1
|
Mohajeri Khorasani A, Raghibi A, Haj Mohammad Hassani B, Bolbolizadeh P, Amali A, Sadeghi M, Farshidi N, Dehghani A, Mousavi P. Decoding the Role of NEIL1 Gene in DNA Repair and Lifespan: A Literature Review with Bioinformatics Analysis. Adv Biol (Weinh) 2024; 8:e2300708. [PMID: 39164210 DOI: 10.1002/adbi.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/21/2024] [Indexed: 08/22/2024]
Abstract
Longevity, the length of an organism's lifespan, is impacted by environmental factors, metabolic processes, and genetic determinants. The base excision repair (BER) pathway is crucial for maintaining genomic integrity by repairing oxidatively modified base lesions. Nei-like DNA Glycosylase 1 (NEIL1), part of the BER pathway, is vital in repairing oxidative bases in G-rich DNA regions, such as telomeres and promoters. Hence, in this comprehensive review, it have undertaken a meticulous investigation of the intricate association between NEIL1 and longevity. The analysis delves into the multifaceted aspects of the NEIL1 gene, its various RNA transcripts, and the diverse protein isoforms. In addition, a combination of bioinformatic analysis is conducted to identify NEIL1 mutations, transcription factors, and epigenetic modifications, as well as its lncRNA/pseudogene/circRNA-miRNA-mRNA regulatory network. The findings suggest that the normal function of NEIL1 is a significant factor in human health and longevity, with defects in NEIL1 potentially leading to various cancers and related syndromes, Alzheimer's disease, obesity, and diabetes.
Collapse
Affiliation(s)
- Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Alireza Raghibi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
| | - Behzad Haj Mohammad Hassani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pedram Bolbolizadeh
- Student Research Committee, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Arian Amali
- School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahboubeh Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Narges Farshidi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
- USERN Office, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Aghdas Dehghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, 7916613885, Iran
| |
Collapse
|
2
|
Sayed IM, Chakraborty A, Inouye K, Dugan L, Tocci S, Advani I, Park K, Hazra TK, Das S, Crotty Alexander LE. E-cigarettes increase the risk of adenoma formation in murine colorectal cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609469. [PMID: 39253444 PMCID: PMC11383026 DOI: 10.1101/2024.08.23.609469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.cig vaping promotes inflammation and gut leakiness. Further, E.cig vaping increases tumorigenesis in oral and lung epithelial cells by inducing mutations and suppressing host DNA repair enzymes. It is well known that cigarette (cig) smoking increases the risk of colorectal cancer (CRC). To date, it is unknown whether E.cig vaping impacts CRC development. Methods A mouse model of human familial adenomatous polyposis (CPC-APC) was utilized wherein a mutation in the adenomatous polyposis coli (APC) gene, CDX2-Cre-APCMin/+, leads to the development of colon adenomas within 16 weeks. Mice were exposed to air (controls), E.cig vaping, cig, or both (dual exposure). After 4 weeks of 2-hour exposures per day (1 hour of each for dual exposures), the colon was collected and assessed for polyp number and pathology scores by microscopy. Expression of inflammatory cytokines and cancer stem cell markers were quantified. DNA damage such as double-strand DNA breaks was evaluated by immunofluorescence, western blot and gene-specific long amplicon qPCR. DNA repair enzyme levels (NEIL-2, NEIL-1, NTH1, and OGG1) were quantified by western blot. Proliferation markers were assessed by RT-qPCR and ELISA. Results CPC-APC mice exposed to E.cig, cig, and dual exposure developed a higher number of polyps compared to controls. Inflammatory proteins, DNA damage, and cancer stemness markers were higher in E-cig, cig, and dual-exposed mice as well. DNA damage was found to be associated with the suppression of DNA glycosylases, particularly with NEIL-2 and NTH1. E.cig and dual exposure both stimulated cancer cell stem markers (CD44, Lgr-5, DCLK1, and Ki67). The effect of E.cigs on polyp formation and CRC development was less than that of cigs, while dual exposure was more tumorigenic than either of the inhalants alone. Conclusion E.cig vaping promotes CRC by stimulating inflammatory pathways, mediating DNA damage, and upregulating transcription of cancer stem cell markers. Critically, combining E.cig vaping with cig smoking leads to higher levels of tumorigenesis. Thus, while the chemical composition of these two inhalants, E.cigs and cigs, is highly disparate, they both drive the development of cancer and when combined, a highly common pattern of use, they can have additive or synergistic effects.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kaili Inouye
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Leanne Dugan
- Department of Pathology, University of California, San Diego, CA, 92093, USA
| | - Stefania Tocci
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ira Advani
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Kenneth Park
- Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA, 92093, USA
- Department of Biomedical & Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Laura E. Crotty Alexander
- Department of Medicine, University of California, San Diego, CA, 92093, USA
- Medicine Service, VA San Diego Healthcare System, San Diego, CA, 92161, USA
| |
Collapse
|
3
|
Oswalt LE, Eichman BF. NEIL3: A unique DNA glycosylase involved in interstrand DNA crosslink repair. DNA Repair (Amst) 2024; 139:103680. [PMID: 38663144 PMCID: PMC11162926 DOI: 10.1016/j.dnarep.2024.103680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
Endonuclease VIII-like 3 (NEIL3) is a versatile DNA glycosylase that repairs a diverse array of chemical modifications to DNA. Unlike other glycosylases, NEIL3 has a preference for lesions within single-strand DNA and at single/double-strand DNA junctions. Beyond its canonical role in base excision repair of oxidized DNA, NEIL3 initiates replication-dependent interstrand DNA crosslink repair as an alternative to the Fanconi Anemia pathway. This review outlines our current understanding of NEIL3's biological functions, role in disease, and three-dimensional structure as it pertains to substrate specificity and catalytic mechanism.
Collapse
Affiliation(s)
- Leah E Oswalt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
4
|
Shukla D, Mandal T, Srivastava AK. Neil 1 deficiency facilitates chemoresistance through upregulation of RAD18 expression in ovarian cancer stem cells. Biochem Biophys Res Commun 2024; 712-713:149907. [PMID: 38636303 DOI: 10.1016/j.bbrc.2024.149907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Over the past decades, cancer stem cells (CSCs) have emerged as a critical subset of tumor cells associated with tumor recurrence and resistance to chemotherapy. Understanding the mechanisms underlying CSC-mediated chemoresistance is imperative for improving cancer therapy outcomes. This study delves into the regulatory role of NEIL1, a DNA glycosylase, in chemoresistance in ovarian CSCs. We first observed a decreased expression of NEIL1 in ovarian CSCs, suggesting its potential involvement in CSC regulation. Using pan-cancer analysis, we confirmed the diminished NEIL1 expression in ovarian tumors compared to normal tissues. Furthermore, NEIL1 downregulation correlated with an increase in stemness markers and enrichment of CSCs, highlighting its role in modulating CSC phenotype. Further mechanistic investigation revealed an inverse correlation between NEIL1 and RAD18 expression in ovarian CSCs. NEIL1 depletion led to heightened RAD18 expression, promoting chemoresistance possibly via enhancing Translesion DNA Synthesis (TLS)-mediated DNA lesion bypass. Moreover, dowregulation of NEIL1 results in reduced DNA damage accumulation and suppressed apoptosis in ovarian cancer. Overall, our findings unveil a novel mechanism involving NEIL1 and RAD18 in regulating chemoresistance in ovarian CSCs. Targeting this NEIL1-RAD18 axis may offer promising therapeutic strategies for combating chemoresistance and improving ovarian cancer treatment outcomes.
Collapse
Affiliation(s)
- Devendra Shukla
- CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tanima Mandal
- CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Kumar Srivastava
- CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Hua AB, Sweasy JB. Functional roles and cancer variants of the bifunctional glycosylase NEIL2. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 1:40-56. [PMID: 37310399 DOI: 10.1002/em.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Over 70,000 DNA lesions occur in the cell every day, and the inability to properly repair them can lead to mutations and destabilize the genome, resulting in carcinogenesis. The base excision repair (BER) pathway is critical for maintaining genomic integrity by repairing small base lesions, abasic sites and single-stranded breaks. Monofunctional and bifunctional glycosylases initiate the first step of BER by recognizing and excising specific base lesions, followed by DNA end processing, gap filling, and finally nick sealing. The Nei-like 2 (NEIL2) enzyme is a critical bifunctional DNA glycosylase in BER that preferentially excises cytosine oxidation products and abasic sites from single-stranded, double-stranded, and bubble-structured DNA. NEIL2 has been implicated to have important roles in several cellular functions, including genome maintenance, participation in active demethylation, and modulation of the immune response. Several germline and somatic variants of NEIL2 with altered expression and enzymatic activity have been reported in the literature linking them to cancers. In this review, we provide an overview of NEIL2 cellular functions and summarize current findings on NEIL2 variants and their relationship to cancer.
