1
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
2
|
Sinigiani G, De Michieli L, Porcari A, Zocchi C, Sorella A, Mazzoni C, Bisaccia G, De Luca A, Di Bella G, Gregori D, Perfetto F, Merlo M, Sinagra G, Iliceto S, Perazzolo Marra M, Corrado D, Ricci F, Cappelli F, Cipriani A. Atrial electrofunctional predictors of incident atrial fibrillation in cardiac amyloidosis. Heart Rhythm 2024; 21:725-732. [PMID: 38309449 DOI: 10.1016/j.hrthm.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is common in patients with cardiac amyloidosis (CA) and is a significant risk factor for heart failure hospitalization and thromboembolic events. OBJECTIVE This study was designed to investigate the atrial electrofunctional predictors of incident AF in CA. METHODS A multicenter, observational study was conducted in 4 CA referral centers including sinus rhythm patients with light-chain (AL) and transthyretin (ATTR) CA undergoing electrocardiography and cardiac magnetic resonance imaging. The primary end point was new-onset AF occurrence. RESULTS Overall, 96 patients (AL-CA, n = 40; ATTR-CA, n = 56) were enrolled. During an 18-month median follow-up (Q1-Q3, 7-29 months), 30 patients (29%) had incident AF. Compared with those without AF, patients with AF were older (79 vs 73 years; P = .001). They more frequently had ATTR (87% vs 45%; P < .001); electrocardiographic interatrial block (IAB), either partial (47% vs 21%; P = .011) or advanced (17% vs 3%; P = .017); and lower left atrial ejection fraction (LAEF; 29% vs 41%; P = .004). Age (hazard ratio [HR], 1.059; 95% CI, 1.002-1.118; P = .042), any type of IAB (HR, 2.211; 95% CI, 1.03-4.75; P = .041), and LAEF (HR, 0.967; 95% CI, 0.936-0.998; P = .044) emerged as independent predictors of incident AF. Patients exhibiting any type of IAB, LAEF <40%, and age >78 years showed a cumulative incidence for AF of 40% at 12 months. This risk was significantly higher than that carried by 1 (8.5%) or none (7.6%) of these 3 risk factors. CONCLUSION In patients with CA, older age, IAB on 12-lead electrocardiography, and reduced LAEF on cardiac magnetic resonance imaging are significant and independent predictors of incident AF. A closer screening for AF is advisable in CA patients carrying these features.
Collapse
Affiliation(s)
- Giulio Sinigiani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Laura De Michieli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Aldostefano Porcari
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Chiara Zocchi
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| | - Anna Sorella
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Carlotta Mazzoni
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Antonio De Luca
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Gianluca Di Bella
- Rare Cardiac Disease Center, Cardiology Unit, University of Messina, Messina, Italy
| | - Dario Gregori
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Federico Perfetto
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| | - Marco Merlo
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Center for Diagnosis and Treatment of Cardiomyopathies, Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesco Cappelli
- Tuscan Regional Amyloidosis Centre, Careggi University Hospital, Florence, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Gorman RA, Yakobov S, Polidovitch N, Debi R, Sanfrancesco VC, Hood DA, Lakin R, Backx PH. The effects of daily dose of intense exercise on cardiac responses and atrial fibrillation. J Physiol 2024; 602:569-596. [PMID: 38319954 DOI: 10.1113/jp285697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
Atrial fibrillation (AF) is a supraventricular tachyarrhythmia that is strongly associated with cardiovascular (CV) disease and sedentary lifestyles. Despite the benefits of exercise on overall health, AF incidence in high-level endurance athletes rivals that of CV disease patients, suggesting a J-shaped relationship with AF. To investigate the dependence of AF vulnerability on exercise, we varied daily swim durations (120, 180 or 240 min day-1 ) in 7-week-old male CD1 mice. We assessed mice after performing equivalent amounts of cumulative work during swimming (i.e. ∼700 L O2 kg-1 ), as determined from O2 consumption rates (V ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ ). The meanV ̇ O 2 ${\dot V_{{{\mathrm{O}}_2}}}$ during exercise increased progressively throughout the training period and was indistinguishable between the swim groups. Consistent with similar improvements in aerobic conditioning induced by swimming, skeletal muscle mitochondria content increased (P = 0.027) indistinguishably between exercise groups. Physiological ventricular remodelling, characterized by mild hypertrophy and left ventricular dilatation, was also similar between exercised mice without evidence of ventricular arrhythmia inducibility. By