1
|
Cao X, Cai J, Zhang Y, Liu C, Song M, Xu Q, Liu Y, Yan H. Biodegradation of Uric Acid by Bacillus paramycoides-YC02. Microorganisms 2023; 11:1989. [PMID: 37630550 PMCID: PMC10460076 DOI: 10.3390/microorganisms11081989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
High serum uric acid levels, known as hyperuricemia (HUA), are associated with an increased risk of developing gout, chronic kidney disease, cardiovascular disease, diabetes, and other metabolic syndromes. In this study, a promising bacterial strain capable of biodegrading uric acid (UA) was successfully isolated from Baijiu cellar mud using UA as the sole carbon and energy source. The bacterial strain was identified as Bacillus paramycoides-YC02 through 16S rDNA sequence analysis. Under optimal culture conditions at an initial pH of 7.0 and 38 °C, YC02 completely biodegraded an initial UA concentration of 500 mg/L within 48 h. Furthermore, cell-free extracts of YC02 were found to catalyze and remove UA. These results demonstrate the strong biodegradation ability of YC02 toward UA. To gain further insight into the mechanisms underlying UA biodegradation by YC02, the draft genome of YC02 was sequenced using Illumina HiSeq. Subsequent analysis revealed the presence of gene1779 and gene2008, which encode for riboflavin kinase, flavin mononucleotide adenylyl transferase, and flavin adenine dinucleotide (FAD)-dependent urate hydroxylase. This annotation was based on GO or the KEEG database. These enzymes play a crucial role in the metabolism pathway, converting vitamin B2 to FAD and subsequently converting UA to 5-hydroxyisourate (HIU) with the assistance of FAD. Notably, HIU undergoes a slow non-enzymatic breakdown into 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and (S)-allantoin. The findings of this study provide valuable insights into the metabolism pathway of UA biodegradation by B. paramycoides-YC02 and offer a potential avenue for the development of bacterioactive drugs against HUA and gout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (X.C.); (J.C.)
| |
Collapse
|
2
|
A Brief Review of Natural Products with Urate Transporter 1 Inhibition for the Treatment of Hyperuricemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5419890. [PMID: 36337587 PMCID: PMC9635963 DOI: 10.1155/2022/5419890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Hyperuricemia is a common disease caused by a high level of uric acid. Urate transporter 1 (URAT1) is an important protein and mediates approximately 90% of uric acid reabsorption. Therefore, the URAT1 inhibitor is a class of uricosuric medicines widely used in the clinic for the treatment of hyperuricemia. To find the new medicine with stronger URAT1 inhibition and lower toxicity, researchers have been exploring natural products. This study systematically summarizes the natural products with URAT1 inhibition. The results show that many natural products are potential URAT1 inhibitors, such as flavonoids, terpenoids, alkaloids, coumarins, stilbenes, and steroids, among which flavonoids are the most promising source of URAT1 inhibitors. It is worth noting that most studies have focused on finding natural products with inhibition of URAT1 and have not explored their activities and mechanisms toward URAT1. By reviewing the few existing studies of the structure-activity relationship and analyzing common features of natural products with URAT1 inhibition, we speculate that the rigid ring structure and negative charge may be the keys for natural products to produce URAT1 inhibition. In conclusion, natural products are potential URAT1 inhibitors, and exploring the mechanism of action and structure-activity relationship will be an important research direction in the future.
Collapse
|
3
|
Yang L, Wang B, Ma L, Fu P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front Pharmacol 2022; 13:971032. [PMID: 36016570 PMCID: PMC9395578 DOI: 10.3389/fphar.2022.971032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
Hyperuricemia is a common biochemical disorder, which resulted from both excessive uric acid (UA) production and/or absolute or relative impairment of urinary UA excretion. Growing evidence has indicated that hyperuricemia is an independent risk factor for the development and progression of chronic kidney disease (CKD), causing hyperuricemia-induced CKD (hyperuricemic nephropathy, HN). The therapeutic strategy of HN is managing hyperuricemia and protecting kidney function. Adverse effects of commercial drugs make persistent treatment of HN challenging. Traditional Chinese medicine (TCM) has exact efficacy in lowering serum UA without serious adverse effects. In addition, TCM is widely applied for the treatment of CKD. This review aimed to provide an overview of efficacy and mechanisms of traditional Chinese herbs and natural products in hyperuricemia-induced CKD.
Collapse
Affiliation(s)
| | | | - Liang Ma
- *Correspondence: Liang Ma, ; Ping Fu,
| | - Ping Fu
- *Correspondence: Liang Ma, ; Ping Fu,
| |
Collapse
|
4
|
Traditional Chinese Herbal Medicine Plays a Role in the Liver, Kidney, and Intestine to Ameliorate Hyperuricemia according to Experimental Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4618352. [PMID: 34876914 PMCID: PMC8645359 DOI: 10.1155/2021/4618352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
In the last few decades, hyperuricemia has drawn increasing attention owing to its global prevalence. Observational surveys have manifested that there is a relation between hyperuricemia and increased risks of hypertension, chronic kidney disease, cardiovascular events, metabolic disorders, end stage renal disease, and mortality. As alternatives, Traditional Chinese medicinal herbs have demonstrated concrete effects in mitigating hyperuricemia in different experiments. Researchers have made efforts to investigate the role of herbal medicine in attenuating hyperuricemia. This review focuses on traditional Chinese herbal medicines that have been reported to ameliorate hyperuricemia in experimental studies.
