1
|
Radmand F, Baseri M, Farsadbakhsh M, Azimi A, Dizaj SM, Sharifi S. A Novel Perspective on Tissue Engineering Potentials of Periodontal Ligament Stem Cells. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e221006-2021-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is challenging to completely and predictably regenerate the missing periodontal tissues caused by the trauma or disease. To regenerate the periodontium, there is a need to consider several aspects that co-occur with periodontal development. This study provides an overview of the most up-to-date investigations on the characteristics and immunomodulatory features of Periodontal Ligament Stem Cells (PDLSCs) and the recent interventions performed using these cells, focusing on cell survival, proliferation, and differentiation. Keeping in mind the relationship between age and potency of PDLSCs, this work also demonstrates the necessity of establishing dental-derived stem cell banks for tissue regeneration applications. The data were collected from Pubmed and Google Scholar databases with the keywords of periodontal ligament stem cells, tissue engineering, characteristics, and stem cell therapy. The results showed the presence of wide-ranging research reports supporting the usability of PDLSCs for periodontal reconstruction. However, a better understanding of self-restoration for adequate regulation of adult stem cell growth is needed for various applied purposes.
Collapse
|
2
|
Thant L, Kaku M, Kakihara Y, Mizukoshi M, Kitami M, Arai M, Kitami K, Kobayashi D, Yoshida Y, Maeda T, Saito I, Uoshima K, Saeki M. Extracellular Matrix-Oriented Proteomic Analysis of Periodontal Ligament Under Mechanical Stress. Front Physiol 2022; 13:899699. [PMID: 35669581 PMCID: PMC9163570 DOI: 10.3389/fphys.2022.899699] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
The periodontal ligament (PDL) is a specialized connective tissue that provides structural support to the tooth and is crucial for oral functions. The mechanical properties of the PDL are mainly derived from the tissue-specific composition and structural characteristics of the extracellular matrix (ECM). The ECM also plays key roles in determining cell fate in the cellular microenvironment thus crucial in the PDL tissue homeostasis. In the present study, we determined the comprehensive ECM profile of mouse molar PDL using laser microdissection and mass spectrometry-based proteomic analysis with ECM-oriented data curation. Additionally, we evaluated changes in the ECM proteome under mechanical loading using a mouse orthodontic tooth movement (OTM) model and analyzed potential regulatory networks using a bioinformatics approach. Proteomic changes were evaluated in reference to the novel second harmonic generation (SHG)-based fiber characterization. Our ECM-oriented proteomics approach succeeded in illustrating the comprehensive ECM profile of the mouse molar PDL. We revealed the presence of type II collagen in PDL, possibly associated with the load-bearing function upon occlusal force. Mechanical loading induced unique architectural changes in collagen fibers along with dynamic compositional changes in the matrisome profile, particularly involving ECM glycoproteins and matrisome-associated proteins. We identified several unique matrisome proteins which responded to the different modes of mechanical loading in PDL. Notably, the proportion of type VI collagen significantly increased at the mesial side, contributing to collagen fibrogenesis. On the other hand, type XII collagen increased at the PDL-cementum boundary of the distal side. Furthermore, a multifaceted bioinformatics approach illustrated the potential molecular cues, including PDGF signaling, that maintain ECM homeostasis under mechanical loading. Our findings provide fundamental insights into the molecular network underlying ECM homeostasis in PDL, which is vital for clinical diagnosis and development of biomimetic tissue-regeneration strategies.