contrast, prolongation of daily swim durations caused progressive and vagal-dependent heart rate reductions (P = 0.008), as well as increased (P = 0.005) AF vulnerability. As expected, vagal inhibition prolonged (P = 0.013) atrial refractoriness, leading to reduced AF vulnerability, although still inducible in the 180 and 240 min swim groups. Accordingly, daily swim dose progressively increased atrial hypertrophy (P = 0.003), fibrosis (P < 0.001) and macrophage accumulation (P = 0.006) without differentially affecting the ventricular tissue properties. Thus, increasing daily exercise duration drives progressively adverse atrial-specific remodelling and vagal-dependent AF vulnerability despite robust and beneficial aerobic conditioning and physiological remodelling of ventricles and skeletal muscle. KEY POINTS: Previous studies have suggested that a J-shaped dose-response relationship exists between physical activity and cardiovascular health outcomes, with moderate exercise providing protection against many cardiovascular disease conditions, whereas chronic endurance exercise can promote atrial fibrillation (AF). We found that AF vulnerability increased alongside elevated atrial hypertrophy, fibrosis and inflammation as daily swim exercise durations in mice were prolonged (i.e. ≥180 min day-1 for 6 weeks). The MET-h week-1 (based on O2 measurements during swimming) needed to induce increased AF vulnerability mirrored the levels linked to AF in athletes. These adverse atria effects associated with excessive daily exercise occurred despite improved aerobic conditioning, skeletal muscle adaptation and physiological ventricular remodelling. We suggest that atrial-specific changes observed with exercise arise from excessive elevations in venous filling pressures during prolonged exercise bouts, which we argue has implications for all AF patients because elevated atrial pressures occur in most cardiovascular disease conditions as well as ageing which are linked to AF.
Collapse
Affiliation(s)
- Renée A Gorman
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Simona Yakobov
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Victoria C Sanfrancesco
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- Department of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, ON, Canada
- Department of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada
- Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Iwamiya S, Ihara K, Furukawa T, Sasano T. Sacubitril/valsartan attenuates atrial conduction disturbance and electrophysiological heterogeneity with ameliorating fibrosis in mice. Front Cardiovasc Med 2024; 11:1341601. [PMID: 38312235 PMCID: PMC10834649 DOI: 10.3389/fcvm.2024.1341601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background Sacubitril/valsartan (SacVal) has been shown to improve the prognosis of heart failure; however, whether SacVal reduces the occurrence of atrial fibrillation (AF) in heart failure has not yet been elucidated. In this study, we aimed to determine whether SacVal is effective in reducing the occurrence of AF in heart failure and identify the underlying mechanism of its electrophysiological effect in mice. Methods Adult male mice underwent transverse aortic constriction, followed by SacVal, valsartan, or vehicle treatment for two weeks. Electrophysiological study (EPS) and optical mapping were performed to assess the susceptibility to AF and the atrial conduction properties, and fibrosis was investigated using heart tissue and isolated cardiac fibroblasts (CFs). Results EPS analysis revealed that AF was significantly less inducible in SacVal-treated mice than in vehicle-treated mice. Optical mapping of the atrium showed that SacVal-treated and valsartan-treated mice restored the prolonged action potential duration (APD); however, only SacVal-treated mice showed the restoration of decreased conduction velocity (CV) compared to vehicle-treated mice. In addition, the electrophysiological distribution analysis demonstrated that heterogeneous electrophysiological properties were rate-dependent and increased heterogeneity was closely related to the susceptibility to AF. SacVal attenuated the increased heterogeneity of CV at short pacing cycle length in atria, whereas Val could not. Histological and molecular evaluation showed that SacVal exerted the anti-fibrotic effect on the atria. An in vitro study of CFs treated with natriuretic peptides and LBQ657, the metabolite and active form of sacubitril, revealed that C-type natriuretic peptide (CNP) combined with LBQ657 had an additional anti-fibrotic effect on CFs. Conclusions Our results demonstrated that SacVal can improve the conduction disturbance and heterogeneity through the attenuation of fibrosis in murine atria and reduce the susceptibility of AF in heart failure with pressure overload, which might be attributed to the enhanced function of CNP.