Collapse
Affiliation(s)
- Anh B Hua
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
6
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Almalki E, Al-Amri A, Alrashed R, Al-Zharani M, Semlali A. The Curcumin Analog PAC Is a Potential Solution for the Treatment of Triple-Negative Breast Cancer by Modulating the Gene Expression of DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24119649. [PMID: 37298600 DOI: 10.3390/ijms24119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Breast Cancer (BC) is one of the most common and challenging cancers among females worldwide. Conventional treatments for oral cancer rely on the use of radiology and surgery accompanied by chemotherapy. Chemotherapy presents many side effects, and the cells often develop resistance to this chemotherapy. It will be urgent to adopt alternative or complementary treatment strategies that are new and more effective without these negative effects to improve the well-being of patients. A substantial number of epidemiological and experimental studies reported that many compounds are derived from natural products such as curcumin and their analogs, which have a great deal of beneficial anti-BC activity by inducing apoptosis, inhibiting cell proliferation, migration, and metastasis, modulating cancer-related pathways, and sensitizing cells to radiotherapy and chemotherapy. In the present study, we investigated the effect of the curcumin-analog PAC on DNA repair pathways in MCF-7 and MDA-MB-231 human breast-cancer cell lines. These pathways are crucial for genome maintenance and cancer prevention. MCF-7 and MDA-MB-231 cells were exposed to PAC at 10 µM. MTT and LDH assays were conducted to evaluate the effects of PAC on cell proliferation and cytotoxicity. Apoptosis was assessed in breast cancer cell lines using flow cytometry with annexin/Pi assay. The expression of proapoptotic and antiapoptotic genes was determined by RT-PCR to see if PAC is active in programming cell death. Additionally, DNA repair signaling pathways were analyzed by PCR arrays focusing on genes being related and confirmed by quantitative PCR. PAC significantly inhibited breast-cancer cell proliferation in a time-dependent manner, more on MDA-MB-231 triple-negative breast cancer cells. The flow cytometry results showed an increase in apoptotic activity. These data have been established by the gene expression and indicate that PAC-induced apoptosis by an increased Bax and decreased Bcl-2 expression. Moreover, PAC affected multiple genes involved in the DNA repair pathways occurring in both cell lines (MCF-7 and MDA-MB231). In addition, our results suggest that PAC upregulated more than twice 16 genes (ERCC1, ERCC2, PNKP, POLL, MPG, NEIL2, NTHL1, SMUG1, RAD51D, RAD54L, RFC1, TOP3A, XRCC3, XRCC6BP1, FEN1, and TREX1) in MDA-MB-231, 6 genes (ERCC1, LIG1, PNKP, UNG, MPG, and RAD54L) in MCF-7, and 4 genes (ERCC1, PNKP, MPG, and RAD54L) in the two cell lines. In silico analysis of gene-gene interaction shows that there are common genes between MCF-7 and MDA-MB-321 having direct and indirect effects, among them via coexpression, genetic interactions, pathways, predicted and physical interactions, and shared protein domains with predicted associated genes indicating they are more likely to be functionally related. Our data show that PAC increases involvement of multiple genes in a DNA repair pathway, this certainly can open a new perspective in breast-cancer treatment.
Collapse
Affiliation(s)
- Esraa Almalki
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Amri
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem Alrashed
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Aliyaskarova U, Baiken Y, Renaud F, Couve S, Kisselev AF, Saparbaev M, Groisman R. NEIL3-mediated proteasomal degradation facilitates the repair of cisplatin-induced DNA damage in human cells. Sci Rep 2023; 13:5174. [PMID: 36997601 PMCID: PMC10063580 DOI: 10.1038/s41598-023-32186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Anti-neoplastic effect of DNA cross-linking agents such as cisplatin, mitomycin C, and psoralen is attributed to their ability to induce DNA interstrand cross-links (ICLs), which block replication, transcription, and linear repair pathways by preventing DNA strand separation and trigger apoptosis. It is generally agreed that the Fanconi anemia (FA) pathway orchestrates the removal of ICLs by the combined actions of various DNA repair pathways. Recently, attention has been focused on the ability of the NEIL3-initiated base excision repair pathway to resolve psoralen- and abasic site-induced ICLs in an FA-independent manner. Intriguingly, overexpression of NEIL3 is associated with chemo-resistance and poor prognosis in many solid tumors. Here, using loss- and gain-of-function approaches, we demonstrate that NEIL3 confers resistance to cisplatin and participates in the removal of cisplatin-DNA adducts. Proteomic studies reveal that the NEIL3 protein interacts with the 26S proteasome in a cisplatin-dependent manner. NEIL3 mediates proteasomal degradation of WRNIP1, a protein involved in the early step of ICL repair. We propose that NEIL3 participates in the repair of ICL-stalled replication fork by recruitment of the proteasome to ensure a timely transition from lesion recognition to repair via the degradation of early-step vanguard proteins.
Collapse
Affiliation(s)
- Umit Aliyaskarova
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
| | - Yeldar Baiken
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Flore Renaud
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
- EPHE, PSL University, Paris, France
| | - Sophie Couve
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France
- EPHE, PSL University, Paris, France
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| | - Murat Saparbaev
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France.
| | - Regina Groisman
- Team «Mechanisms of DNA Repair and Carcinogenesis», CNRS UMR 9019, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805, Villejuif Cedex, France.
| |
Collapse
|
9
|
Bowhead NEIL1: molecular cloning, characterization, and enzymatic properties. Biochimie 2023; 206:136-149. [PMID: 36334646 DOI: 10.1016/j.biochi.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
Nei Like DNA Glycosylase 1 (NEIL1) is a DNA glycosylase, which specifically processes oxidative DNA damage by initiating base excision repair. NEIL1 recognizes and removes bases, primarily oxidized pyrimidines, which have been damaged by endogenous oxidation or exogenous mutagenic agents. NEIL1 functions through a combined glycosylase/AP (apurinic/apyrimidinic)-lyase activity, whereby it cleaves the N-glycosylic bond between the DNA backbone and the damaged base via its glycosylase activity and hydrolysis of the DNA backbone through beta-delta elimination due to its AP-lyase activity. In our study we investigated our hypothesis proposing that the cancer resistance of the bowhead whale can be associated with a better DNA repair with NEIL1 being upregulated or more active. Here, we report the molecular cloning and characterization of three transcript variants of bowhead whale NEIL1 of which two were homologous to human transcripts. In addition, a novel NEIL1 transcript variant was found. A differential expression of NEIL mRNA was detected in bowhead eye, liver, kidney, and muscle. The A-to-I editing of NEIL1 mRNA was shown to be conserved in the bowhead and two adenosines in the 242Lys codon were subjected to editing. A mass spectroscopy analysis of liver and eye tissue failed to demonstrate the existence of a NEIL1 isoform originating from RNA editing. Recombinant bowhead and human NEIL1 were expressed in E. coli and assayed for enzymatic activity. Both bowhead and human recombinant NEIL1 catalyzed, with similar efficiency, the removal of a 5-hydroxyuracil lesion in a DNA bubble structure. Hence, these results do not support our hypothesis but do not refute the hypothesis either.
Collapse
|
10
|
Yuan H, Qing T, Zhu S, Yang X, Wu W, Xu K, Chen H, Jiang Y, Zhu C, Yuan Z, Zhang T, Jin L, Suo C, Lu M, Chen X, Ye W. The effects of altered DNA damage repair genes on mutational processes and immune cell infiltration in esophageal squamous cell carcinoma. Cancer Med 2023; 12:10077-10090. [PMID: 36708047 PMCID: PMC10166979 DOI: 10.1002/cam4.5663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Defects in DNA damage repair (DDR) pathways lead to genomic instability and oncogenesis. DDR deficiency is prevalent in esophageal squamous cell carcinoma (ESCC), but the effects of DDR alterations on mutational processes and tumor immune microenvironment in ECSS remain unclear. METHODS Whole-exome and transcriptome sequencing data of 45 ESCC samples from Taizhou, China, were used to identify genomic variations, gene expression modulation in DDR pathways, and the abundance of tumor-infiltrating immune cells. Ninety-six ESCC cases from The Cancer Genome Atlas (TCGA) project were used for validation. RESULTS A total of 57.8% (26/45) of the cases in the Taizhou data and 70.8% (68/96) of the cases in the TCGA data carried at least one functional impact DDR mutation. Mutations in the DDR pathways were associated with a high tumor mutation burden. Several DDR deficiency-related mutational signatures were discovered and were associated with immune cell infiltration, including T cells, monocytes, dendritic cells, and mast cells. The expression levels of two DDR genes, HFM1 and NEIL1, were downregulated in ESCC tumor tissues and had an independent effect on the infiltration of mast cells. In the Taizhou data, increased expression of HFM1 was associated with a poor prognosis, and the increased expression of NEIL1 was associated with a good outcome, but no reproducible correlation was observed in the TCGA data. CONCLUSION This research demonstrated that DDR alterations could impact mutational processes and immune cell infiltration in ESCC. The suppression of HFM1 and NEIL1 could play a crucial role in ESCC progression and may also serve as prognostic markers.
