 4 and 8 wk following hyaluronic acid (HA) injection. Levels of IL-1β and MMP-3 were also detected. The numeric pain scale (NPS), revised Oxford Knee Score (OKS), and American Knee Society Score (AKSS) were employed to evaluate to symptomatic severity. Receiver-operating-characteristic (ROC) curve analysis was carried out to compare the diagnostic value of PACAP, IL-1β, and MMP-3 for the K-L grade. PACAP concentrations in SF but not serum were significantly lower in OA patients compared with controls. SF PACAP levels were negatively associated with K-L grades and higher NPS as well as worse AKSS and OKS. Further analysis demonstrated that PACAP concentration in SF was negatively correlated with expressions of IL-1β as well as MMP-3 and may act as a marker for radiographic progression along with MMP-3. Last, we found SF PACAP levels exhibited an incremental trend after HA injection. These findings confirmed the crucial role of PACAP deficiency in the development of primary knee OA.
Collapse
Affiliation(s)
- Zheng-Ping Sun
- Department of Orthopedics, Guangdong Province Second Hospital of
Traditional Chinese Medicine, Guangzhou, China
| | - Shao-Peng Wu
- Department of Orthopedics, Guangdong Province Second Hospital of
Traditional Chinese Medicine, Guangzhou, China
| | - Can-De Liang
- Department of Orthopedics, Guangdong Province Second Hospital of
Traditional Chinese Medicine, Guangzhou, China
| | - Chuan-Xi Zhao
- Department of Orthopedics, Guangdong Province Second Hospital of
Traditional Chinese Medicine, Guangzhou, China
| | - Bing-Yin Sun
- Department of Orthopedics, Shunde Hospital of Guangzhou
University of Chinese Medicine (ShunDe District Hospital of Chinese Medicine of
Foshan City), Foshan, China*The authors contributed equally to this work
| |
Collapse
|
9
|
Effects of Pituitary Adenylate Cyclase Activating Polypeptide in Human Proximal Tubule Cells Against Gentamicin Toxicity. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-017-9666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H, Huang J. Spatiotemporal Expression Changes of PACAP and Its Receptors in Retinal Ganglion Cells After Optic Nerve Crush. J Mol Neurosci 2018; 68:465-474. [PMID: 30415445 DOI: 10.1007/s12031-018-1203-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been demonstrated to play a crucial part in protecting retinal ganglion cells (RGCs) from apoptosis in various retinal injury animal models. PACAP has two basic groups of receptors: PACAP receptor type 1 (PAC1R) and vasoactive intestinal polypeptide/PACAP receptors (VPAC1R and VPAC2R). However, few studies illustrated the spatial and temporal expression changes of endogenous PACAP and its receptors in a rodent optic nerve crush (ONC) model. In this study, a significant upregulation of PACAP and PAC1R in the retina after ONC was observed in both protein and RNA levels. The peak level of PACAP and PAC1R expression could be found on the fifth day following ONC. In addition, immunofluorescent labeling indicated that PACAP and PAC1R were localized mainly in RGCs. On the contrary, VPAC1R and VPAC2R were hardly detected in the retina. Collectively, the spatiotemporal expression of PACAP and its high-affinity receptor PAC1R were remarkably changed after ONC, and mainly expressed in the ganglion cell layer of the retina. This suggested that the upregulation of PACAP and PAC1R may play a vital role in RGC death after ONC.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
12
|
Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev 2018; 39:404-422. [DOI: 10.1002/med.21513] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Jelena Lazarevic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Gordana Kocic
- Institute of Biochemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| | - Marina Deljanin-Ilic
- Institute for Cardiovascular Rehabilitation, Faculty of Medicine; University of Nis; 18205 Niska Banja Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; University of Ljubljana; Askerceva 7 SI-1000 Ljubljana Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine; University of Nis; Bulevar Dr Zorana Djindjica 81 18000 Nis Serbia
| |
Collapse
|
13
|
Eneman B, Elmonem MA, van den Heuvel LP, Khodaparast L, Khodaparast L, van Geet C, Freson K, Levtchenko E. Pituitary adenylate cyclase-activating polypeptide (PACAP) in zebrafish models of nephrotic syndrome. PLoS One 2017; 12:e0182100. [PMID: 28759637 PMCID: PMC5536324 DOI: 10.1371/journal.pone.0182100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an inhibitor of megakaryopoiesis and platelet function. Recently, PACAP deficiency was observed in children with nephrotic syndrome (NS), associated with increased platelet count and aggregability and increased risk of thrombosis. To further study PACAP deficiency in NS, we used transgenic Tg(cd41:EGFP) zebrafish with GFP-labeled thrombocytes. We generated two models for congenital NS, a morpholino injected model targeting nphs1 (nephrin), which is mutated in the Finnish-type congenital NS. The second model was induced by exposure to the nephrotoxic compound adriamycin. Nephrin RNA expression was quantified and zebrafish embryos were live-screened for proteinuria and pericardial edema as evidence of renal impairment. Protein levels of PACAP and its binding-protein ceruloplasmin were measured and GFP-labeled thrombocytes were quantified. We also evaluated the effects of PACAP morpholino injection and the rescue effects of PACAP-38 peptide in both congenital NS models. Nephrin downregulation and pericardial edema were observed in both nephrin morpholino injected and adriamycin exposed congenital NS models. However, PACAP deficiency was demonstrated only in the adriamycin exposed condition. Ceruloplasmin levels and the number of GFP-labeled thrombocytes remained unchanged in both models. PACAP morpholino injections worsened survival rates and the edema phenotype in both congenital NS models while injection with human PACAP-38 could only rescue the adriamycin exposed model. We hereby report, for the first time, PACAP deficiency in a NS zebrafish model as a consequence of adriamycin exposure. However, distinct from the human congenital NS, both zebrafish models retained normal levels of ceruloplasmin and thrombocytes. We further extend the renoprotective effects of the PACAP-38 peptide against adriamycin toxicity in zebrafish.