Collapse
Affiliation(s)
- Lay Thant
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- *Correspondence: Masaru Kaku,
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Mizukoshi
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Megumi Kitami
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Moe Arai
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kohei Kitami
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Daiki Kobayashi
- Omics Unit, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsumi Uoshima
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makio Saeki
- Division of Dental Pharmacology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Kukreja BJ, Bhat KG, Kukreja P, Kumber VM, Balakrishnan R, Govila V. Isolation and immunohistochemical characterization of periodontal ligament stem cells: A preliminary study. J Indian Soc Periodontol 2021; 25:295-299. [PMID: 34393399 PMCID: PMC8336774 DOI: 10.4103/jisp.jisp_442_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Context: It is a known fact that periodontal tissue regeneration can be achieved by the use of periodontal ligament stem cells (PDLSCs). Current mainstay of periodontal treatment is focusing on stem cell tissue engineering as an effective therapy, making it important to isolate PDLSCs from periodontal tissues. Aims: The present research endeavor was undertaken to elucidate a technique for isolating PDLSCs for in vivo reconstructing the natural PDL tissue. Settings and Design: The study design involves In vitro prospective study. Materials and Methods: Premolar teeth were extracted from 12 patients who were under orthodontic treatment. PDL cells were scraped from their roots. Using 10 ml of Dulbecco's modified Eagle's medium with pH 7.2, the specimens of the periodontal tissue were transferred to laboratory where cell culture was done. Isolated stem cells were grown on 24-well microtiter plates-containing cover slips. They were incubated overnight at approximately 37°C in 95% air and 5% humidification. Anti-CD 45, CD73, CD90, CD105, and CD146 antibodies were used. After staining, cells were observed under phase-contrast microscopy and in inverted microscope. Results: The cells showed a marked growth and 90% confluence at day 6. Cells presented thin and long fibroblastic spindle morphology. Isolated PDLSCs showed colony-forming ability at the 14th day after seeding. Immunohistochemical staining of PDLSCs showed positive uptake for CD146, CD90, CD73, CD105, and negative uptake for CD45. Conclusions: The human PDLSCs can be clearly isolated and characterized by using CD90, CD73, CD146, and CD105 markers of stem cells.
Collapse
Affiliation(s)
- Bhavna Jha Kukreja
- Department of Periodontology, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Kishore Gajanan Bhat
- Department of Microbiology, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Pankaj Kukreja
- Department of Biomedical Dental Sciences, Faculty of Dentistry, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Vijay Mahadev Kumber
- Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Maratha Mandal's Central Research Laboratory, Belagavi, Karnataka, India
| | - Rajkumar Balakrishnan
- Department of Conservative Dentistry and Endodontics, Babu Banarasi Das College of Dental Sciences, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Vivek Govila
- Department of Periodontology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Hosmani J, Assiri K, Almubarak HM, Mannakandath ML, Al-Hakami A, Patil S, Babji D, Sarode S, Devaraj A, Chandramoorthy HC. Proteomic profiling of various human dental stem cells - a systematic review. World J Stem Cells 2020; 12:1214-1236. [PMID: 33178402 PMCID: PMC7596439 DOI: 10.4252/wjsc.v12.i10.1214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The proteomic signature or profile best describes the functional component of a cell during its routine metabolic and survival activities. Additional complexity in differentiation and maturation is observed in stem/progenitor cells. The role of functional proteins at the cellular level has long been attributed to anatomical niches, and stem cells do not deflect from this attribution. Human dental stem cells (hDSCs), on the whole, are a combination of mesenchymal and epithelial coordinates observed throughout craniofacial bones to pulp.
AIM To specify the proteomic profile and compare each type of hDSC with other mesenchymal stem cells (MSCs) of various niches. Furthermore, we analyzed the characteristics of the microenvironment and preconditioning changes associated with the proteomic profile of hDSCs and their influence on committed lineage differentiation.
METHODS Literature searches were performed in PubMed, EMBASE, Scopus, and Web of Science databases, from January 1990 to December 2018. An extra inquiry of the grey literature was completed on Google Scholar, ProQuest, and OpenGrey. Relevant MeSH terms (PubMed) and keywords related to dental stem cells were used independently and in combination.