Collapse
Affiliation(s)
- Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Breast Medical Oncology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, China
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Immune-Related Gene Signatures to Predict the Effectiveness of Chemoimmunotherapy in Triple-Negative Breast Cancer Using Exploratory Subgroup Discovery. Cancers (Basel) 2022; 14:cancers14235806. [PMID: 36497286 PMCID: PMC9735620 DOI: 10.3390/cancers14235806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Although immunotherapy has shown potential in TNBC patients, clinical studies have only demonstrated a modest response. Therefore, the exploration of immunotherapy in combination with chemotherapy is warranted. In this project we identified immune-related gene signatures for TNBC patients that may explain differences in patients' outcomes after anti-PD-L1+chemotherapy treatment. First, we ran the exploratory subgroup discovery algorithm on the TNBC dataset comprised of 422 patients across 24 studies. Secondly, we narrowed down the search to twelve homogenous subgroups based on tumor mutational burden (TMB, low or high), relapse status (disease-free or recurred), tumor cellularity (high, low and moderate), menopausal status (pre- or post) and tumor stage (I, II and III). For each subgroup we identified a union of the top 10% of genotypic patterns. Furthermore, we employed a multinomial regression model to predict significant genotypic patterns that would be linked to partial remission after anti-PD-L1+chemotherapy treatment. Finally, we uncovered distinct immune cell populations (T-cells, B-cells, Myeloid, NK-cells) for TNBC patients with various treatment outcomes. CD4-Tn-LEF1 and CD4-CXCL13 T-cells were linked to partial remission on anti-PD-L1+chemotherapy treatment. Our informatics pipeline may help to select better responders to chemoimmunotherapy, as well as pinpoint the underlying mechanisms of drug resistance in TNBC patients at single-cell resolution.
Collapse
|
12
|
Biological Functions of the DNA Glycosylase NEIL3 and Its Role in Disease Progression Including Cancer. Cancers (Basel) 2022; 14:cancers14235722. [PMID: 36497204 PMCID: PMC9737245 DOI: 10.3390/cancers14235722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The accumulation of oxidative DNA base damage can severely disrupt the integrity of the genome and is strongly associated with the development of cancer. DNA glycosylase is the critical enzyme that initiates the base excision repair (BER) pathway, recognizing and excising damaged bases. The Nei endonuclease VIII-like 3 (NEIL3) is an emerging DNA glycosylase essential in maintaining genome stability. With an in-depth study of the structure and function of NEIL3, we found that it has properties related to the process of base damage repair. For example, it not only prefers the base damage of single-stranded DNA (ssDNA), G-quadruplex and DNA interstrand crosslinks (ICLs), but also participates in the maintenance of replication fork stability and telomere integrity. In addition, NEIL3 is strongly associated with the progression of cancers and cardiovascular and neurological diseases, is incredibly significantly overexpressed in cancers, and may become an independent prognostic marker for cancer patients. Interestingly, circNEIL3, a circular RNA of exon-encoded origin by NEIL3, also promotes the development of multiple cancers. In this review, we have summarized the structure and the characteristics of NEIL3 to repair base damage. We have focused on NEIL3 and circNEIL3 in cancer development, progression and prognosis.
Collapse
|
13
|
Olkinuora AP, Mayordomo AC, Kauppinen AK, Cerliani MB, Coraglio M, Collia ÁK, Gutiérrez A, Alvarez K, Cassana A, Lopéz-Köstner F, Jauk F, García-Rivello H, Ristimäki A, Koskenvuo L, Lepistö A, Nieminen TT, Vaccaro CA, Pavicic WH, Peltomäki P. Mono- and biallelic germline variants of DNA glycosylase genes in colon adenomatous polyposis families from two continents. Front Oncol 2022; 12:870863. [DOI: 10.3389/fonc.2022.870863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, biallelic germline variants of the DNA glycosylase genes MUTYH and NTHL1 were linked to polyposis susceptibility. Significant fractions remain without a molecular explanation, warranting searches for underlying causes. We used exome sequencing to investigate clinically well-defined adenomatous polyposis cases and families from Finland (N=34), Chile (N=21), and Argentina (N=12), all with known susceptibility genes excluded. Nine index cases (13%) revealed germline variants with proven or possible pathogenicity in the DNA glycosylase genes, involving NEIL1 (mono- or biallelic) in 3 cases, MUTYH (monoallelic) in 3 cases, NTHL1 (biallelic) in 1 case, and OGG1 (monoallelic) in 2 cases. NTHL1 was affected with the well-established, pathogenic c.268C>T, p.(Gln90Ter) variant. A recurrent heterozygous NEIL1 c.506G>A, p.(Gly169Asp) variant was observed in two families. In a Finnish family, the variant occurred in trans with a truncating NEIL1 variant (c.821delT). In an Argentine family, the variant co-occurred with a genomic deletion of exons 2 – 11 of PMS2. Mutational signatures in tumor tissues complied with biological functions reported for NEIL1. Our results suggest that germline variants in DNA glycosylase genes may occur in a non-negligible proportion of unexplained colon polyposis cases and may predispose to tumor development.
Collapse
|
14
|
Construction of Bone Metastasis-Specific Regulation Network Based on Prognostic Stemness-Related Signatures in Prostate Cancer. DISEASE MARKERS 2022; 2022:8495923. [PMID: 35392496 PMCID: PMC8983176 DOI: 10.1155/2022/8495923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
Background We planned to uncover the cancer stemness-related genes (SRGs) in prostate cancer (PCa) and its underlying mechanism in PCa metastasis. Methods We acquired the RNA-seq data of 406 patients with PCa from the TCGA database. Based on the mRNA stemness index (mRNAsi) calculated by one-class logistic regression (OCLR) algorithm, SRGs in PCa were extracted by WGCNA. Univariate and multivariate regression analyses were applied to uncover OS-associated SRGs. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and Pearson's correlation analysis were performed to discover the possible mechanism of PCa metastasis. The significantly correlated transcription factors of OS-associated SRGs were also identified by Pearson's correlation analysis. ChIP-seq was applied to validate the binding relationship of TFs and OS-associated SRGs and spatial transcriptome and single-cell sequencing were performed to uncover the location of key biomarkers expression. Lastly, we explored the specific inhibitors for SRGs using CMap algorithm. Results We identified 538 differentially expressed genes (DEGs) between non-metastatic and metastatic PCa. Furthermore, OS-associated SRGs were identified. The Pearson correlation analysis revealed that FOXM1 was significantly correlated with NEIL3 (correlation efficient =0.89, p < 0.001) and identified hallmark_E2F_targets as the potential pathway mechanism of NEIL3 promoting PCa metastasis (correlation efficient =0.58, p < 0.001). Single-cell sequencing results indicated that FOXM1 regulating NEIL3 may get involved in the antiandrogen resistance of PCa. Rottlerin was discovered to be a potential target drug for PCa. Conclusion We constructed a regulatory network based on SRGs associated with PCa metastasis and explored possible mechanism.
Collapse
|
15
|
Identification of DNA Damage Repair-Associated Prognostic Biomarkers for Prostate Cancer Using Transcriptomic Data Analysis. Int J Mol Sci 2021; 22:ijms222111771. [PMID: 34769200 PMCID: PMC8584064 DOI: 10.3390/ijms222111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
In the recent decade, the importance of DNA damage repair (DDR) and its clinical application have been firmly recognized in prostate cancer (PC). For example, olaparib was just approved in May 2020 to treat metastatic castration-resistant PC with homologous recombination repair-mutated genes; however, not all patients can benefit from olaparib, and the treatment response depends on patient-specific mutations. This highlights the need to understand the detailed DDR biology further and develop DDR-based biomarkers. In this study, we establish a four-gene panel of which the expression is significantly associated with overall survival (OS) and progression-free survival (PFS) in PC patients from the TCGA-PRAD database. This panel includes DNTT, EXO1, NEIL3, and EME2 genes. Patients with higher expression of the four identified genes have significantly worse OS and PFS. This significance also exists in a multivariate Cox regression model adjusting for age, PSA, TNM stages, and Gleason scores. Moreover, the expression of the four-gene panel is highly correlated with aggressiveness based on well-known PAM50 and PCS subtyping classifiers. Using publicly available databases, we successfully validate the four-gene panel as having the potential to serve as a prognostic and predictive biomarker for PC specifically based on DDR biology.
