1
|
Martínez ME, Jorquera L, Poirrier P, Díaz K, Chamy R. Effect of Inoculum Size and Age, and Sucrose Concentration on Cell Growth to Promote Metabolites Production in Cultured Taraxacum officinale (Weber) Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1116. [PMID: 36903977 PMCID: PMC10004745 DOI: 10.3390/plants12051116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Pentacyclic triterpenes, including lupeol, α- amyrin, and β-amyrin, present a large range of biological activities including anti-inflammatory, anti-cancer, and gastroprotective properties. The phytochemistry of dandelion (Taraxacum officinale) tissues has been widely described. Plant biotechnology offers an alternative for secondary metabolite production and several active plant ingredients are already synthesized through in vitro cultures. This study aimed to establish a suitable protocol for cell growth and to determine the accumulation of α-amyrin and lupeol in cell suspension cultures of T. officinale under different culture conditions. To this end, inoculum density (0.2% to 8% (w/v)), inoculum age (2- to 10-week-old), and carbon source concentration (1%, 2.3%, 3.2%, and 5.5% (w/v)) were investigated. Hypocotyl explants of T. officinale were used for callus induction. Age, size, and sucrose concentrations were statistically significant in cell growth (fresh and dry weight), cell quality (aggregation, differentiation, viability), and triterpenes yield. The best conditions for establishing a suspension culture were achieved by using a 6-week-old callus at 4% (w/v) and 1% (w/v) of sucrose concentration. Results indicate that 0.04 (±0.02) α-amyrin and 0.03 (±0.01) mg/g lupeol can be obtained in suspension culture under these starting conditions at the 8th week of culture. The results of the present study provide a backdrop for future studies in which an elicitor could be incorporated to increase the large-scale production of α-amyrin and lupeol from T. officinale.
Collapse
Affiliation(s)
- María Eugenia Martínez
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| | - Lorena Jorquera
- Escuela de Ingeniería en Construcción y Transporte, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 237463, Chile
| | - Paola Poirrier
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España #1680, Valparaíso 2390123, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Brasil 2085, Valparaíso 237463, Chile
| |
Collapse
|
2
|
Alwakil NH, Mohamad Annuar MS, Jalil M. Synergistic Effects of Plant Growth Regulators and Elicitors on α-Humulene and Zerumbone Production in Zingiber zerumbet Smith Adventitious Root Cultures. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154744. [PMID: 35897918 PMCID: PMC9331258 DOI: 10.3390/molecules27154744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Zingiber zerumbet, also known as ‘Lempoyang’, possesses various phytomedicinal properties, such as anticancer, antimicrobial, anti-inflammatory, antiulcer, and antioxidant properties. Secondary metabolites possessing such properties i.e., zerumbone and α-humulene, are found dominantly in the plant rhizome. Synergistic effects of plant growth hormones and elicitors on in vitro α-humulene and zerumbone production, and biomass growth, in adventitious root culture (AdRC) of Z. zerumbet cultivated in a two-stage culture are reported. The culture was induced by supplementation of 1.0 mg/L NAA and 2.0 mg/L IBA (dark), and subsequently maintained in medium supplemented with 1 mg/L NAA and 3 mg/L BAP (16:08 light-dark cycle), yielded the production of zerumbone at 3440 ± 168 µg/g and α-humulene at 3759 ± 798 µg/g. Synergistic elicitation by 400 μM methyl jasmonate (MeJa) and 400 μM salicylic acid (SA) resulted in a 13-fold increase in zerumbone (43,000 ± 200 µg/g), while 400 μM MeJa and 600 μM SA produced a 4.3-fold increase in α-humulene (15,800 ± 5100 µg/g) compared to control.
Collapse
Affiliation(s)
- Nurul Huda Alwakil
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.A.); (M.S.M.A.)
| | - Mohamad Suffian Mohamad Annuar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (N.H.A.); (M.S.M.A.)
