1
|
Smith J, Tan JKH, Short C, O'Neill H, Moro C. The effect of myeloablative radiation on urinary bladder mast cells. Sci Rep 2024; 14:6219. [PMID: 38485999 PMCID: PMC10940702 DOI: 10.1038/s41598-024-56655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Radiation-induced cystitis is an inflammatory condition affecting the urinary bladder, which can develop as a side effect of abdominopelvic radiotherapy, specifically external-beam radiation therapy or myeloablative radiotherapy. A possible involvement of mast cells in the pathophysiology of radiation-induced cystitis has been indicated in cases of external-beam radiation therapy; however, there is no evidence that these findings apply to the myeloablative aetiology. As such, this study investigated potential changes to urinary bladder mast cell prevalence when exposed to myeloablative radiation. Lethally irradiated C57BL/6J mice that received donor rescue bone marrow cells exhibited an increased mast cell frequency amongst host leukocytes 1 week following irradiation. By 4 weeks, no significant difference in either frequency or cell density was observed. However mast cell diameter was smaller, and a significant increase in mast cell number in the adventitia was observed. This study highlights that mast cells constitute a significant portion of the remaining host leukocyte population following radiation exposure, with changes to mast cell distribution and decreased cell diameter four weeks following radiation-induced injury.
Collapse
Affiliation(s)
- Jessica Smith
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Jonathan Kah Huat Tan
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christie Short
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Helen O'Neill
- Clem Jones Centre for Regenerative Medicine, Bond University, Gold Coast, QLD, 4226, Australia
| | - Christian Moro
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4226, Australia.
| |
Collapse
|
2
|
Dolivo DM. Anti-fibrotic effects of pharmacologic FGF-2: a review of recent literature. J Mol Med (Berl) 2022; 100:847-860. [PMID: 35484303 DOI: 10.1007/s00109-022-02194-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
Fibrosis is a process of pathological tissue repair that replaces damaged, formerly functional tissue with a non-functional, collagen-rich scar. Complications of fibrotic pathologies, which can arise in numerous organs and from numerous conditions, result in nearly half of deaths in the developed world. Despite this, therapies that target fibrosis at its mechanistic roots are still notably lacking. The ubiquity of the occurrence of fibrosis in myriad organs emphasizes the fact that there are shared mechanisms underlying fibrotic conditions, which may serve as common therapeutic targets for multiple fibrotic diseases of varied organs. Thus, study of the basic science of fibrosis and of anti-fibrotic modalities is critical to therapeutic development and may have potential to translate across organs and disease states. Fibroblast growth factor 2 (FGF-2) is a broadly studied member of the fibroblast growth factors, a family of multipotent cytokines implicated in diverse cellular and tissue processes, which has previously been recognized for its anti-fibrotic potential. However, the mechanisms underlying this potential are not fully understood, nor is the potential for its use to ameliorate fibrosis in diverse pathologies and tissues. Presented here is a review of recent literature that sheds further light on these questions, with the hopes of inspiring further research into the mechanisms underlying the anti-fibrotic activities of FGF-2, as well as the disease conditions for which pharmacologic FGF-2 might be a useful option in the future.
Collapse
|
3
|
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, Chaykovskaya A, Makhanova A, Bukkieva T, Kayumova E, Combs S, Shevtsov M. Adhesion Molecules ICAM-1 and PECAM-1 as Potential Biomarkers of Central Nervous System Damage in Women Breast Cancer Survivors. PATHOPHYSIOLOGY 2022; 29:52-65. [PMID: 35366289 PMCID: PMC8952280 DOI: 10.3390/pathophysiology29010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common tumor in women worldwide with high mortality rates. Surgical methods followed by radio–chemotherapy are used to treat these tumors. Such treatment can lead to various side effects, including neurological complications. The development of a reliable biomarker to predict the onset of CNS complications could improve clinical outcomes. In the current study, ICAM-1 and PECAM-1 serum levels were measured as potential biomarkers in 45 female patients in a long-term follow-up period after breast cancer treatment, and compared to 25 age-matched female healthy volunteers. Serum levels of both biomarkers, ICAM-1 and PECAM-1 were significantly higher in patients after breast cancer treatment and could be associated with cognitive dysfunction, depression, and vestibulocerebellar ataxia. In conclusion, our results provide a first hint that elevated serum levels of ICAM-1 and PECAM-1 could serve as early predictive biomarkers in breast cancer survivors that might help to improve the management of these patients.