Collapse
|
16
|
Wang Q, Li Z, Yang J, Peng S, Zhou Q, Yao K, Cai W, Xie Z, Qin F, Li H, Chen X, Li K, Huang H. Loss of NEIL3 activates radiotherapy resistance in the progression of prostate cancer. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0550. [PMID: 34591415 PMCID: PMC9425180 DOI: 10.20892/j.issn.2095-3941.2020.0550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To explore the genetic changes in the progression of castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC) and the reason why these cancers resist existing therapies. METHODS We employed our CRPC cell line microarray and other CRPC or NEPC datasets to screen the target gene NEIL3. Lentiviral transfection and RNA interference were used to construct overexpression and knockdown cell lines. Cell and animal models of radiotherapy were established by using a medical electron linear accelerator. Flow cytometry was used to detect apoptosis or cell cycle progression. Western blot and qPCR were used to detect changes in the protein and RNA levels. RESULTS TCGA and clinical patient datasets indicated that NEIL3 was downregulated in CRPC and NEPC cell lines, and NEIL3 was correlated with a high Gleason score but a good prognosis. Further functional studies demonstrated that NEIL3 had no effect on the proliferation and migration of PCa cells. However, cell and animal radiotherapy models revealed that NEIL3 could facilitate the radiotherapy sensitivity of PCa cells, while loss of NEIL3 activated radiotherapy resistance. Mechanistically, we found that NEIL3 negatively regulated the expression of ATR, and higher NEIL3 expression repressed the ATR/CHK1 pathway, thus regulating the cell cycle. CONCLUSIONS We demonstrated that NEIL3 may serve as a diagnostic or therapeutic target for therapy-resistant patients.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zean Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wenli Cai
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Fujun Qin
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| |
Collapse
|
17
|
Wang W, Yin Q, Guo S, Wang J. NEIL3 contributes toward the carcinogenesis of liver cancer and regulates PI3K/Akt/mTOR signaling. Exp Ther Med 2021; 22:1053. [PMID: 34434267 PMCID: PMC8353638 DOI: 10.3892/etm.2021.10487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is one of the top three fatal types of cancer and it causes several thousands of mortalities each year. The main treatment is surgical resection which shows little benefit for patients with recurrence or metastasis. NEIL3 promotes progression and predicts survival in cancer. However, its role in liver cancer remains unclear. Based on data in the TCGA database, NEIL3 exhibited much higher expression in liver cancer tissues and was clinically correlated with tumor grade in patients with liver cancer. Furthermore, high NEIL3 expression caused shorter survival times. In liver cancer cell lines, NEIL3 showed abundant expression. When NEIL3 was knocked down in HepG2 and Huh-7 cells, cell abilities including proliferation, growth, migration and invasion, exhibited deficiency to different extents. Cell cycle transition was blocked at the G2 phase and the cell apoptotic rate increased notably. In addition, the phosphorylation levels of Akt, PI3K and mTOR were increased following NEIL3-overexpression but decreased following NEIL3-knockdown. In conclusion, NEIL3 contributes toward development and/or progression in liver cancer and regulates PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Weichen Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Qing Yin
- Department of Medical Education, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| | - Shanshan Guo
- Department of Food Science and Nutrition, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Jun Wang
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
18
|
Zheng Y, Zheng L, Yu J, Jiang M, Zhang S, Cai X, Zhu M. Genetic variations in DNA repair gene NEIL1 associated with radiation pneumonitis risk in lung cancer patients. Mol Genet Genomic Med 2021; 9:e1698. [PMID: 34105905 PMCID: PMC8372061 DOI: 10.1002/mgg3.1698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background Radiation pneumonitis (RP) is a common side effect in lung cancer patients who received radiotherapy. Our previous study found genetic variations in DNA repair gene NEIL1 may be a predictor of RP in patients with esophageal cancer. So, we hypothesis genetic variations in NEIL1 gene could affect the risk of RP in lung cancer patients following radiotherapy. Methods Genetic variations rs4462560 G>C and rs7402844 C>G in NEIL1 gene were genotyped in 174 lung cancer patients received radio(chemo)therapy. Luciferase assay, real‐time PCR and Western blot were used to access the effect of the variants on NEIL1 in HELF and HEF cell lines which were transfected with plasmids containing rs4462560 G>C and rs7402844 C>G. Results Patients with rs4462560 CC genotype had a lower risk of RP grade ≥2 than GG genotype. Compared with the CC genotype, rs7402844 GG genotype was associated with an increased RP grade ≥2 risk. What is more, rs4462560 G decreased the relative luciferase activity of NEIL1 gene promoter compared with the negative control in vitro, while rs4462560 C can increase the relative luciferase activity. The mRNA and protein level of the NEIL1 gene in rs4462560 G were lower than rs4462560 C. Conclusions Genetic variants of NEIL1 are associated with RP risk through regulation of NEIL1 expression and serve as independent biomarkers for prediction of RP in patients treated with thoracic radiotherapy.
Collapse
Affiliation(s)
- Yuming Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leizhen Zheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahua Yu
- Department of Radiation Oncology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mawei Jiang
- Department of Radiation Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songfang Zhang
- Department of Radiation Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Tapryal N, Shahabi S, Chakraborty A, Hosoki K, Wakamiya M, Sarkar G, Sharma G, Cardenas VJ, Boldogh I, Sur S, Ghosh G, Hazra TK. Intrapulmonary administration of purified NEIL2 abrogates NF-κB-mediated inflammation. J Biol Chem 2021; 296:100723. [PMID: 33932404 PMCID: PMC8164026 DOI: 10.1016/j.jbc.2021.100723] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant or constitutive activation of nuclear factor kappa B (NF-κB) contributes to various human inflammatory diseases and malignancies via the upregulation of genes involved in cell proliferation, survival, angiogenesis, inflammation, and metastasis. Thus, inhibition of NF-κB signaling has potential for therapeutic applications in cancer and inflammatory diseases. We reported previously that Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase, is involved in the preferential repair of oxidized DNA bases from the transcriptionally active sequences via the transcription-coupled base excision repair pathway. We have further shown that Neil2-null mice are highly sensitive to tumor necrosis factor α (TNFα)- and lipopolysaccharide-induced inflammation. Both TNFα and lipopolysaccharide are potent activators of NF-κB. However, the underlying mechanism of NEIL2's role in the NF-κB-mediated inflammation remains elusive. Here, we have documented a noncanonical function of NEIL2 and demonstrated that the expression of genes, such as Cxcl1, Cxcl2, Cxcl10, Il6, and Tnfα, involved in inflammation and immune cell migration was significantly higher in both mock- and TNFα-treated Neil2-null mice compared with that in the WT mice. NEIL2 blocks NF-κB's binding to target gene promoters by directly interacting with the Rel homology region of RelA and represses proinflammatory gene expression as determined by co-immunoprecipitation, chromatin immunoprecipitation, and electrophoretic mobility-shift assays. Remarkably, intrapulmonary administration of purified NEIL2 via a noninvasive nasal route significantly abrogated binding of NF-κB to cognate DNA, leading to decreased expression of proinflammatory genes and neutrophil recruitment in Neil2-null as well as WT mouse lungs. Our findings thus highlight the potential of NEIL2 as a biologic for inflammation-associated human diseases.
Collapse
Affiliation(s)
- Nisha Tapryal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Maki Wakamiya
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gobinda Sarkar
- Department of Orthopedics, Mayo Clinic and Foundation, Rochester, Minnesota, USA,Department of Experimental Pathology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Gulshan Sharma
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Victor J. Cardenas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,Department of Medicine, Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA,For correspondence: Tapas K. Hazra
| |
Collapse
|
20
|
Wang Y, Xu L, Shi S, Wu S, Meng R, Chen H, Jiang Z. Deficiency of NEIL3 Enhances the Chemotherapy Resistance of Prostate Cancer. Int J Mol Sci 2021; 22:4098. [PMID: 33921035 PMCID: PMC8071437 DOI: 10.3390/ijms22084098] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/04/2023] Open
Abstract
Acquired treatment resistance is an important cause of death in prostate cancer, and this study aimed to explore the mechanisms of chemotherapy resistance in prostate cancer. We employed castration-resistant prostate cancer (CRPC), neuroendocrine prostate cancer (NEPC), and chemotherapy-resistant prostate cancer datasets to screen for potential target genes. The Cancer Genome Atlas (TCGA) was used to detect the correlation between the target genes and prognosis and clinical characteristics. Nei endonuclease VIII-like 3 (NEIL3) knockdown cell lines were constructed with RNA interference. Prostate cancer cells were treated with enzalutamide for the androgen deprivation therapy (ADT) model, and with docetaxel and cisplatin for the chemotherapy model. Apoptosis and the cell cycle were examined using flow cytometry. RNA sequencing and western blotting were performed in the knockdown Duke University 145 (DU145) cell line to explore the possible mechanisms. The TCGA dataset demonstrated that high NEIL3 was associated with a high T stage and Gleason score, and indicated a possibility of lymph node metastasis, but a good prognosis. The cell therapy models showed that the loss of NEIL3 could promote the chemotherapy resistance (but not ADT resistance) of prostate cancer (PCa). Flow cytometry revealed that the loss of NEIL3 in PCa could inhibit cell apoptosis and cell cycle arrest under cisplatin treatment. RNA sequencing showed that the knockdown of NEIL3 changes the expression of neuroendocrine-related genes. Further western blotting revealed that the loss of NEIL3 could significantly promote the phosphorylation of ATR serine/threonine kinase (ATR) and ATM serine/threonine kinase (ATM) under chemotherapy, thus initiating downstream pathways related to DNA repair. In summary, the loss of NEIL3 promotes chemotherapy resistance in prostate cancer, and NEIL3 may serve as a diagnostic marker for chemotherapy-resistant patients.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| | - Liuyue Xu
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| | - Shanshan Shi
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| | - Sha Wu
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| | - Ruijie Meng
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| | - Huifang Chen
- School of Pharmacy, Guangdong Lingnan Institute of Technology, Guangzhou 510663, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China; (Y.W.); (L.X.); (S.S.); (S.W.); (R.M.)