RESULTS The initial search resulted in 134 articles. Of the 134 full-texts assessed, 96 articles were excluded and 38 articles that met the eligibility criteria were reviewed. The overall assessment of hDSCs and other MSCs suggests that differences in the proteomic profile can be due to stem cellular complexity acquired from varied tissue sources during embryonic development. However, our comparison of the proteomic profile suffered inconsistencies due to the heterogeneity of various hDSCs. We believe that the existence of a heterogeneous population of stem cells at a given niche determines the modalities of regeneration or tissue repair. Added prominences to the differences present between various hDSCs have been reasoned out.
CONCLUSION Systematic review on proteomic studies of various hDSCs are promising as an eye-opener for revisiting the proteomic profile and in-depth analysis to elucidate more refined mechanisms of hDSC functionalities.
Collapse
Affiliation(s)
- Jagadish Hosmani
- Diagnostic Dental Sciences, College of Dentistry, King Khalid University, Abha 61471, Asir, Saudi Arabia
| | - Khalil Assiri
- Diagnostic Dental Sciences, King Khalid University, Abha 61471, Asir, Saudi Arabia
| | | | | | - Ahmed Al-Hakami
- Center for Stem Cell Research and Department of Microbiology and Clinical Parasitology, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Shankargouda Patil
- Maxillofacial Surgery and Diagnostic Sciences, Division of oral Pathology, Jazan 45142, Jazan, Saudi Arabia
| | - Deepa Babji
- Department of Oral Pathology and Microbiology, Maratha Mandal's NG Halgekar Institute of Dental Sciences and Research Centre, Belgaun 590 010, Karnataka, India
| | - Sachin Sarode
- Department of Oral Pathology, Y Patil Dental College and Hospital, Pune 411018, Maharashtra, India
| | - Anantharam Devaraj
- Center for Stem Cell Research and Department of Microbiology and Clinical Parasitology, King Khalid University, Abha 61421, Asir, Saudi Arabia
| | - Harish C Chandramoorthy
- Center for Stem Cell Research and Department of Microbiology and Clinical Parasitology, King Khalid University, Abha 61421, Asir, Saudi Arabia
| |
Collapse
|
5
|
Immunomodulatory Properties of Stem Cells in Periodontitis: Current Status and Future Prospective. Stem Cells Int 2020; 2020:9836518. [PMID: 32724318 PMCID: PMC7366217 DOI: 10.1155/2020/9836518] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the sixth-most prevalent chronic inflammatory disease and gradually devastates tooth-supporting tissue. The complexity of periodontal tissue and the local inflammatory microenvironment poses great challenges to tissue repair. Recently, stem cells have been considered a promising strategy to treat tissue damage and inflammation because of their remarkable properties, including stemness, proliferation, migration, multilineage differentiation, and immunomodulation. Several varieties of stem cells can potentially be applied to periodontal regeneration, including dental mesenchymal stem cells (DMSCs), nonodontogenic stem cells, and induced pluripotent stem cells (iPSCs). In particular, these stem cells possess extensive immunoregulatory capacities. In periodontitis, these cells can exert anti-inflammatory effects and regenerate the periodontium. Stem cells derived from infected tissue possess typical stem cell characteristics with lower immunogenicity and immunosuppression. Several studies have demonstrated that these cells can also regenerate the periodontium. Furthermore, the interaction of stem cells with the surrounding infected microenvironment is critical to periodontal tissue repair. Though the immunomodulatory capabilities of stem cells are not entirely clarified, they show promise for therapeutic application in periodontitis. Here, we summarize the potential of stem cells for periodontium regeneration in periodontitis and focus on their characteristics and immunomodulatory properties as well as challenges and perspectives.