Collapse
Affiliation(s)
- Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Nikita Trofimov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Mariya Topuzova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Alexandra Chaykovskaya
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Evgeniya Kayumova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
| | - Stephanie Combs
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (T.B.); (E.K.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 Saint Petersburg, Russia
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
- Correspondence: ; Tel.: +49-173-1488882
| |
Collapse
|
4
|
Asparuhova MB, Stähli A, Guldener K, Sculean A. A Novel Volume-Stable Collagen Matrix Induces Changes in the Behavior of Primary Human Oral Fibroblasts, Periodontal Ligament, and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22084051. [PMID: 33919968 PMCID: PMC8070954 DOI: 10.3390/ijms22084051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-β1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-β1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Maria B. Asparuhova
- Dental Research Center, Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
- Correspondence:
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Kevin Guldener
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| |
Collapse
|
5
|
X‑irradiation induces acute and early term inflammatory responses in atherosclerosis‑prone ApoE‑/‑ mice and in endothelial cells. Mol Med Rep 2021; 23:399. [PMID: 33786610 PMCID: PMC8025474 DOI: 10.3892/mmr.2021.12038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
Thoracic radiotherapy is an effective treatment for many types of cancer; however it is also associated with an increased risk of developing cardiovascular disease (CVD), appearing mainly ≥10 years after radiation exposure. The present study investigated acute and early term physiological and molecular changes in the cardiovascular system after ionizing radiation exposure. Female and male ApoE‑/‑ mice received a single exposure of low or high dose X‑ray thoracic irradiation (0.1 and 10 Gy). The level of cholesterol and triglycerides, as well as a large panel of inflammatory markers, were analyzed in serum samples obtained at 24 h and 1 month after irradiation. The secretion of inflammatory markers was further verified in vitro in coronary artery and microvascular endothelial cell lines after exposure to low and high dose of ionizing radiation (0.1 and 5 Gy). Local thoracic irradiation of ApoE‑/‑ mice increased serum growth differentiation factor‑15 (GDF‑15) and C‑X‑C motif chemokine ligand 10 (CXCL10) levels in both female and male mice 24 h after high dose irradiation, which were also secreted from coronary artery and microvascular endothelial cells in vitro. Sex‑specific responses were observed for triglyceride and cholesterol levels, and some of the assessed inflammatory markers as detailed below. Male ApoE‑/‑ mice demonstrated elevated intercellular adhesion molecule‑1 and P‑selectin at 24 h, and adiponectin and plasminogen activator inhibitor‑1 at 1 month after irradiation, while female ApoE‑/‑ mice exhibited decreased monocyte chemoattractant protein‑1 and urokinase‑type plasminogen activator receptor at 24 h, and basic fibroblast growth factor 1 month after irradiation. The inflammatory responses were mainly significant following high dose irradiation, but certain markers showed significant changes after low dose exposure. The present study revealed that acute/early inflammatory responses occurred after low and high dose thoracic irradiation. However, further research is required to elucidate early asymptomatic changes in the cardiovascular system post thoracic X‑irradiation and to investigate whether GDF‑15 and CXCL10 could be considered as potential biomarkers for the early detection of CVD risk in thoracic radiotherapy‑treated patients.