| |
Collapse
|
21
|
Mohamed RI, Bargal SA, Mekawy AS, El-Shiekh I, Tuncbag N, Ahmed AS, Badr E, Elserafy M. The overexpression of DNA repair genes in invasive ductal and lobular breast carcinomas: Insights on individual variations and precision medicine. PLoS One 2021; 16:e0247837. [PMID: 33662042 PMCID: PMC7932549 DOI: 10.1371/journal.pone.0247837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
In the era of precision medicine, analyzing the transcriptomic profile of patients is essential to tailor the appropriate therapy. In this study, we explored transcriptional differences between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed 3854 differentially expressed genes between normal ductal tissues and IDC. In addition, IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on DNA repair genes because of their known effects on patients' response to therapy and resistance. We here report that 36 DNA repair genes are overexpressed in a significant number of both IDC and LC patients' samples. Despite the upregulation in a significant number of samples, we observed a noticeable variation in the expression levels of the repair genes across patients of the same cancer subtype. The same trend is valid for the expression of miRNAs, where remarkable variations between patients' samples of the same cancer subtype are also observed. These individual variations could lie behind the differential response of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend on high-throughput genomic and transcriptomic data analysis. However, we propose that performing analysis on individual patients rather than a big set of patients' samples will be necessary to ensure that the best treatment is determined, and therapy resistance is reduced.
Collapse
Affiliation(s)
- Ruwaa I. Mohamed
- Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma A. Bargal
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Alaa S. Ahmed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- * E-mail: (EB); (ME)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- * E-mail: (EB); (ME)
| |
Collapse
|
22
|
Sun N, Gao P, Li Y, Yan Z, Peng Z, Zhang Y, Han F, Qi X. Screening and Identification of Key Common and Specific Genes and Their Prognostic Roles in Different Molecular Subtypes of Breast Cancer. Front Mol Biosci 2021; 8:619110. [PMID: 33644115 PMCID: PMC7905399 DOI: 10.3389/fmolb.2021.619110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/08/2021] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is one of the most common cancers. Although the present molecular classification improves the treatment effect and prognosis of breast cancer, the heterogeneity of the molecular subtype remains very complex, and the applicability and effectiveness of treatment methods are still limited leading to poorer patient prognosis than expected. Further identification of more refined molecular typing based on gene expression profile will yield better understanding of the heterogeneity, improving treatment effects and prolonging prognosis of patients. Here, we downloaded the mRNA expression profiles and corresponding clinical data of patients with breast cancer from public databases and performed typical molecular typing using PAM50 (Prediction Analysis of Microarray 50) method. Comparative analyses were performed to screen the common and specific differentially expressed genes (DEGs) between cancer and corresponding para-cancerous tissues in each breast cancer subtype. The GO and KEGG analyses of the DEGs were performed to enrich the common and specific functional progress and signaling pathway involved in breast cancer subtypes. A total of 38 key common and specific DEGs were identified and selected based on the validated results, GO/KEGG enrichments, and the priority of expression, including four common DEGs and 34 specific DEGs in different subtypes. The prognostic value of these key common and specific DEGs was further analyzed to obtain useful potential markers in clinic. Finally, the potential roles and the specific prognostic values of the common and specific DEGs were speculated and summarized in total breast cancer and different subtype breast cancer based on the results of these analyses. The findings of our study provide the basis of more refined molecular typing of breast cancer, potential new therapeutic targets and prognostic markers for different breast cancer subtypes
Collapse
Affiliation(s)
- Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Pingping Gao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanling Li
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zaihui Peng
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Ikeda M, Okusaka T, Ohno I, Mitsunaga S, Kondo S, Ueno H, Morizane C, Gemmoto K, Suna H, Ushida Y, Furuse J. Phase I studies of peptide vaccine cocktails derived from GPC3, WDRPUH and NEIL3 for advanced hepatocellular carcinoma. Immunotherapy 2021; 13:371-385. [PMID: 33525928 DOI: 10.2217/imt-2020-0278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: Two peptide cocktail vaccines using glypican-3, WD-repeat-containing protein up-regulated in hepatocellular carcinoma (HCC) and nei endonuclease VIII-like three epitopes were evaluated in advanced HCC in two Phase I studies. Patients & methods: Study 1 evaluated dose-limiting toxicities (DLTs) of peptides 1-3 (HLA-A24-restricted) and study 2 evaluated DLTs of peptides 1-6 (HLA-A24 or A02-restricted). Results: Overall, 18 and 14 patients were enrolled in studies 1 and 2, respectively. No DLTs were observed up to 7.1 mg of the vaccine cocktail. No complete response/partial response was observed. Stable disease was reported in nine and five patients with a disease control rate of 52.9% and 35.7% in studies 1 and 2, respectively. Conclusion: Both vaccines showed good tolerability and potential usefulness against HCC. Clinical trial registration: JapicCTI-121933; JapicCTI-142477.
Collapse
Affiliation(s)
- Masafumi Ikeda
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Izumi Ohno
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shuichi Mitsunaga
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shunsuke Kondo
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hideki Ueno
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary & Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuto Gemmoto
- Oncology Clinical Development Unit, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Hideaki Suna
- Oncology Clinical Development Unit, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Yasunori Ushida
- Clinical Development, Data Science, Statistical Analysis, Ono Pharmaceutical Co., Ltd, Osaka, Japan
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Sayed IM, Chakraborty A, Abd El-Hafeez AA, Sharma A, Sahan AZ, Huang WJM, Sahoo D, Ghosh P, Hazra TK, Das S. The DNA Glycosylase NEIL2 Suppresses Fusobacterium-Infection-Induced Inflammation and DNA Damage in Colonic Epithelial Cells. Cells 2020; 9:E1980. [PMID: 32872214 PMCID: PMC7565382 DOI: 10.3390/cells9091980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer, while the majority (80-85%) of CRCs are sporadic and are microsatellite stable (MSS), and approximately 15-20% of them display microsatellite instability (MSI). Infection and chronic inflammation are known to induce DNA damage in host tissues and can lead to oncogenic transformation of cells, but the role of DNA repair proteins in microbe-associated CRCs remains unknown. Using CRC-associated microbes such as Fusobacterium nucleatum (Fn) in a coculture with murine and human enteroid-derived monolayers (EDMs), here, we show that, among all the key DNA repair proteins, NEIL2, an oxidized base-specific DNA glycosylase, is significantly downregulated after Fn infection. Fn infection of NEIL2-null mouse-derived EDMs showed a significantly higher level of DNA damage, including double-strand breaks and inflammatory cytokines. Several CRC-associated microbes, but not the commensal bacteria, induced the accumulation of DNA damage in EDMs derived from a murine CRC model, and Fn had the most pronounced effect. An analysis of publicly available transcriptomic datasets showed that the downregulation of NEIL2 is often encountered in MSS compared to MSI CRCs. We conclude that the CRC-associated microbe Fn induced the downregulation of NEIL2 and consequent accumulation of DNA damage and played critical roles in the progression of CRCs.
Collapse
Affiliation(s)
- Ibrahim M. Sayed
- Department of Pathology, University of California, San Diego, CA 92093, USA; (I.M.S.); (A.S.); (A.Z.S.)
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX-77555, USA; (A.C.); (T.K.H.)
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.; (A.A.A.E.-H.); (W.J.M.H.); (P.G.)
| | - Aditi Sharma
- Department of Pathology, University of California, San Diego, CA 92093, USA; (I.M.S.); (A.S.); (A.Z.S.)
| | - Ayse Z. Sahan
- Department of Pathology, University of California, San Diego, CA 92093, USA; (I.M.S.); (A.S.); (A.Z.S.)