Collapse
Affiliation(s)
- Satoshi Iwamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kensuke Ihara
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-Informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
5
|
Ma J, Ren M, Li J, Zheng C, Chen Q, Ma S. Danqi soft caspule prevents atrial fibrillation by ameliorating left atrial remodeling through inhibiting cardiac fibroblasts differentiation and function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154134. [PMID: 35525237 DOI: 10.1016/j.phymed.2022.154134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Danqi soft capsule (DQ) is a Chinese herb medicine with a remarkable protective effect on cardio-cerebrovascular diseases. PURPOSE The study aimed to investigate the role and mechanism of DQ on left atrial (LA) remodeling and atrial fibrillation (AF) occurrence in rats with post-myocardial infarction (MI) induced heart failure (HF). METHODS MI in rats was established by ligation of the left anterior descending coronary artery. DQ was administered to the post-MI induced HF rats over a 4-week period. AF inducibility was detected using the transesophageal programmed electrical stimulation technology. Echocardiogram, histology, and western blot analysis were performed. Meanwhile, cardiac fibroblasts (CFs) were performed to determine the effects of DQ on CFs function by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT), flow cytometry, transwell assay and ELISA. RESULTS The DQ-treated rats showed lower rates of AF inducibility and shorter AF durations than the MI rats. Moreover, DQ inhibited fibrosis and increased the expression of Cx43 in the left atrium; it also inhibited the myofibroblasts differentiation by reducing the expression of cytokines TNF-α, IL-6, and TGF-β1 via the TGF-β1/Smad 3 pathway. In addition, DQ inhibited the proliferation, migration, and collagen secretion of CFs in vitro. CONCLUSIONS DQ reduces the risk of AF in post-MI HF rats by ameliorating LA arrhythmogenic substrate via inhibiting the function of proliferation, migration, collagen secretion, and myofibroblasts differentiation of CFs. Together, these results indicate the therapeutic potential of DQ in AF by delaying the progression of LA remodeling in post-MI-induced HF. Targeting CFs may be a novel prospective therapeutic avenue for AF after MI.
Collapse
Affiliation(s)
- Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jinxin Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Chaoyang Zheng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiuxiong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Palacio LC, Ugarte JP, Saiz J, Tobón C. The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study. Cells 2021; 10:cells10102769. [PMID: 34685750 PMCID: PMC8534881 DOI: 10.3390/cells10102769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF.
Collapse
Affiliation(s)
- Laura C. Palacio
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
| | - Juan P. Ugarte
- Grupo de Investigación en Modelamiento y Simulación Computacional (GIMSC), Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Javier Saiz
- Centro de Investigación e Innovación en Bioingeniería (CIB), Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Catalina Tobón
- Materiales Nanoestructurados y Biomodelación (MATBIOM), Universidad de Medellín, Medellín 050032, Colombia;
- Correspondence:
| |
Collapse
|
7
|
Lee MA, Raad N, Song MH, Yoo J, Lee M, Jang SP, Kwak TH, Kook H, Choi EK, Cha TJ, Hajjar RJ, Jeong D, Park WJ. The matricellular protein CCN5 prevents adverse atrial structural and electrical remodelling. J Cell Mol Med 2020; 24:11768-11778. [PMID: 32885578 PMCID: PMC7579720 DOI: 10.1111/jcmm.15789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Atrial structural remodelling including atrial hypertrophy and fibrosis is a key mediator of atrial fibrillation (AF). We previously demonstrated that the matricellular protein CCN5 elicits anti‐fibrotic and anti‐hypertrophic effects in left ventricles under pressure overload. We here determined the utility of CCN5 in ameliorating adverse atrial remodelling and arrhythmias in a murine model of angiotensin II (AngII) infusion. Advanced atrial structural remodelling was induced by AngII infusion in control mice and mice overexpressing CCN5 either through transgenesis (CCN5 Tg) or AAV9‐mediated gene transfer (AAV9‐CCN5). The mRNA levels of pro‐fibrotic and pro‐inflammatory genes were markedly up‐regulated by AngII infusion, which was significantly normalized by CCN5 overexpression. In vitro studies in isolated atrial fibroblasts demonstrated a marked reduction in AngII‐induced fibroblast trans‐differentiation in CCN5‐treated atria. Moreover, while AngII increased the expression of phosphorylated CaMKII and ryanodine receptor 2 levels in HL‐1 cells, these molecular features of AF were prevented by CCN5. Electrophysiological studies in ex vivo perfused hearts revealed a blunted susceptibility of the AAV9‐CCN5–treated hearts to rapid atrial pacing‐induced arrhythmias and concomitant reversal in AngII‐induced atrial action potential prolongation. These data demonstrate the utility of a gene transfer approach targeting CCN5 for reversal of adverse atrial structural and electrophysiological remodelling.