Collapse
|
6
|
Marchetti E, Mancini L, Bernardi S, Bianchi S, Cristiano L, Torge D, Marzo G, Macchiarelli G. Evaluation of Different Autologous Platelet Concentrate Biomaterials: Morphological and Biological Comparisons and Considerations. MATERIALS 2020; 13:ma13102282. [PMID: 32429210 PMCID: PMC7288147 DOI: 10.3390/ma13102282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
The field of regeneration interventions in oral and maxillofacial surgeries still represents a challenge for researchers and clinicians. Understanding the biological and morphological behaviour of human cells towards the materials used for the regeneration surgeries is key to successfully choosing and applying the appropriate biomaterials for specific clinical situations. The aim of the study was the biological and morphological evaluation of autologous platelet concentrate materials obtained with different protocols, in culture with human periodontal ligament fibroblasts (HPLF). The study design included the evaluation of Leukocyte-Platelet-Rich-Fibrin (L-PRF), Concentrated Growth Factors (CGF) and autologous platelet gel (APG) in contact with the HPLF cell line after 24 h, 72 h and 7 days of in vitro culture. Cell proliferation and, therefore, viability were evaluated with XTT assays. The morphological response of the cells was evaluated by light microscopy, scanning electron microscopy and confocal microscopy. The XTT assay showed an interesting response in the growth curve. In particular, the material that gave the best results was the CGF. The morphological data supported the XTT assay, showing the best results for the CGF and L-PRF. In conclusion, all the platelet-derived materials stimulated the onset of the growth of the HPLF cell line, making them promising options for periodontal regeneration interventions.
Collapse
Affiliation(s)
- Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Leonardo Mancini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Sara Bernardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
- Microscopy Center, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence:
| | - Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Diana Torge
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Giuseppe Marzo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (E.M.); (L.M.); (S.B.); (L.C.); (D.T.); (G.M.); (G.M.)
| |
Collapse
|
7
|
Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int 2019; 2019:9159605. [PMID: 31636679 PMCID: PMC6766151 DOI: 10.1155/2019/9159605] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Dental follicle cells (DFCs) are a group of mesenchymal progenitor cells surrounding the tooth germ, responsible for cementum, periodontal ligament, and alveolar bone formation in tooth development. Cascades of signaling pathways and transcriptional factors in DFCs are involved in directing tooth eruption and tooth root morphogenesis. Substantial researches have been made to decipher multiple aspects of DFCs, including multilineage differentiation, senescence, and immunomodulatory ability. DFCs were proved to be multipotent progenitors with decent amplification, immunosuppressed and acquisition ability. They are able to differentiate into osteoblasts/cementoblasts, adipocytes, neuron-like cells, and so forth. The excellent properties of DFCs facilitated clinical application, as exemplified by bone tissue engineering, tooth root regeneration, and periodontium regeneration. Except for the oral and maxillofacial regeneration, DFCs were also expected to be applied in other tissues such as spinal cord defects (SCD), cardiomyocyte destruction. This article reviewed roles of DFCs in tooth development, their properties, and clinical application potentials, thus providing a novel guidance for tissue engineering.
Collapse
|
8
|
Giovani PA, Salmon CR, Martins L, Leme AFP, Puppin-Rontani RM, Mofatto LS, Nociti FH, Kantovitz KR. Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth. J Periodontol 2018; 90:775-787. [PMID: 30499115 DOI: 10.1002/jper.18-0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Physiological roles for the periodontal ligament (PDL) include tooth eruption and anchorage, force absorption, and provision of proprioceptive information. Despite the advances in understanding the biology of PDL cells, there is a lack of information regarding the molecular signature of deciduous (DecPDL) and permanent (PermPDL) PDL tissues. Thus, the present study was designed to characterize the membrane proteome of DecPDL and PermPDL cells. METHODS Primary PDL cells were obtained (n = 6) and a label-free quantitative proteome of cell membrane-enriched components was performed. Proteome findings were validated by quantitative polymerase chain reaction and Western blot assays in fresh human tissues (n = 8) and primary cell cultures (n = 6). In addition, confocal microscopy was used to verify the expression of target factors in the PDL cell cultures. RESULTS Comparative gene ontology enrichment analysis evidenced that most stickling differences involved "endomembrane system" (PICALM, STX4, and LRP10), "hydrolase activity" (NCSTN and XRCC6), "protein binding" (PICALM, STX4, GPNMB, VASP, extended-synaptotagmin 2 [ESYT2], and leucine-rich repeat containing 15 [LRRC15]), and "isomerase activity" (FKBP8). Data are available via ProteomeXchange with identifier PXD010226. At the transcript level, high PICALM in DecPDL and ESYT2 and LRRC15 in PermPDL were confirmed in fresh PDL tissues. Furthermore, Western blot analysis confirmed increased levels of PICALM, LRRC15, and ESYT2 in cells and/or fresh tissues, and confocal microscopy confirmed the trends for PICALM and LRRC15 expression in PDL cells. CONCLUSION We report the first comprehensive characterization of the membrane protein machinery of DecPDL and PermPDL cells, and together, we identified a distinct molecular signature for these cell populations, including unique proteins for DecPDL and PermPDL.