- Centre of Biotechnology for Agriculture Research (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mahanom Jalil
- Centre of Biotechnology for Agriculture Research (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Foundation Studies in Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Fruit derived callus and cell suspension culture as promising alternative sources for mogrosides production in Siraitia grosvenorii (Swingle) C. Jeffrey: a zero-caloric natural sweetener. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Balasubramani S, Ranjitha Kumari BD, Moola AK, Sathish D, Prem Kumar G, Srimurali S, Babu Rajendran R. Enhanced Production of β-Caryophyllene by Farnesyl Diphosphate Precursor-Treated Callus and Hairy Root Cultures of Artemisia vulgaris L. FRONTIERS IN PLANT SCIENCE 2021; 12:634178. [PMID: 33859659 PMCID: PMC8042329 DOI: 10.3389/fpls.2021.634178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/15/2021] [Indexed: 05/17/2023]
Abstract
Artemisia vulgaris L. produces a wide range of valuable secondary metabolites. The aim of the present study is to determine the effects of various concentrations of farnesyl diphosphate (FDP) on β-caryophyllene content in both callus and hairy root (HR) cultures regeneration from leaf explants of A. vulgaris L. Murashige and Skoog (MS) medium supplemented with various concentrations of 2,4-dichlorophenoxyacetic acid (2,4D; 4-13 μM), α-naphthaleneacetic acid (NAA; 5-16 μM), and FDP (1 and 3 μM) was used for callus induction and HR regeneration from leaf explants of A. vulgaris L. In this study, precursor-treated (2,4D 13.5 μM + FDP 3 μM) callus displayed the highest biomass fresh weight (FW)/dry weight (DW): 46/25 g, followed by NAA 10.7 μM + FDP 3 μM with FW/DW: 50/28 g. Two different Agrobacterium rhizogenes strains (A4 and R1000) were evaluated for HR induction. The biomass of HRs induced using half-strength MS + B5 vitamins with 3 μM FDP was FW/DW: 40/20 g and FW/DW: 41/19 g, respectively. To determine β-caryophyllene accumulation, we have isolated the essential oil from FDP-treated calli and HRs and quantified β-caryophyllene using gas chromatography-mass spectrometry (GC-MS). The highest production of β-caryophyllene was noticed in HR cultures induced using A4 and R1000 strains on half-strength MS medium containing 3 μM FDP, which produced 2.92 and 2.80 mg/ml β-caryophyllene, respectively. The optimized protocol can be used commercially by scaling up the production of a β-caryophyllene compound in a short span of time.
Collapse
Affiliation(s)
- Sundararajan Balasubramani
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- *Correspondence: Sundararajan Balasubramani,
| | - B. D. Ranjitha Kumari
- Department of Botany, Bharathidasan University, Tiruchirappalli, India
- B. D. Ranjitha Kumari,
| | | | - D. Sathish
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - G. Prem Kumar
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, China
| | - S. Srimurali
- ICMR-National Institute of Nutrition, Hyderabad, India
| | - R. Babu Rajendran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
5
|
Ahmadabadi HK, Vaez-Mahdavi MR, Kamalinejad M, Shariatpanahi SS, Ghazanfari T, Jafari F. Pharmacological and biochemical properties of Zingiber zerumbet (L.) Roscoe ex Sm. and its therapeutic efficacy on osteoarthritis of knee. J Family Med Prim Care 2019; 8:3798-3807. [PMID: 31879616 PMCID: PMC6924210 DOI: 10.4103/jfmpc.jfmpc_594_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/21/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) as the most frequent form of knee arthritis is one of the most annoying complications amongst old peoples. There are different pharmacological and non-pharmacological remedies which could be applied for treatment of knee OA. It's while, significant side effects mostly in patients who are older are the dangerous limiting factors. Integrative, supplementary, traditional remedies have been applied from long time ago in treatment of such chronic diseases like OA. Various topical and oral remedies have been presented in treatment of OA worldwide. In spite of the fact there are multiple remedies for reduction symptoms of patients who suffer from disorders and related inabilities which could enhance their life quality. Remedies which have been applied for a long time for treatment of OA have newly discovered to induce injury to some patients. On the other side, additional knowledge about alternative and supplementary remedies is a main way for enhancing health of patients who suffer from OA disorders. Zingiber zerumbet (Z. zerumbeton) is a kind of herb of the ginger family and is a natural compound with various biomedical characteristics like anti-proliferative, anti-inflammatory, and antioxidant effect. However, Z. zerumbet could be applied for reduction of OA symptoms because of its circulatory stimulant and anti-inflammatory effects. Anyway, up to now there is not any methodical literature review for evaluating the Z. zerumbet clinical effectiveness productiveness in treatment of OA. The main aim of the current study is to review scientific resources around therapeutic effectiveness of Zingiber zerumbet in treatment of adverse symptoms of OA disorder.