Collapse
Affiliation(s)
- Min-Ah Lee
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Nour Raad
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jimeen Yoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miyoung Lee
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seung Pil Jang
- Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Tae Hwan Kwak
- Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyun Kook
- Basic Research Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea
| | - Eun-Kyoung Choi
- Division of Cardiology, Kosin University Gospel Hospital, Busan, Korea
| | - Tae-Joon Cha
- Division of Cardiology, Kosin University Gospel Hospital, Busan, Korea
| | | | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, Ansan, Gyeonggi-do, Korea
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Bethphagen, S3-203, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
8
|
The Therapeutic Potential of MicroRNAs in Atrial Fibrillation. Mediators Inflamm 2020; 2020:3053520. [PMID: 32256190 PMCID: PMC7091547 DOI: 10.1155/2020/3053520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
One of the most globally prevalent supraventricular arrhythmias is atrial fibrillation (AF). Knowledge of the structures and functions of messenger RNA (mRNA) has recently increased. It is no longer viewed as solely an intermediate molecule between DNA and proteins but has come to be seen as a dynamic and modifiable gene regulator. This new perspective on mRNA has led to rising interest in it and its presence in research into new therapeutic schemes. This paper, therefore, focuses on microRNAs (miRNAs), which are small noncoding RNAs that regulate posttranscriptional gene expression and play a vital role in the physiology and normative development of cardiovascular systems. This means they play an equally vital role in the development and progression of cardiovascular diseases. In recent years, multiple studies have pinpointed particular miRNA expression profiles as being associated with varying histological features of AF. These studies have been carried out in both animal models and AF patients. The emergence of miRNAs as biomarkers and their therapeutic potential in AF patients will be discussed in the body of this paper.
Collapse
|
9
|
Invited review: hypertension and atrial fibrillation: epidemiology, pathophysiology, and implications for management. J Hum Hypertens 2019; 33:824-836. [DOI: 10.1038/s41371-019-0279-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
|
10
|
Suo Y, Yuan M, Li H, Zhang Y, Li Y, Fu H, Han F, Ma C, Wang Y, Bao Q, Li G. Sacubitril/Valsartan Improves Left Atrial and Left Atrial Appendage Function in Patients With Atrial Fibrillation and in Pressure Overload-Induced Mice. Front Pharmacol 2019; 10:1285. [PMID: 31736759 PMCID: PMC6830387 DOI: 10.3389/fphar.2019.01285] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
LCZ696 (sacubitril/valsartan) is an angiotensin receptor-neprilysin inhibitor and has shown beneficial effects in patients with heart failure. However, whether LCZ696 protects against left atrial (LA) and LA appendage (LAA) dysfunction is still unclear. The present study aimed to assess the efficacy of LCZ696 for improving the function of LA and LAA. We performed both a retrospective study comparing LCZ696 with angiotensin receptor blockers (ARBs) to assess the efficacy of LCZ696 in patients with atrial fibrillation and an animal study in a mouse model with pressure overload. LA peak systolic strain, LAA emptying flow velocity, and LAA ejection fraction (LAAEF) were significantly increased in patients with LCZ696 as compared with ARBs (p = 0.024, p = 0.036, p = 0.026, respectively). Users of LCZ696 had a lower incidence of spontaneous echocardiography contrast (p = 0.040). Next, patients were divided into two groups (LAAEF ≤ 20% and > 20%). Administration of LCZ696 in patients with LAAEF > 20% was more frequent than LAAEF ≤ 20% (p = 0.032). Even after controlling for LAA dysfunction-related risk factors (age, atrial fibrillation type, old myocardial infarction, hypertension, congestive heart failure, and prior stroke or transient ischemic attack), use of LCZ696 remained significantly associated with reduced probability of LAAEF ≤ 20% [odds ratio = 0.011; 95% confidence interval (0.000-0.533), p = 0.023]. To further confirmed effect of LCZ696 in LA function, we constructed a post-transverse aortic constriction model in mice. Mice with LCZ696 treatment showed lower LA dimension and higher left ventricular ejection fraction and LAA emptying flow velocity as compared with mice with vehicle or valsartan treatment. Meanwhile, as compared with vehicle or valsartan, LCZ696 significantly decreased LA fibrosis in mice. In summary, we provide evidence that LCZ696 may be more effective in improving LA and LAA function than ARBs in both humans and mice, which suggests that LCZ696 might be evaluated as a direct therapeutic for atrial remodeling and AF.