Collapse
Affiliation(s)
- Priscila A Giovani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana F P Leme
- Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciana S Mofatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil.,Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clin Oral Investig 2018; 23:2455-2463. [PMID: 30311062 DOI: 10.1007/s00784-018-2637-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cell-based therapies involve the need to expand cell cultures ex vivo for their subsequent implantation in an autologous manner. An important limitation regarding this technology is the use of fetal bovine serum (FBS) that has critical safety limitations. Platelet-derived fractions represent an autologous source of growth factors that may be used for the expansion of these cell cultures. Periodontal ligament (PDL) cells comprise a heterogeneous cell population that may not necessarily respond in a uniform manner to proliferative stimuli. The aim of this study was to evaluate the ability of two platelet-derived fractions, platelet-rich plasma (PRP) and platelet-poor plasma (PPP) and FBS on the proliferative response of different subpopulations of PDL cell cultures. MATERIALS AND METHODS PDL cells were characterized and then exposed to PRP, PPP, or FBS during 2, 5, or 14 days to analyze cell proliferation and clonogenic capability. Cell proliferation was evaluated through immunofluorescence for Ki67 and by tracing carboxyfluorescein diacetate succinimidyl ester (CFSE) dye in combination with mesenchymal stem cell markers using flow cytometry. RESULTS Both PRP and PPP stimulated PDL cell proliferation and their clonogenic ability. We found a significant increase of CD73- and CD90-positive cells after PRP or PPP treatment, compared to FBS. Otherwise, no differences were found regarding the response of CD146-or CD105-positive cells when stimulated with PRP, PPP, or FBS. CONCLUSION PRP and PPP can stimulate the proliferation and clonogenicity of PDL cell populations including cells positive for CD90 and CD73 markers. CLINICAL RELEVANCE These findings may have implications for future therapies aiming to stimulate periodontal regeneration using autologous growth factors.