Collapse
Affiliation(s)
- Hassan Kiani Ahmadabadi
- Department of Iranian Traditional Medicine, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Shamsa Shariatpanahi
- Department of Internal Medicine, Mostafa Khomeini Hospital, Shahed University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Farhad Jafari
- Department of Health and Social Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
6
|
Ismail H, Kayani SS, Kayani SI, Mirza B, Waheed MT. Optimization of cell suspension culture of transformed and untransformed lettuce for the enhanced production of secondary metabolites and their pharmaceutical evaluation. 3 Biotech 2019; 9:339. [PMID: 31478032 PMCID: PMC6704210 DOI: 10.1007/s13205-019-1870-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
In vitro suspension culture techniques are cost effective for large-scale production of secondary metabolites. In the present study, firstly, suspension cultures of untransformed Lactuca sativa were prepared using different hormonal combinations and were subjected to different pH, temperature and salt concentrations. Maximum biomass was obtained for suspensions supplemented with 1.5 mg/L BAP and 0.1 mg/L NAA, at pH 5.8, temperature 28 °C and 0 mM NaCl concentration. Using these parameters, suspensions were produced for rol ABC- and rol C-transformed lines of L. sativa. All the transgenic lines showed prominent increase in fresh weight (FW) and dry weight (DW) with maximum values for rol ABC2 line producing 169.8 mg/mL FW and 25.3 mg/mL DW. The exudates of transformed and untransformed plants were tested for the antioxidant activity and in vivo assays on rats. Maximum phenolic content (261 μg/mL) and flavonoid content (637.6 μg/mL) were obtained for rol C1 transgenic line. Total antioxidant capacity was found maximum (1451.7 μg/mL) for untransformed lettuce, whereas rol C1 showed maximum total reducing power activity (637.6 μg/mL). In DPPH assay, maximum activity (104.7 μg/mL) was shown by rol ABC3 line. In rats analgesic assay, maximum activity (74.9%) was shown by rol C2. Line rol C1 showed maximum anti-inflammatory activity (69.2%) and maximum antidepressant activity (minimum immobility time of 55 s). Maximum anticoagulant activity was observed for rol ABC2 with maximum clotting time of 130 s. The present study could help in using lettuce suspension culture as platform for the enhanced production of important metabolites.
Collapse
Affiliation(s)
- Hammad Ismail
- 1Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700 Pakistan
| | | | - Sadaf Ilyas Kayani
- 2Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Bushra Mirza
- 2Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | | |
Collapse
|
7
|
Factors Affecting Cell Biomass and Flavonoid Production of Ficus deltoidea var. kunstleri in Cell Suspension Culture System. Sci Rep 2019; 9:9533. [PMID: 31267036 PMCID: PMC6606638 DOI: 10.1038/s41598-019-46042-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
A study was conducted to establish in vitro culture conditions for maximum production of biomass and flavonoid content for Ficus deltoidea var. kunstleri, locally named as Mas Cotek, known to have a wide variety of potential beneficial attributes for human health. Size of initial inoculum, cell aggregate and initial pH value have been suggested to influent content of biomass and flavonoid for cell suspension culture in several plant species. In the present study, leaf explants were cultured by cell suspension culture procedures in MSB5 basal medium supplemented with predetermined supplements of 30 g/L sucrose, 2.75 g/L gelrite, 2 mg/L picloram and 1 mg/L kinetin with continuous agitation of 120 rpm in a standard laboratory environment. Establishment of cell suspension culture was accomplished by culturing resulting callus in different initial fresh weight of cells (0.10, 0.25, 0.50, 1.0, and 2.0 g/25 mL of media) using similar basal medium. The results showed that the highest production of biomass (0.65 g/25 mL of media) was recorded from an initial inoculum size of 2.0 g/25 mL media, whereas the highest flavonoid (3.3 mg RE/g DW) was found in 0.5 g/25 mL of media. Cell suspension fractions classified according to their sizes (500–750 µm, 250–500 µm, and <250 µm). Large cell aggregate size (500–750 µm) cultured at pH 5.75 produced the highest cell biomass (0.28 g/25 mL media) and flavonoid content (3.3 mg RE/g DW). The study had established the optimum conditions for the production of total antioxidant and flavonoid content using DPPH and FRAP assays in cell suspension culture of F. deltoidea var. kunstleri.