Collapse
Affiliation(s)
- Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hongmin Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huaying Fu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fei Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changhui Ma
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanyuan Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Hill MC, Montefiori LE, Scholman KT, Liu J, de Vries AAF, Boukens BJ, Ellinor PT, Goumans MJTH, Efimov IR, Nobrega MA, Barnett P, Martin JF, Christoffels VM. Identification of atrial fibrillation associated genes and functional non-coding variants. Nat Commun 2019; 10:4755. [PMID: 31628324 PMCID: PMC6802215 DOI: 10.1038/s41467-019-12721-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jia Liu
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cell Biology and Genetics, Center for Anti-ageing and Regenerative Medicine, Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Nanhai Ave, 3688, Shenzhen, China
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Antoine A F de Vries
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP, Utrecht, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovasular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Marie José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Igor R Efimov
- Department of Biomedical Engineering, George Washington University, Washington, DC, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, The University of Chicago, Chicago, USA
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Heart Institute, Houston, TX, 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Ciaccio EJ, Wan EY, Saluja DS, Acharya UR, Peters NS, Garan H. Addressing challenges of quantitative methodologies and event interpretation in the study of atrial fibrillation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:113-122. [PMID: 31416540 PMCID: PMC6748794 DOI: 10.1016/j.cmpb.2019.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 06/14/2019] [Indexed: 05/06/2023]
Abstract
Atrial fibrillation (AF) is the commonest arrhythmia, yet the mechanisms of its onset and persistence are incompletely known. Although techniques for quantitative assessment have been investigated, there have been few attempts to integrate this information to advance disease treatment protocols. In this review, key quantitative methods for AF analysis are described, and suggestions are provided for the coordination of the available information, and to develop foci and directions for future research efforts. Quantitative biologists may have an interest in this topic in order to develop machine learning and tools for arrhythmia characterization, but they may perhaps have a minimal background in the clinical methodology and in the types of observed events and mechanistic hypotheses that have thus far been developed. We attempt to address these issues via exploration of the published literature. Although no new data is presented in this review, examples are shown of current lines of investigation, and in particular, how electrogram analysis and whole-chamber quantitative modeling of the left atrium may be useful to characterize fibrillatory patterns of activity, so as to propose avenues for more efficacious acquisition and interpretation of AF data.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
| | - Elaine Y Wan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - Deepak S Saluja
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Hasan Garan
- Department of Medicine - Division of Cardiology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Jansen HJ, Mackasey M, Moghtadaei M, Liu Y, Kaur J, Egom EE, Tuomi JM, Rafferty SA, Kirkby AW, Rose RA. NPR-C (Natriuretic Peptide Receptor-C) Modulates the Progression of Angiotensin II–Mediated Atrial Fibrillation and Atrial Remodeling in Mice. Circ Arrhythm Electrophysiol 2019; 12:e006863. [DOI: 10.1161/circep.118.006863] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hailey J. Jansen
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Martin Mackasey
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Motahareh Moghtadaei
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Yingjie Liu
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Jaspreet Kaur
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Emmanuel E. Egom
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Jari M. Tuomi
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (J.M.T.)
| | - Sara A. Rafferty
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia (M. Moghtadaei, E.E.E., S.A.R.)
| | - Adam W. Kirkby
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| | - Robert A. Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
- Department of Physiology and Pharmacology (H.J.J., M. Mackasey, Y.L., J.K., A.W.K., R.A.R.), Cumming School of Medicine, University of Calgary, Alberta
| |
Collapse
|
14
|
Jansen HJ, Mackasey M, Moghtadaei M, Belke DD, Egom EE, Tuomi JM, Rafferty SA, Kirkby AW, Rose RA. Distinct patterns of atrial electrical and structural remodeling in angiotensin II mediated atrial fibrillation. J Mol Cell Cardiol 2018; 124:12-25. [PMID: 30273558 DOI: 10.1016/j.yjmcc.2018.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.