Collapse
|
10
|
Han NY, Hong JY, Park JM, Shin C, Lee S, Lee H, Yun JH. Label-free quantitative proteomic analysis of human periodontal ligament stem cells by high-resolution mass spectrometry. J Periodontal Res 2018; 54:53-62. [DOI: 10.1111/jre.12604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Na-Young Han
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Ji-Youn Hong
- Department of Periodontology; School of Dentistry; Kyung Hee University; Seoul Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Changsik Shin
- Department of Microbiology and Immunology; Penn State University College of Medicine and Milton Hershey Medical Center; Hershey; PA USA
| | - Saya Lee
- Department of Periodontology; College of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences; Gachon College of Pharmacy; Gachon University; Incheon Korea
| | - Jeong-Ho Yun
- Department of Periodontology; College of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju Korea
- Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital; Jeonju Korea
| |
Collapse
|
11
|
Zhao C, Wang S, Wang G, Su M, Song L, Chen J, Fan S, Lin X. Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration. Acta Biomater 2018; 68:15-28. [PMID: 29294376 DOI: 10.1016/j.actbio.2017.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/12/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Muscle injury and defect affect people's quality of life, and effective treatment is lacking. Herein, we generated a scaffold to obtain decellularized porcine Achilles tendon myotendinous junction (D-MTJ) extracellular matrix (ECM) with well-preserved native biphasic hierarchical structure, biological composition, and excellent mechanical properties for muscle regeneration. The combined use of potassium chloride, potassium iodide, Triton-X 100, and sodium-dodecyl sulfate (SDS) can completely remove the main immunogenicity, while maintaining the major biological components and microstructure. The specific biomechanics of D-MTJ is comparable to the native muscle-tendon physiological conditions. Additionally, the D-MTJ ECM scaffold induced minimal immunological reaction (histology analysis) through rat subcutaneous implantation. Moreover, in vitro, muscle satellite cells adhered, proliferated, and infiltrated into the D-MTJ scaffold, and myofiber-like cell differentiation was observed as shown by increased expression of myogenesis-related genes during culture. In vivo, newly formed myofibers were observed in a muscle defect model with D-MTJ orthotopic transplantation, while the control group presented mostly with fibrous tissue deposition. Additionally, the number of Myod and MyHC-positive cells in the ECM scaffold group was higher at day 30. We preliminary explored the mechanisms underlying D-MTJ-mediated muscle regeneration, which may be attributed to its specific biphasic hierarchical structure, bio-components, and attractiveness for myogenesis cells. In conclusion, our findings suggest the D-MTJ ECM scaffold prepared in this study is a promising choice for muscle regeneration. STATEMENT OF SIGNIFICANCE This study is the first to use decellularization technology obtaining the specifically decellularized myotendinous junction (D-MTJ) with well-preserved biphasic hierarchical structure and constituents, excellent mechanical properties and good biocompatibility. The D-MTJ was further proved to be efficient for muscle regeneration in vitro and in vivo, and the underlying mechanisms may be attributed to its specifically structure and constituents, improved myogenesis and good preservation of repair-related factors. Our study may provide basis for the decellularization of other biphasic hierarchical tissues and a platform for further studies on muscle fiber and tendon integrations in vitro.
Collapse
Affiliation(s)
- Chenchen Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Mingzhen Su
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Liyang Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Wu M, Wang J, Zhang Y, Liu H, Dong F. Mineralization Induction of Gingival Fibroblasts and Construction of a Sandwich Tissue-Engineered Complex for Repairing Periodontal Defects. Med Sci Monit 2018; 24:1112-1123. [PMID: 29470454 PMCID: PMC5830924 DOI: 10.12659/msm.908791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ideal healing technique for periodontal tissue defects would involve the functional regeneration of the alveolar bone, cementum, and periodontal ligament, with new periodontal attachment formation. In this study, gingival fibroblasts were induced and a "sandwich" tissue-engineered complex (a tissue-engineered periodontal membrane between 2 tissue-engineered mineralized membranes) was constructed to repair periodontal defects. We evaluated the effects of gingival fibroblasts used as seed cells on the repair of periodontal defects and periodontal regeneration. MATERIAL AND METHODS Primitively cultured gingival fibroblasts were seeded bilaterally on Bio-Gide collagen membrane (a tissue-engineered periodontal membrane) or unilaterally on small intestinal submucosa segments, and their mineralization was induced. A tissue-engineered sandwich was constructed, comprising the tissue-engineered periodontal membrane flanked by 2 mineralized membranes. Periodontal defects in premolar regions of Beagles were repaired using the tissue-engineered sandwich or periodontal membranes. Periodontal reconstruction was compared to normal and trauma controls 10 or 20 days postoperatively. RESULTS Periodontal defects were completely repaired by the sandwich tissue-engineered complex, with intact new alveolar bone and cementum, and a new periodontal ligament, 10 days postoperatively. CONCLUSIONS The sandwich tissue-engineered complex can achieve ideal periodontal reconstruction rapidly.