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.; (A.A.A.E.-H.); (W.J.M.H.); (P.G.)
| | - Debashis Sahoo
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
- Department of Computer Science and Engineering, Jacob’s School of Engineering, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA 92093, USA.; (A.A.A.E.-H.); (W.J.M.H.); (P.G.)
- Department of Medicine, University of California, San Diego, CA 92093, USA
- Moores Cancer Center, University of California, San Diego, CA 92093, USA
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX-77555, USA; (A.C.); (T.K.H.)
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093, USA; (I.M.S.); (A.S.); (A.Z.S.)
| |
Collapse
|
25
|
Ha A, Lin Y, Yan S. A non-canonical role for the DNA glycosylase NEIL3 in suppressing APE1 endonuclease-mediated ssDNA damage. J Biol Chem 2020; 295:14222-14235. [PMID: 32817342 DOI: 10.1074/jbc.ra120.014228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA glycosylase NEIL3 has been implicated in DNA repair pathways including the base excision repair and the interstrand cross-link repair pathways via its DNA glycosylase and/or AP lyase activity, which are considered canonical roles of NEIL3 in genome integrity. Compared with the other DNA glycosylases NEIL1 and NEIL2, Xenopus laevis NEIL3 C terminus has two highly conserved zinc finger motifs containing GRXF residues (designated as Zf-GRF). It has been demonstrated that the minor AP endonuclease APE2 contains only one Zf-GRF motif mediating interaction with single-strand DNA (ssDNA), whereas the major AP endonuclease APE1 does not. It appears that the two NEIL3 Zf-GRF motifs (designated as Zf-GRF repeat) are dispensable for its DNA glycosylase and AP lyase activity; however, the potential function of the NEIL3 Zf-GRF repeat in genome integrity remains unknown. Here, we demonstrate evidence that the NEIL3 Zf-GRF repeat was associated with a higher affinity for shorter ssDNA than one single Zf-GRF motif. Notably, our protein-protein interaction assays show that the NEIL3 Zf-GRF repeat but not one Zf-GRF motif interacted with APE1 but not APE2. We further reveal that APE1 endonuclease activity on ssDNA but not on dsDNA is compromised by a NEIL3 Zf-GRF repeat, whereas one Zf-GRF motif within NEIL3 is not sufficient to prevent such activity of APE1. In addition, COMET assays show that excess NEIL3 Zf-GRF repeat reduces DNA damage in oxidative stress in Xenopus egg extracts. Together, our results suggest a noncanonical role of NEIL3 in genome integrity via its distinct Zf-GRF repeat in suppressing APE1 endonuclease-mediated ssDNA breakage.
Collapse
Affiliation(s)
- Anh Ha
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
26
|
Nei Endonuclease VIII-Like1 (NEIL1) Inhibits Apoptosis of Human Colorectal Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5053975. [PMID: 32685496 PMCID: PMC7336199 DOI: 10.1155/2020/5053975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
The study is aimed at investigating the role of Nei endonuclease VIII-like1 (NEIL1) in the pathogenesis of colorectal cancer (CRC). The human CRC (HCT116 and SW480) cells were subjected to the siRNA silencing and recombinant plasmid overexpression of NEIL1. Transfection of siNEIL1 significantly inhibited the cell growth. It also increased the Bax expression levels, while it decreased the Bcl-2 expression levels in human CRC cells, leading the Bax/Bcl-2 balance toward apoptosis. Moreover, the apoptosis was promoted through the caspase-9 signaling pathway. One the other hand, high expression of NEIL1 promoted the cell viability and reduced the apoptosis, inducing the balance of Bax/Bcl-2 in the human colon cancer cells to be antiapoptotic. In addition, the caspase-9 signaling pathway inhibited apoptosis, contrary to the results obtained by downregulating NEIL1 expression. Furthermore, NEIL1 was negatively regulated by miR-7-5p, indicating that miR-7-5p inhibited the NEIL1 expression after transcription. Overexpression of miR-7-5p reversed the effects of NEIL1 on these CRC cells. In conclusion, NEIL1 promotes the proliferation of CRC cells, which is regulated negatively by miR-7-5p. These findings suggest that NEIL1 is a potential therapeutic target for CRC.
Collapse
|
27
|
Sayed IM, Sahan AZ, Venkova T, Chakraborty A, Mukhopadhyay D, Bimczok D, Beswick EJ, Reyes VE, Pinchuk I, Sahoo D, Ghosh P, Hazra TK, Das S. Helicobacter pylori infection downregulates the DNA glycosylase NEIL2, resulting in increased genome damage and inflammation in gastric epithelial cells. J Biol Chem 2020; 295:11082-11098. [PMID: 32518160 DOI: 10.1074/jbc.ra119.009981] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/30/2020] [Indexed: 01/08/2023] Open
Abstract
Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Ayse Z Sahan
- Department of Pathology, University of California San Diego, San Diego, California, USA
| | - Tatiana Venkova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Ellen J Beswick
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Victor E Reyes
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Irina Pinchuk
- College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, California, USA.,Department of Computer Science and Engineering, Jacob's School of Engineering, San Diego, California, USA
| | - Pradipta Ghosh
- Department of Medicine and Cellular and Molecular Medicine, John and Rebecca Moore Cancer Center, University of California San Diego, San Diego, California, USA
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
28
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Cervical carcinoma risk associate with genetic polymorphisms of NEIL2 gene in Chinese population and its significance as predictive biomarker. Sci Rep 2020; 10:5136. [PMID: 32198476 PMCID: PMC7083954 DOI: 10.1038/s41598-020-62040-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic polymorphisms of NEIL1 and NEIL2 maybe change protein function, and increased carcinogenesis. In this study, seven NEIL1 SNPs and three NEIL2 SNPs were selected. 400 CSCCs, 400 CIN III, and 1200 normal healthy controls were genotyped by mismatch amplification PCR. mRNA and protein expression of NEIL2 was measured in 92 freshly-obtained CSCC tumor tissues. The association between homozygote CC genotype of NEIL2 rs804270 with susceptible risk was gradually increased in CIN III (OR = 1.44) and CSCC (OR = 2.22). Carriers of C-allele (GC + CC) at rs804270 had a high risk of CSCC (OR = 1.46). The heterozygote GT genotype of rs8191664 was also closely related to the higher risk of CINIII (OR = 1.59) and CSCC (OR = 2.54). Carriers of T-allele (GT + TT) at rs8191664 had a high risk for CIN III (OR = 1.55) and CSCC (OR = 2.34). The genotypes of NEIL2 rs804270 (G/C) and rs8191664 (G/T) that were related to the higher risk for CIN III were CC-GG (OR = 1.42) and CC-GT (OR = 2.07). More notably, there was a greater risk for CSCC with the GC-GT (OR = 1.91), CC-GG (OR = 1.67), and CC-GT (OR = 6.18) genotypes. NEIL2 mRNA expression in CSCCs with the rs804270-CC genotype was lower expression than those in CSCCs with the rs804270-GG and rs804270-GC genotypes. Similarly, NEIL2 protein expression was significantly decreased in CSCCs with the rs804270-CC genotype. In summary, the two genetic polymorphisms (rs804270 and rs8191664) of NEIL2 gene were significantly associated to the increased susceptibility of CIN III or CSCC. This increased susceptibility maybe due to altered NEIL2 repair activity through altered protein expression, or changed structure of the functional domain. The genotypes of GC-GT, CC-GG, and CC-GT of rs804270 and rs8191664 of NEIL2 gene could act as a genetic predictive biomarker of susceptibility to CIN III and CSCC.
Collapse
|
30
|
Fleming AM, Burrows CJ. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J Am Chem Soc 2020; 142:1115-1136. [PMID: 31880930 PMCID: PMC6988379 DOI: 10.1021/jacs.9b11050] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Living in an oxygen atmosphere demands an ability to thrive in the presence of reactive oxygen species (ROS). Aerobic organisms have successfully found solutions to the oxidative threats imposed by ROS by evolving an elaborate detoxification system, upregulating ROS during inflammation, and utilizing ROS as messenger molecules. In this Perspective, recent studies are discussed that demonstrate ROS as signaling molecules for gene regulation by combining two emergent properties of the guanine (G) heterocycle in DNA, namely, oxidation sensitivity and a propensity for G-quadruplex (G4) folding, both of which depend upon sequence context. In human gene promoters, this results from an elevated 5'-GG-3' dinucleotide frequency and GC enrichment near transcription start sites. Oxidation of DNA by ROS drives conversion of G to 8-oxo-7,8-dihydroguanine (OG) to mark target promoters for base excision repair initiated by OG-glycosylase I (OGG1). Sequence-dependent mechanisms for gene activation are available to OGG1 to induce transcription. Either OGG1 releases OG to yield an abasic site driving formation of a non-canonical fold, such as a G4, to be displayed to apurinic/apyrimidinic 1 (APE1) and stalling on the fold to recruit activating factors, or OGG1 binds OG and facilitates activator protein recruitment. The mechanisms described drive induction of stress response, DNA repair, or estrogen-induced genes, and these pathways are novel potential anticancer targets for therapeutic intervention. Chemical concepts provide a framework to discuss the regulatory or possible epigenetic potential of the OG modification in DNA, in which DNA "damage" and non-canonical folds collaborate to turn on or off gene expression. The next steps for scientific discovery in this growing field are discussed.