Collapse
Affiliation(s)
- Hailey J Jansen
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin Mackasey
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Motahareh Moghtadaei
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Darrell D Belke
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Emmanuel E Egom
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jari M Tuomi
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam W Kirkby
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
Han L, Li J. Canonical transient receptor potential 3 channels in atrial fibrillation. Eur J Pharmacol 2018; 837:1-7. [PMID: 30153442 DOI: 10.1016/j.ejphar.2018.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/08/2018] [Accepted: 08/24/2018] [Indexed: 02/08/2023]
Abstract
The pathogenesis of atrial fibrillation (AF) is largely dependent on structural remodeling and electrical reconfiguration, which in turn drive localized fibrosis. Canonical transient receptor potential 3 (TRPC3) channel is indispensable regulator of fibrosis development, promoting fibroblasts to transition into myofibroblasts via intracellular Ca2+ overload. TRPC3 is a non-voltage gated, non-selective cation channel that regulates the permeability of the cell to Ca2+. When subjected to various external physical and chemical stimuli, such as angiotensin II (AngII), mechanical stretch, hypoxia, or oxidative stress, TRPC3 coordinates with downstream signal transduction pathways to alter gene expression and thereby regulate a number of distinct pathological patterns and mechanisms. This review will focus on how TRPC3 affects AF pathogenesis by exploring the underlying mechanisms governing fibrosis associated with particular signaling proteins, ultimately highlighting the characteristics of TPRC3 that mark it as a novel therapeutic target for AF alleviation.
Collapse
Affiliation(s)
- Lu Han
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Juxiang Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
16
|
Ma J, Ma S, Yin C, Wu H. Shengmai San-derived herbal prevents the development of a vulnerable substrate for atrial fibrillation in a rat model of ischemic heart failure. Biomed Pharmacother 2018; 100:156-167. [PMID: 29428663 DOI: 10.1016/j.biopha.2018.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The study aimed to investigate whether a Shengmai San-derived herbal, Fumai granule (FM), which had a preventive effect on atrial fibrillation (AF) in myocardial infarction (MI)-induced heart failure (HF) rat and to determine the underlying mechanisms. DESIGN AND METHODS MI was induced by a ligation of the left anterior descending coronary artery. One week after MI surgery, FM was gavaged for 4 weeks. AF inducibility was detected by transesophageal programmed electrical stimulation technology. Multielectrode array measurements, echocardiogram, histology, and western blotting were performed. RESULTS The FM-treated group had lower rates of AF inducibility and shorter AF duration compared to the MI group. FM improved the conduction velocity and homogeneity, decreased left atrial positive fibrosis areas and expression of type I and III collagen, inhibited cardiac fibroblast to myofibroblast differential, and increased the expression of connexin 43 and connexin 40 in the left atrium. CONCLUSIONS These results suggest that FM reduced the AF inducibility after MI by improving the left atrial conduction function via inhibiting left atrial fibrosis and increasing the expression of connexin, indicating its benefit in preventing the MI-induced vulnerable substrate for AF.
Collapse
Affiliation(s)
- Jin Ma
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Shiyu Ma
- Department of Critical-Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Chunxia Yin
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, PR China
| | - Huanlin Wu
- Heart Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
17
|
Gambini E, Perrucci GL, Bassetti B, Spaltro G, Campostrini G, Lionetti MC, Pilozzi A, Martinelli F, Farruggia A, DiFrancesco D, Barbuti A, Pompilio G. Preferential myofibroblast differentiation of cardiac mesenchymal progenitor cells in the presence of atrial fibrillation. Transl Res 2018; 192:54-67. [PMID: 29245016 DOI: 10.1016/j.trsl.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/27/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is characterized by electrical, contractile, and structural remodeling mediated by interstitial fibrosis. It has been shown that human cardiac mesenchymal progenitor cells (CMPCs) can be differentiated into endothelial, smooth muscle, and fibroblast cells. Here, we have investigated, for the first time, the contribution of CMPCs in the fibrotic process occurring in AF. As expected, right auricolae samples displayed significantly higher fibrosis in AF vs control (CTR) patients. In tissue samples of AF patients only, double staining for c-kit and the myofibroblast marker α-smooth muscle actin (α-SMA) was detected. The number of c-kit-positive CMPC was higher in atrial subepicardial regions of CTR than AF cells. AF-derived CMPC (AF-CMPC) and CTR-derived CMPC (Ctr-CMPC) were phenotypically similar, except for CD90 and c-kit, which were significantly more present in AF and CTR cells, respectively. Moreover, AF showed a lower rate of population doubling and fold enrichment vs Ctr-CMPC. When exogenously challenged with the profibrotic transforming growth factor-β1 (TGF-β1), AF-CMPC showed a significantly higher nuclear translocation of SMAD2 than Ctr-CMPC. In addition, TGF-β1 treatment induced the upregulation of COL1A1 and COL1A2 in AF-CMPC only. Further, both a marked production of soluble collagen and α-SMA upregulation have been observed in AF-CMPC only. Finally, electrophysiological studies showed that the inwardly rectifying potassium current (IK1) was evenly present in AF- and Ctr-CMPC in basal conditions and similarly disappeared after TGF-β1 exposure. All together, these data suggest that AF steers the resident atrial CMPC compartment toward an electrically inert profibrotic phenotype.