Collapse
|
6
|
Jang H, Kwak SY, Park S, Kim K, Kim YH, Na J, Kim H, Jang WS, Lee SJ, Kim MJ, Myung JK, Shim S. Pravastatin Alleviates Radiation Proctitis by Regulating Thrombomodulin in Irradiated Endothelial Cells. Int J Mol Sci 2020; 21:ijms21051897. [PMID: 32164317 PMCID: PMC7084904 DOI: 10.3390/ijms21051897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022] Open
Abstract
Although radiotherapy plays a crucial in the management of pelvic tumors, its toxicity on surrounding healthy tissues such as the small intestine, colon, and rectum is one of the major limitations associated with its use. In particular, proctitis is a major clinical complication of pelvic radiotherapy. Recent evidence suggests that endothelial injury significantly affects the initiation of radiation-induced inflammation. The damaged endothelial cells accelerate immune cell recruitment by activating the expression of endothelial adhesive molecules, which participate in the development of tissue damage. Pravastatin, a cholesterol lowering drug, exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells and inhibits the interaction of leukocytes and damaged endothelial cells. Here, we aimed to investigate the effects of pravastatin on radiation-induced endothelial damage in human umbilical vein endothelial cell and a murine proctitis model. Pravastatin attenuated epithelial damage and inflammatory response in irradiated colorectal lesions. In particular, pravastatin improved radiation-induced endothelial damage by regulating thrombomodulin (TM) expression. In addition, exogenous TM inhibited leukocyte adhesion to the irradiated endothelial cells. Thus, pravastatin can inhibit endothelial damage by inducing TM, thereby alleviating radiation proctitis. Therefore, we suggest that pharmacological modulation of endothelial TM may limit intestinal inflammation after irradiation.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Seo-Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Young-heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Min Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Correspondence: ; Tel.: +82-2-3399-5873
| |
Collapse
|
7
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
8
|
Wei J, Xu H, Liu Y, Li B, Zhou F. Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells. Oncotarget 2017; 8:20842-20850. [PMID: 28209920 PMCID: PMC5400550 DOI: 10.18632/oncotarget.15356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
The pathophysiological mechanism involved in the sustained endothelial secretion of cytokines that leads to fibrosis 6–16 months after radiotherapy remains unclear. Angiotensin II (Ang II) is produced by the endothelium in response to stressing stimuli, like radiation, and may induce the synthesis of TGF-β, a profibrotic cytokine. In this study we tested the hypothesis that captopril, an angiotensin-converting enzyme (ACE) inhibitor, inhibits or attenuates radiation-induced endothelial TGF-β1 secretion. The human endothelial hybrid cell line EA.HY926 was irradiated with split doses of x-rays (28 Gy delivered in 14 fractions of 2 Gy). TGF-β1 mRNA, TNF-α mRNA and TGF-β1 protein levels were evaluated by RT-PCR and western blotting each month until the fifth month post radiation. Ang II was detected using radioimmunoassays, NF-κB activity was examined using EMSA, and western blotting was used to detect the expression of Iκ-Bα. To explore the role of Ang II on radiation-induced TGF-β1 release and Iκ-Bα expression, captopril was added to cultured cells before, during, or after irradiation. Sustained strong expression of TGF-β1 was observed after conventional fractionated irradiation. TNF-α, Ang II, and NF-κB activity were also increased in EA.Hy926 cells after radiation. Captopril decreased Ang II expression, inhibited the NF-κB pathway and reduced TGF-β1 expression. These data suggest that captopril might protect the endothelium from radiation-induced injury.
Collapse
Affiliation(s)
- Jingni Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yinyin Liu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Baiyu Li
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
9
|
The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury. Stem Cells Int 2016; 2016:3679047. [PMID: 27051426 PMCID: PMC4802014 DOI: 10.1155/2016/3679047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI.
Collapse
|
10
|
Ye L, Yang Y, Zhang X, Cai P, Li R, Chen D, Wei X, Zhang X, Xu H, Xiao J, Li X, Lin L, Zhang H. The Role of bFGF in the Excessive Activation of Astrocytes Is Related to the Inhibition of TLR4/NFκB Signals. Int J Mol Sci 2015; 17:ijms17010037. [PMID: 26729092 PMCID: PMC4730282 DOI: 10.3390/ijms17010037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023] Open
Abstract
Astrocytes have critical roles in immune defense, homeostasis, metabolism, and synaptic remodeling and function in the central nervous system (CNS); however, excessive activation of astrocytes with increased intermediate filaments following neuronal trauma, infection, ischemia, stroke, and neurodegenerative diseases results in a pro-inflammatory environment and promotes neuronal death. As an important neurotrophic factor, the secretion of endogenous basic fibroblast growth factor (bFGF) contributes to the protective effect of neuronal cells, but the mechanism of bFGF in reactive astrogliosis is still unclear. In this study, we demonstrated that exogenous bFGF attenuated astrocyte activation by reducing the expression of glial fibrillary acidic protein (GFAP) and other markers, including neurocan and vimentin, but not nestin and decreased the levels of pro-inflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), via the regulation of the upstream toll-like receptor 4/nuclear factor κB (TLR4/NFκB) signaling pathway. Our study suggests that the function of bFGF is not only related to the neuroprotective and neurotrophic effect but also involved in the inhibition of excessive astrogliosis and glial scarring after neuronal injury.
Collapse
Affiliation(s)
- Libing Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ying Yang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center, Li Huili Hospital, Ningbo 315040, China.
| | - Pingtao Cai
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Rui Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Daqing Chen
- Emergency Department, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Cixi, Ningbo 315300, China.
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo 315040, China.
| | - Huazi Xu
- Department of Orthopaedics, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Li Lin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|