Collapse
Affiliation(s)
- Aaron M. Fleming
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J. Burrows
- 315 South 1400 East, Dept. of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
31
|
Willis C, Fiander M, Tran D, Korytowsky B, Thomas JM, Calderon F, Zyczynski TM, Brixner D, Stenehjem DD. Tumor mutational burden in lung cancer: a systematic literature review. Oncotarget 2019; 10:6604-6622. [PMID: 31762941 PMCID: PMC6859921 DOI: 10.18632/oncotarget.27287] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: To assess the association of tumor mutational burden (TMB) with clinical outcomes, other biomarkers and patient/disease characteristics in patients receiving therapy for lung cancer. Results: In total, 4,303 publications were identified; 81 publications were included. The majority of publications assessing clinical efficacy of immunotherapy reported an association with high TMB, particularly when assessing progression-free survival and objective response rate. High TMB was consistently associated with TP53 alterations, and negatively associated with EGFR mutations. High TMB was also associated with smoking, squamous cell non-small cell lung carcinoma, and being male. Methods: A systematic literature review based upon an a priori protocol was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane methodologies. Searches were conducted in EMBASE, SCOPUS, Ovid MEDLINE®, and Emcare (from January 2012 until April 2018) and in two clinical trial registries. Conference abstracts were identified in EMBASE, and in targeted searches of recent major conference proceedings (from January 2016 until April 2018). Publications reporting data in patients receiving therapy for lung cancer that reported TMB and its association with clinical efficacy, or with other biomarkers or patient/disease characteristics, were included. Results are presented descriptively. Conclusion: This systematic literature review identified several clinical outcomes, biomarkers, and patient/disease characteristics associated with high TMB, and highlights the need for standardized definitions and testing practices. Further studies using standardized methodology are required to inform treatment decisions.
Collapse
Affiliation(s)
- Connor Willis
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - Michelle Fiander
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - Dao Tran
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| | | | | | | | | | - Diana Brixner
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - David D. Stenehjem
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
32
|
Ni F, Tang H, Wang C, Wang Z, Yu F, Chen B, Sun L. Berzosertib (VE-822) inhibits gastric cancer cell proliferation via base excision repair system. Cancer Manag Res 2019; 11:8391-8405. [PMID: 31571995 PMCID: PMC6750847 DOI: 10.2147/cmar.s217375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Current investigations suggest that the Base Excision Repair (BER) system may change DNA repair capacity and affect clinical gastric cancer progression such as overall survival. However, the prognostic value of BER system members in gastric cancer remains unclear. Methods We explored the prognostic correlation between 7 individual BER genes, including uracil-DNA glycosylase (UNG), Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), Methyl-CpG binding domain 4 (MBD4), thymine DNA glycosylase (TDG), 8-oxoguanine DNA glycosylase (OGG1), MutY DNA glycosylase (MUTYH) and Nei like DNA glycosylase 1 (NEIL1), expression and overall survival (OS) in different clinical data, such as Lauren classification, pathological stages, human epidermal growth factor receptor-2 (HER2) expression status, treatment strategy, gender and differentiation degree in gastric cancer patients, using Kaplan-Meier plotter (KM plotter) online database. Based on the bioinformatics analysis, we utilized Berzosertib (VE-822) to inhibit DNA damage repair in cancer cells compared to solvent control group via real-time cellular analysis (RTCA), flow cytometry, colony formation and migration assay. Finally, we utilized reverse transcription-polymerase chain reaction (RT-PCR) to confirm the expression of BER members between normal and two gastric cancer cells or solvent and VE-822 treated groups. Results Our work revealed that high UNG mRNA expression was correlated with high overall survival probability; however, high SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1 mRNA expression showed relatively low overall survival probability in all GC patients. Additionally, UNG was associated with high overall survival probability in intestinal and diffuse types, but SMUG1 and NEIL1 showed opposite results. Further, VE-822 pharmacological experiment suggested that inhibition of DNA damage repair suppressed gastric cancer cells’ proliferation and migration ability via inducing apoptosis. Further, real-time polymerase chain reaction results proposed the inhibition of gastric cancer cells by VE-822 may be through UNG, MUTYH and OGG-1 of BER system. Conclusion We comprehensively analyze the prognostic value of the BER system (UNG, SMUG1, MBD4, TDG, OGG1, MUTYH and NEIL1) based on bioinformatics analysis and experimental confirmation. BER members are associated with distinctive prognostic significance and maybe new valuable prognostic indicators in gastric cancer.
Collapse
Affiliation(s)
- Fubiao Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zixiang Wang
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fangyi Yu
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
33
|
Fleming AM, Zhu J, Howpay Manage SA, Burrows CJ. Human NEIL3 Gene Expression Regulated by Epigenetic-Like Oxidative DNA Modification. J Am Chem Soc 2019; 141:11036-11049. [PMID: 31241930 PMCID: PMC6640110 DOI: 10.1021/jacs.9b01847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The NEIL3 DNA repair gene is induced in cells
or animal models experiencing oxidative or inflammatory stress along
with oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in
the genome. We hypothesize that a G-rich promoter element that is
a potential G-quadruplex-forming sequence (PQS) in NEIL3 is a site for introduction of OG with epigenetic-like potential
for gene regulation. Activation occurs when OG is formed in the NEIL3 PQS located near the transcription start site. Oxidative
stress either introduced by TNFα or synthetically incorporated
into precise locations focuses the base excision repair process to
read and catalyze removal of OG via OG-glycosylase I (OGG1), yielding
an abasic site (AP). Thermodynamic studies showed that AP destabilizes
the duplex, enabling a structural transition of the sequence to a
G-quadruplex (G4) fold that positions the AP in a loop facilitated
by the NEIL3 PQS having five G runs in which the
four unmodified runs adopt a stable G4. This presents AP to apurinic/apyrimidinic
endonuclease 1 (APE1) that poorly cleaves the AP backbone in this
context according to in vitro studies, allowing the protein to function
as a trans activator of transcription. The proposal is supported by
chemical studies in cellulo and in vitro. Activation of NEIL3 expression via the proposed mechanism allows cells to respond to
mutagenic DNA damage removed by NEIL3 associated with oxidative or
inflammatory stress. Lastly, inspection of many mammalian genomes
identified conservation of the NEIL3 PQS, suggesting
this sequence was favorably selected to function as a redox switch
with OG as the epigenetic-like regulatory modification.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Judy Zhu
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Shereen A Howpay Manage
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
34
|
POLQ Overexpression Is Associated with an Increased Somatic Mutation Load and PLK4 Overexpression in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11050722. [PMID: 31137743 PMCID: PMC6562496 DOI: 10.3390/cancers11050722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 01/23/2023] Open
Abstract
DNA Polymerase Theta (POLQ) is a DNA polymerase involved in error-prone translesion DNA synthesis (TLS) and error-prone repair of DNA double-strand breaks (DSBs). In the present study, we examined whether abnormal POLQ expression may be involved in the pathogenesis of lung adenocarcinoma (LAC). First, we found overexpression of POLQ at both the mRNA and protein levels in LAC, using data from the Cancer Genome Atlas (TCGA) database and by immunohistochemical analysis of our LAC series. POLQ overexpression was associated with an advanced pathologic stage and an increased total number of somatic mutations in LAC. When H1299 human lung cancer cell clones overexpressing POLQ were established and examined, the clones showed resistance to a DSB-inducing chemical in the clonogenic assay and an increased frequency of mutations in the supF forward mutation assay. Further analysis revealed that POLQ overexpression was also positively correlated with Polo Like Kinase 4 (PLK4) overexpression in LAC, and that PLK4 overexpression in the POLQ-overexpressing H1299 cells induced centrosome amplification. Finally, analysis of the TCGA data revealed that POLQ overexpression was associated with an increased somatic mutation load and PLK4 overexpression in diverse human cancers; on the other hand, overexpressions of nine TLS polymerases other than POLQ were associated with an increased somatic mutation load at a much lower frequency. Thus, POLQ overexpression is associated with advanced pathologic stage, increased somatic mutation load, and PLK4 overexpression, the last inducing centrosome amplification, in LAC, suggesting that POLQ overexpression is involved in the pathogenesis of LAC.