Collapse
Affiliation(s)
- Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Gabriella Spaltro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulia Campostrini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Maria Chiara Lionetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Alberto Pilozzi
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Federico Martinelli
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Andrea Farruggia
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Dario DiFrancesco
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy; Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
18
|
Cho HC. Age is just a number: frailty better evaluates age-dependent heart rhythm defects. J Physiol 2018; 594:6805. [PMID: 27905134 DOI: 10.1113/jp273370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hee Cheol Cho
- Departments of Biomedical Engineering and Pediatrics, Emory University, Georgia Institute of Technology, 1760 Haygood Drive, HSRB E-184, Atlanta, GA, 30322, USA
| |
Collapse
|
19
|
Sánchez C, Bueno-Orovio A, Pueyo E, Rodríguez B. Atrial Fibrillation Dynamics and Ionic Block Effects in Six Heterogeneous Human 3D Virtual Atria with Distinct Repolarization Dynamics. Front Bioeng Biotechnol 2017; 5:29. [PMID: 28534025 PMCID: PMC5420585 DOI: 10.3389/fbioe.2017.00029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) usually manifests as reentrant circuits propagating through the whole atria creating chaotic activation patterns. Little is yet known about how differences in electrophysiological and ionic properties between patients modulate reentrant patterns in AF. The goal of this study is to quantify how variability in action potential duration (APD) at different stages of repolarization determines AF dynamics and their modulation by ionic block using a set of virtual whole-atria human models. Six human whole-atria models are constructed based on the same anatomical structure and fiber orientation, but with different electrophysiological phenotypes. Membrane kinetics for each whole-atria model are selected with distinct APD characteristics at 20, 50, and 90% repolarization, from an experimentally calibrated population of human atrial action potential models, including AF remodeling and acetylcholine parasympathetic effects. Our simulations show that in all whole-atria models, reentrant circuits tend to organize around the pulmonary veins and the right atrial appendage, thus leading to higher dominant frequency (DF) and more organized activation in the left atrium than in the right atrium. Differences in APD in all phases of repolarization (not only APD90) yielded quantitative differences in fibrillation patterns with long APD associated with slower and more regular dynamics. Long APD50 and APD20 were associated with increased interatrial conduction block and interatrial differences in DF and organization index, creating reentry instability and self-termination in some cases. Specific inhibitions of IK1, INaK, or INa reduce DF and organization of the arrhythmia by enlarging wave meandering, reducing the number of secondary wavelets, and promoting interatrial block in all six virtual patients, especially for the phenotypes with short APD at 20, 50, and/or 90% repolarization. This suggests that therapies aiming at prolonging the early phase of repolarization might constitute effective antiarrhythmic strategies for the pharmacological management of AF. In summary, simulations report significant differences in atrial fibrillatory dynamics resulting from differences in APD at all phases of repolarization.
Collapse
Affiliation(s)
- Carlos Sánchez
- Biosignal Interpretation and Computational Simulation (BSICoS), I3A and IIS, University of Zaragoza, Zaragoza, Spain.,Defense University Centre (CUD), General Military Academy of Zaragoza (AGM), Zaragoza, Spain
| | | | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), I3A and IIS, University of Zaragoza, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Atrial structure, function and arrhythmogenesis in aged and frail mice. Sci Rep 2017; 7:44336. [PMID: 28290548 PMCID: PMC5349540 DOI: 10.1038/srep44336] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF) is prevalent in aging populations; however not all individuals age at the same rate. Instead, individuals of the same chronological age can vary in health status from fit to frail. Our objective was to determine the impacts of age and frailty on atrial function and arrhythmogenesis in mice using a frailty index (FI). Aged mice were more frail and demonstrated longer lasting AF compared to young mice. Consistent with this, aged mice showed longer P wave duration and PR intervals; however, both parameters showed substantial variability suggesting differences in health status among mice of similar chronological age. In agreement with this, P wave duration and PR interval were highly correlated with FI score. High resolution optical mapping of the atria demonstrated reduced conduction velocity and action potential duration in aged hearts that were also graded by FI score. Furthermore, aged mice had increased interstitial fibrosis along with changes in regulators of extracellular matrix remodelling, which also correlated with frailty. These experiments demonstrate that aging results in changes in atrial structure and function that create a substrate for atrial arrhythmias. Importantly, these changes were heterogeneous due to differences in health status, which could be identified using an FI.