Collapse
Affiliation(s)
- Benedicte Eneman
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Mohamed A. Elmonem
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Lambertus P. van den Heuvel
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Laleh Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Ladan Khodaparast
- Department of Cellular and Molecular Medicine, Switch Laboratory, VIB, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
| | - Chris van Geet
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Department of Pediatric Nephrology & Growth and Regeneration, University Hospitals Leuven, KU Leuven – University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
14
|
He P, Kawamura H, Takemoto M, Maezawa Y, Ishikawa T, Ishibashi R, Sakamoto K, Shoji M, Hattori A, Yamaga M, Ide S, Ide K, Hayashi A, Tokuyama H, Kobayashi K, Yokote K. Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. J Nephrol 2016; 30:531-541. [DOI: 10.1007/s40620-016-0361-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023]
|
15
|
Shoji M, Kobayashi K, Takemoto M, Sato Y, Yokote K. Urinary podocalyxin levels were associated with urinary albumin levels among patients with diabetes. Biomarkers 2015; 21:164-7. [PMID: 26635084 DOI: 10.3109/1354750x.2015.1118551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy has dramatically increased worldwide. In this study, we measured urinary podocalyxin in 240 patients with diabetes. The relationship between urinary podocalyxin and clinical parameters and the effects of dipeptidyl peptidase-4 inhibitors (DPP4i) and alpha-glucosidase inhibitor (a-GI) on urinary podocalyxin levels were examined. Urinary podocalyxin levels were significantly higher in patients with microalbuminuria than in those with normoalbuminuria. Urinary podocalyxin levels were also significantly related to albumin-to-creatinine ratio. Neither DPP4i nor α-GI ameliorated the increase in urinary podocalyxin levels. Our results indicated that urinary podocalyxin will be not only an early marker but also a treatment target for DN.
Collapse
Affiliation(s)
- M Shoji
- a Department of Clinical Cell Biology and Medicine , Chiba University Graduate School of Medicine , Chiba , Japan .,b Department of Medicine , Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital , Chiba , Japan , and
| | - K Kobayashi
- a Department of Clinical Cell Biology and Medicine , Chiba University Graduate School of Medicine , Chiba , Japan .,b Department of Medicine , Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital , Chiba , Japan , and
| | - M Takemoto
- a Department of Clinical Cell Biology and Medicine , Chiba University Graduate School of Medicine , Chiba , Japan .,b Department of Medicine , Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital , Chiba , Japan , and
| | - Y Sato
- c Clinical Research Center, Chiba University Hospital , Chiba , Japan
| | - K Yokote
- a Department of Clinical Cell Biology and Medicine , Chiba University Graduate School of Medicine , Chiba , Japan .,b Department of Medicine , Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital , Chiba , Japan , and
| |
Collapse
|
16
|
Gorgoglione B, Carpio Y, Secombes CJ, Taylor NGH, Lugo JM, Estrada MP. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs. FISH & SHELLFISH IMMUNOLOGY 2015; 47:923-932. [PMID: 26481517 DOI: 10.1016/j.fsi.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens.
Collapse
Affiliation(s)
- Bartolomeo Gorgoglione
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK; CEFAS Weymouth Laboratory, Weymouth, England, UK
| | - Yamila Carpio
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK
| | | | - Juana María Lugo
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Pablo Estrada
- Aquatic Biotechnology Project, Centre for Genetic Engineering and Biotechnology, Havana, Cuba.
| |
Collapse
|