Collapse
|
8
|
Kazmi A, Khan MA, Ali H. Biotechnological approaches for production of bioactive secondary metabolites in Nigella sativa:¬ an up-to-date review. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.575075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Kim HR, Rhee KJ, Eom YB. Anti-biofilm and antimicrobial effects of zerumbone against Bacteroides fragilis. Anaerobe 2019; 57:99-106. [DOI: 10.1016/j.anaerobe.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023]
|
10
|
Micropropagation, metabolite profiling, antioxidant activities and chromatographic determination of bioactive molecules across in vitro conditions and subsequent field cultivation stages of ‘Shampoo Ginger’ (Zingiber zerumbet L. Roscoe ex Sm). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
The interplay between light, plant growth regulators and elicitors on growth and secondary metabolism in cell cultures of Fagonia indica. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:153-160. [DOI: 10.1016/j.jphotobiol.2018.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022]
|
12
|
Tan JW, Israf DA, Tham CL. Major Bioactive Compounds in Essential Oils Extracted From the Rhizomes of Zingiber zerumbet (L) Smith: A Mini-Review on the Anti-allergic and Immunomodulatory Properties. Front Pharmacol 2018; 9:652. [PMID: 29973880 PMCID: PMC6019502 DOI: 10.3389/fphar.2018.00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Zingiber zerumbet (L) Smith is part of the Zingiberaceae family, one of the largest families of the plant kingdom. Z. zerumbet is a perennial, aromatic and tuberose plant that grows in humid locations where its center of distribution is located in the South-East Asia region. This plant has been traditionally used in foods and beverages and for ornamental purposes. Although many studies have reported on the biomedical applications of Z. zerumbet, the anti-allergic effects of Z. zerumbet and its major bioactive compounds have not yet been summarized in detail. Many major metabolites that have been reported to contain anti-allergic properties are terpene compounds which can be found in the essential oil extracted from the rhizomes of Z. zerumbet, such as zerumbone, limonene, and humulene. The rhizome is among the part of Z. zerumbet that has been widely used for many studies due to its exceptional biomedical applications. Most of these studies have shown that the essential oil, which can be obtained through hydro-distillation of the rhizomes from Z. zerumbet, is enriched with various active metabolites. Therefore, this mini-review provides an overview of the main aspects related to the anti-allergic and immunomodulatory properties of the major bioactive compounds found in the essential oils extracted from the rhizomes of Z. zerumbet, with the aim of demonstrating the importance of essential oil extracted from the rhizomes of Z. zerumbet and its bioactive compounds in the treatment of allergy and allergy-related diseases, in addition to other widely reported and extensively studied biomedical applications.
Collapse
Affiliation(s)
- Ji Wei Tan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| |
Collapse
|
13
|
Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, Mohamad R. A Review of the Biomedical Applications of Zerumbone and the Techniques for Its Extraction from Ginger Rhizomes. Molecules 2017; 22:E1645. [PMID: 28974019 PMCID: PMC6151537 DOI: 10.3390/molecules22101645] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
Collapse
Affiliation(s)
- Katayoon Kalantari
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Centre of Advanced Materials (CAM), Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Mona Moniri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Amin Boroumand Moghaddam
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Arbakariya Bin Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| | - Zahra Izadiyan
- Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
- Institute of Tropical Forestry and Forest Products, Univerciti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
14
|
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends. Crit Rev Biotechnol 2017; 37:833-851. [PMID: 28049347 DOI: 10.1080/07388551.2016.1261082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.
Collapse
Affiliation(s)
- Mohammad Ali
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan.,b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Bilal Haider Abbasi
- b Department of Biotechnology, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Pakistan
| | - Nisar Ahmad
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Haji Khan
- a Center for Biotechnology and Microbiology , Department of Biotechnology, University of Swat , Pakistan
| | - Gul Shad Ali
- c Mid-Florida Research and Education Center and Department of Plant Pathology , University of Florida/Institute of Food and Agricultural Sciences , Apopka , FL , USA
| |
Collapse
|
15
|
Koga AY, Beltrame FL, Pereira AV. Several aspects of Zingiber zerumbet: a review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|