Collapse
|
21
|
Atrial fibrosis: an obligatory component of arrhythmia mechanisms in atrial fibrillation? J Geriatr Cardiol 2017; 14:174-178. [PMID: 28592960 PMCID: PMC5460063 DOI: 10.11909/j.issn.1671-5411.2017.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
22
|
Moghtadaei M, Jansen HJ, Mackasey M, Rafferty SA, Bogachev O, Sapp JL, Howlett SE, Rose RA. The impacts of age and frailty on heart rate and sinoatrial node function. J Physiol 2016; 594:7105-7126. [PMID: 27598221 DOI: 10.1113/jp272979] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Sinoatrial node (SAN) function declines with age; however, not all individuals age at the same rate and health status can vary from fit to frail. Frailty was quantified in young and aged mice using a non-invasive frailty index so that the impacts of age and frailty on heart rate and SAN function could be assessed. SAN function was impaired in aged mice due to alterations in electrical conduction, changes in SAN action potential morphology and fibrosis in the SAN. Changes in SAN function, electrical conduction, action potential morphology and fibrosis were correlated with, and graded by, frailty. This study shows that mice of the same chronological age have quantifiable differences in health status that impact heart rate and SAN function and that these differences in health status can be identified using our frailty index. ABSTRACT Sinoatrial node (SAN) dysfunction increases with age, although not all older adults are affected in the same way. This is because people age at different rates and individuals of the same chronological age vary in health status from very fit to very frail. Our objective was to determine the impacts of age and frailty on heart rate (HR) and SAN function using a new model of frailty in ageing mice. Frailty, which was quantified in young and aged mice using a frailty index (FI), was greater in aged vs. young mice. Intracardiac electrophysiology demonstrated that HR was reduced whereas SAN recovery time (SNRT) was prolonged in aged mice; however, both parameters showed heteroscedasticity suggesting differences in health status among mice of similar chronological age. Consistent with this, HR and corrected SNRT were correlated with, and graded by, FI score. Optical mapping of the SAN demonstrated that conduction velocity (CV) was reduced in aged hearts in association with reductions in diastolic depolarization (DD) slope and action potential (AP) duration. In agreement with in vivo results, SAN CV, DD slope and AP durations all correlated with FI score. Finally, SAN dysfunction in aged mice was associated with increased interstitial fibrosis and alterations in expression of matrix metalloproteinases, which also correlated with frailty. These findings demonstrate that age-related SAN dysfunction occurs in association with electrical and structural remodelling and that frailty is a critical determinant of health status of similarly aged animals that correlates with changes in HR and SAN function.
Collapse
Affiliation(s)
- Motahareh Moghtadaei
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hailey J Jansen
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Mackasey
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sara A Rafferty
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oleg Bogachev
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John L Sapp
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Division of Cardiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Schultz F, Hasan A, Alvarez-Laviada A, Miragoli M, Bhogal N, Wells S, Poulet C, Chambers J, Williamson C, Gorelik J. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:149-63. [PMID: 26777584 DOI: 10.1016/j.pbiomolbio.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts in human fetal hearts. Hypoxia further increased the number of human fetal and rat neonatal myofibroblasts. However, chronically administered UDCA reduced the number of myofibroblasts and prevented hypoxia-induced depolarisation. In conclusion, our results show that the protective effect of UDCA involves both the reduction of fibroblast differentiation into myofibroblasts, and hyperpolarisation of myofibroblasts, most likely through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia.
Collapse
Affiliation(s)
- Francisca Schultz
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK; Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Alveera Hasan
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Michele Miragoli
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK; Humanitas Clinical and Research Institute, Rozzano, Italy
| | - Navneet Bhogal
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Sarah Wells
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Claire Poulet
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
| | - Jenny Chambers
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Catherine Williamson
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK; Women's Health Academic Centre, King's College London, London, United Kingdom
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK.
| |
Collapse
|
24
|
Hoang-Trong TM, Ullah A, Jafri MS. Calcium Sparks in the Heart: Dynamics and Regulation. ACTA ACUST UNITED AC 2015; 6:203-214. [PMID: 27212876 DOI: 10.2147/rrb.s61495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calcium (Ca2+) plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum. Ca2+sparks are the elementary events of calcium release from the sarcoplasmic reticulum. Therefore, understanding the dynamics of Ca2+sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions may develop that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias.
Collapse
Affiliation(s)
- Tuan M Hoang-Trong
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - Aman Ullah
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - M Saleet Jafri
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030; Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 20201
| |
Collapse
|