Collapse
|
35
|
Jiraskova K, Hughes DJ, Brezina S, Gumpenberger T, Veskrnova V, Buchler T, Schneiderova M, Levy M, Liska V, Vodenkova S, Di Gaetano C, Naccarati A, Pardini B, Vymetalkova V, Gsur A, Vodicka P. Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. Int J Mol Sci 2018; 20:E97. [PMID: 30591675 PMCID: PMC6337670 DOI: 10.3390/ijms20010097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
DNA repair processes are involved in both the onset and treatment efficacy of colorectal cancer (CRC). A change of a single nucleotide causing an amino acid substitution in the corresponding protein may alter the efficiency of DNA repair, thus modifying the CRC susceptibility and clinical outcome. We performed a candidate gene approach in order to analyze the association of non-synonymous single nucleotide polymorphisms (nsSNPs) in the genes covering the main DNA repair pathways with CRC risk and clinical outcome modifications. Our candidate polymorphisms were selected according to the foremost genomic and functional prediction databases. Sixteen nsSNPs in 12 DNA repair genes were evaluated in cohorts from the Czech Republic and Austria. Apart from the tumor-node-metastasis (TNM) stage, which occurred as the main prognostic factor in all of the performed analyses, we observed several significant associations of different nsSNPs with survival and clinical outcomes in both cohorts. However, only some of the genes (REV3L, POLQ, and NEIL3) were prominently defined as prediction factors in the classification and regression tree analysis; therefore, the study suggests their association for patient survival. In summary, we provide observational and bioinformatics evidence that even subtle alterations in specific proteins of the DNA repair pathways may contribute to CRC susceptibility and clinical outcome.
Collapse
Affiliation(s)
- Katerina Jiraskova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Tanja Gumpenberger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic.
| | - Michaela Schneiderova
- Department of Surgery, General University Hospital in Prague, U Nemocnice 499/2, 128 08 Prague, Czech Republic.
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Thomayerova 815/5, 140 00 Prague, Czech Republic.
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Department of Surgery, Medical School in Pilsen, Charles University, Alej svobody 80, 304 600 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 2411/87, 100 00 Prague, Czech Republic.
| | - Cornelia Di Gaetano
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
| | - Barbara Pardini
- Molecular and Genetic Epidemiology; Genomic Variation in Human Populations and Complex Diseases, IIGM Italian Institute for Genomic Medicine, Via Nizza 52, 10126 Turin, Italy.
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Veronika Vymetalkova
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Pavel Vodicka
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic.
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic.
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| |
Collapse
|
36
|
Biermann J, Nemes S, Parris TZ, Engqvist H, Rönnerman EW, Forssell-Aronsson E, Steineck G, Karlsson P, Helou K. A Novel 18-Marker Panel Predicting Clinical Outcome in Breast Cancer. Cancer Epidemiol Biomarkers Prev 2017; 26:1619-1628. [PMID: 28877888 DOI: 10.1158/1055-9965.epi-17-0606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Gene expression profiling has made considerable contributions to our understanding of cancer biology and clinical care. This study describes a novel gene expression signature for breast cancer-specific survival that was validated using external datasets.Methods: Gene expression signatures for invasive breast carcinomas (mainly luminal B subtype) corresponding to 136 patients were analyzed using Cox regression, and the effect of each gene on disease-specific survival (DSS) was estimated. Iterative Bayesian model averaging was applied on multivariable Cox regression models resulting in an 18-marker panel, which was validated using three external validation datasets. The 18 genes were analyzed for common pathways and functions using the Ingenuity Pathway Analysis software. This study complied with the REMARK criteria.Results: The 18-gene multivariable model showed a high predictive power for DSS in the training and validation cohort and a clear stratification between high- and low-risk patients. The differentially expressed genes were predominantly involved in biological processes such as cell cycle, DNA replication, recombination, and repair. Furthermore, the majority of the 18 genes were found to play a pivotal role in cancer.Conclusions: Our findings demonstrated that the 18 molecular markers were strong predictors of breast cancer-specific mortality. The stable time-dependent area under the ROC curve function (AUC(t)) and high C-indices in the training and validation cohorts were further improved by fitting a combined model consisting of the 18-marker panel and established clinical markers.Impact: Our work supports the applicability of this 18-marker panel to improve clinical outcome prediction for breast cancer patients. Cancer Epidemiol Biomarkers Prev; 26(11); 1619-28. ©2017 AACR.
Collapse
Affiliation(s)
- Jana Biermann
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Szilárd Nemes
- Swedish Hip Arthroplasty Register, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Steineck
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Rangaswamy S, Pandey A, Mitra S, Hegde ML. Pre-Replicative Repair of Oxidized Bases Maintains Fidelity in Mammalian Genomes: The Cowcatcher Role of NEIL1 DNA Glycosylase. Genes (Basel) 2017; 8:E175. [PMID: 28665322 PMCID: PMC5541308 DOI: 10.3390/genes8070175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/16/2017] [Accepted: 06/24/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic fidelity in the humans is continuously challenged by genotoxic reactive oxygen species (ROS) generated both endogenously during metabolic processes, and by exogenous agents. Mispairing of most ROS-induced oxidized base lesions during DNA replication induces mutations. Although bulky base adducts induced by ultraviolet light and other environmental mutagens block replicative DNA polymerases, most oxidized base lesions do not block DNA synthesis. In 8-oxo-G:A mispairs generated by the incorporation of A opposite unrepaired 8-oxo-G, A is removed by MutYH (MYH) for post-replicative repair, and other oxidized base lesions must be repaired prior to replication in order to prevent mutation fixation. Our earlier studies documented S phase-specific overexpression of endonuclease VIII-like 1 (NEIL1) DNA glycosylase (DG), one of five oxidized base excision repair (BER)-initiating enzymes in mammalian cells, and its high affinity for replication fork-mimicking single-stranded (ss)DNA substrates. We recently provided experimental evidence for the role of NEIL1 in replicating-strand repair, and proposed the "cowcatcher" model of pre-replicative BER, where NEIL1's nonproductive binding to the lesion base in ssDNA template blocks DNA chain elongation, causing fork regression. Repair of the lesion in the then re-annealed duplex is carried out by NEIL1 in association with the DNA replication proteins. In this commentary, we highlight the critical role of pre-replicative BER in preventing mutagenesis, and discuss the distinction between pre-replicative vs. post-replicative BER.
Collapse
Affiliation(s)
- Suganya Rangaswamy
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Arvind Pandey
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA.
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
- Houston Methodist Neurological Institute, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Shinmura K, Kato H, Kawanishi Y, Igarashi H, Inoue Y, Yoshimura K, Nakamura S, Fujita H, Funai K, Tanahashi M, Niwa H, Ogawa H, Sugimura H. WDR62 overexpression is associated with a poor prognosis in patients with lung adenocarcinoma. Mol Carcinog 2017; 56:1984-1991. [PMID: 28277612 DOI: 10.1002/mc.22647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/10/2023]
Abstract
Human WDR62, which is localized in the cytoplasm including the centrosome, is known to be responsible for primary microcephaly; however, the role of WDR62 abnormality in cancers remains largely unknown. In this study, we aimed to reveal the pathological role of WDR62 abnormality in lung adenocarcinoma (LAC). We first examined the WDR62 mRNA expression level of LAC (n = 64) using a QRT-PCR analysis and found that WDR62 mRNA transcripts were significantly overexpressed in LAC (P = 0.0432, Wilcoxon matched pairs test). An immunohistochemical analysis for LAC (n = 237) showed that WDR62 proteins were also significantly overexpressed in LAC (P < 0.0001, Mann-Whitney U test). A Kaplan-Meier analysis demonstrated that patients with LAC who exhibit WDR62 overexpression have a short overall survival (P = 0.0378, log-rank test), and a multivariate analysis revealed that WDR62 overexpression was an independent predictor of a poor survival outcome among LAC patients (hazard ratio, 2.032; 95% confidence interval, 1.071-3.777; P = 0.0305). Next, we examined the functional effect of WDR62 overexpression on the lung cancer cell line H1299. WDR62-overexpressing lung cancer cells exhibited an increase in cell growth. Moreover, the concurrent overexpression of WDR62 and TPX2, a WDR62-interacting protein that is also overexpressed in LAC, induced centrosome amplification in the lung cells. Finally, we disclosed that the concurrent overexpression of WDR62 and TPX2 is common in diverse human cancers, using data from the Cancer Genome Atlas. These results suggested that WDR62 overexpression is associated with a poor prognosis in patients with LAC and leads to an increase in the malignant potential of lung cells.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisaki Igarashi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoki Nakamura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidehiko Fujita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Niwa
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Division of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|