Collapse
Affiliation(s)
- Mingxuan Wu
- Department of Oral Medicine, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, China (mainland)
| | - Jie Wang
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, China (mainland)
| | - Yanning Zhang
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, China (mainland)
| | - Huijuan Liu
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, China (mainland)
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Hebei Medical University; The Key Laboratory of Stomatology, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
13
|
Liao H, Zhong Z, Liu Z, Li L, Ling Z, Zou X. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head. Exp Ther Med 2017; 15:954-962. [PMID: 29399103 PMCID: PMC5772743 DOI: 10.3892/etm.2017.5455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.
Collapse
Affiliation(s)
- Hongxing Liao
- Department of Orthopedics, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhixiong Zhong
- Department of Cardiovascular Medicine, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China
| | - Zhanliang Liu
- Department of Orthopedics, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China
| | - Liangping Li
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
14
|
Qian Y, Han Q, Chen W, Song J, Zhao X, Ouyang Y, Yuan W, Fan C. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration. Front Chem 2017; 5:89. [PMID: 29164105 PMCID: PMC5671651 DOI: 10.3389/fchem.2017.00089] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022] Open
Abstract
Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of PRP derived GFs with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.
Collapse
Affiliation(s)
- Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Qixin Han
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Jialin Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and Health, Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
15
|
Zhen C, Zhu H, Li Q, Xu W. Protective effects of mesenchymal stem cell cond tional medium against inflammatory injury on human gingival fibroblast. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8263-8269. [PMID: 31966677 PMCID: PMC6965482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/20/2017] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cells (MSCs) alleviate oxidative stress in kidney, lung and heart by secreting bioactive factors. Human gingival fibroblasts (HGFs) are important for repairing periodontal tissues. This study observed protective effects of MSCs conditional medium (MSCCM) on HGFs against inflammatory injury, to investigate anti-inflammatory function and mechanism of MSCCM on HGFs. Primary cultured HGFs were identified for sources by immunohistochemistry (IHC)-SP assay. In vitro cultured MSCs were extracted for MSCCM, which was used to pre-treat HGFs with inflammatory induction by 10 μg/L IL-6 or TNF-α for 4 h. ELISA quantified transforming growth factor (TGF)-β level in the supernatant, and superoxide dismutase (SOD) plus malondialdehyde (MDA) levels were measured by colorimetry. RT-PCR measured keratocyte growth factor (KGF) mRNA expression, and flow cytometry or Western blot measured apoptosis or Caspase-3 expression in HGFs, respectively. Compared to control group, MSCCM treatment group showed no significant change of SOD, MDA, TGF-β level, cell apoptosis, KGF mRNA or Caspase-3 expression (P>0.05). Inflammation treatment elevated all those indexes but decreased SOD (P<0.05). Compared to model group, MSCCM treatment further decreased these factors but increased SOD level (P<0.05). No significant difference was found between IL-6 and TNF-α treated cells. MSCCM can partially inhibit IL-6 induced inflammatory injury of HGFs via suppressing Caspase-3 and KGF expression.
Collapse
Affiliation(s)
- Changhao Zhen
- Department of Stomatology, Affiliated Hospital of Jilin Medical UniversityJilin, China
| | - Haiyu Zhu
- Department of Stomatology, Affiliated Hospital of Jilin Medical UniversityJilin, China
| | - Qiaoling Li
- Department of Stomatology, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| | - Wenxiu Xu
- Department of Stomatology, Hongqi Hospital Affiliated to Mudanjiang Medical UniversityMudanjiang, Heilongjiang, China
| |
Collapse
|
16
|
Li J, Tian W, Song J. Proteomics Applications in Dental Derived Stem Cells. J Cell Physiol 2017; 232:1602-1610. [PMID: 27791269 DOI: 10.1002/jcp.25667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Li
- College of Stomatology; Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jinlin Song
- College of Stomatology; Chongqing Medical University; Chongqing China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences; Chongqing China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education; Chongqing China
| |
Collapse
|