Collapse
|
5
|
Zhang Y, Tan X, Lin Z, Li F, Yang C, Zheng H, Li L, Liu H, Shang J. Fucoidan from Laminaria japonica Inhibits Expression of GLUT9 and URAT1 via PI3K/Akt, JNK and NF-κB Pathways in Uric Acid-Exposed HK-2 Cells. Mar Drugs 2021; 19:md19050238. [PMID: 33922488 PMCID: PMC8145932 DOI: 10.3390/md19050238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
This work aimed to investigate the effect of fucoidan (FPS) on urate transporters induced by uric acid (UA). The results showed that UA stimulated the expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in HK-2 cells, and FPS could reverse the effect. Moreover, UA could activate NF-κB, JNK and PI3K/Akt pathways, but both pathway inhibitors and FPS inhibited the UA-induced activation of these three pathways. These data suggested that FPS effectively inhibited the expression induction of reabsorption transporters URAT1 and GLUT9 by UA, through repressing the activation of NF-κB, JNK and PI3K/Akt signal pathways in HK-2 cells. The in vitro research findings support the in vivo results that FPS reduces serum uric acid content in hyperuricemia mice and rats through inhibiting the expression of URAT1 and GLUT9 in renal tubular epithelial cells. This study provides a theoretical basis for the application of FPS in the treatment of hyperuricemia.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (X.T.); (Z.L.); (F.L.)
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
| | - Xiaohui Tan
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (X.T.); (Z.L.); (F.L.)
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
| | - Zhen Lin
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (X.T.); (Z.L.); (F.L.)
| | - Fangping Li
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (X.T.); (Z.L.); (F.L.)
| | - Chunyan Yang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
| | - Haiying Zheng
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
| | - Lingyu Li
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
| | - Huazhong Liu
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Y.Z.); (X.T.); (Z.L.); (F.L.)
- Correspondence: authors: (H.L.); (J.S.)
| | - Jianghua Shang
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China; (C.Y.); (H.Z.); (L.L.)
- Correspondence: authors: (H.L.); (J.S.)
| |
Collapse
|
6
|
Hwang JH, Lee KH, Nam DW, Song HS. Acupuncture to treat asymptomatic hyperuricemia: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2021; 100:e24719. [PMID: 33578616 PMCID: PMC10545084 DOI: 10.1097/md.0000000000024719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Hyperuricemia (HUA) plays an important role in metabolic syndrome, cardiovascular disease, and kidney disease. HUA without resulting gout is referred to as asymptomatic HUA. The purpose of the present systematic review protocol is to provide methods to assess the effectiveness and safety of acupuncture-based treatment for asymptomatic HUA. METHODS To identify randomized controlled trials (RCTs) involving acupuncture-based treatment for asymptomatic HUA, a search will be carried out using the following eight electronic databases: MEDLINE, EMBASE, Cochrane Library, Korea Med, Oriental Medicine Advanced Searching Integrated System, Korean Studies Information Service System, China National Knowledge Infrastructure, and Japanese Institutional Repositories Online. Manual search and email contact with the author will also be conducted if necessary. Studies will be selected based on predefined criteria and summarized data regarding study participants, interventions, control groups, outcome measures, side effects, and risk of bias. No language restrictions will be imposed. Studies that evaluated any type of acupuncture will be eligible for inclusion, and the primary outcome will be the blood uric acid level. The methodological quality of the included RCTs will be assessed using the Cochrane risk of bias tool. RESULTS The present study will evaluate the efficacy and safety of acupuncture to treat HUA. CONCLUSION Our findings will establish the evidence for acupuncture-based treatment of HUA and will be informative for patients with HUA, clinicians, policy makers, and researchers. REGISTRATION NUMBER reviewregistry1054.
Collapse
Affiliation(s)
- Ji Hye Hwang
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Kwang Ho Lee
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Sangji University
| | - Dong Woo Nam
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Kyung Hee University
| | - Ho Sueb Song
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
7
|
Chen L, Luo Z, Wang M, Cheng J, Li F, Lu H, He Q, You Y, Zhou X, Kwan HY, Zhao X, Zhou L. The Efficacy and Mechanism of Chinese Herbal Medicines in Lowering Serum Uric Acid Levels: A Systematic Review. Front Pharmacol 2021; 11:578318. [PMID: 33568990 PMCID: PMC7868570 DOI: 10.3389/fphar.2020.578318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background. Chinese herbal medicines are widely used to lower serum uric acid levels. However, no systemic review summarizes and evaluates their efficacies and the underlying mechanisms of action. Objectives. To evaluate the clinical and experimental evidences for the effectiveness and the potential mechanism of Chinese herbal medicines in lowering serum uric acid levels. Methods. Four electronic databases PubMed, Wed of Science, the Cochrane Library and Embase were used to search for Chinese herbal medicines for their effects in lowering serum uric acid levels, dated from 1 January 2009 to 19 August 2020. For clinical trials, randomized controlled trials (RCTs) were included; and for experimental studies, original articles were included. The methodological quality of RCTs was assessed according to the Cochrane criteria. For clinical trials, a meta-analysis of continuous variables was used to obtain pooled effects. For experimental studies, lists were used to summarize and integrate the mechanisms involved. Results. A total of 10 clinical trials and 184 experimental studies were included. Current data showed that Chinese herbal medicines have promising clinical efficacies in patients with elevated serum uric acid levels (SMD: −1.65, 95% CI: −3.09 to −0.22; p = 0.024). There was no significant difference in serum uric acid levels between Chinese herbal medicine treatments and Western medicine treatments (SMD: −0.13, 95% CI: −0.99 to 0.74; p = 0.772). Experimental studies revealed that the mechanistic signaling pathways involved in the serum uric acid lowering effects include uric acid synthesis, uric acid transport, inflammation, renal fibrosis and oxidative stress. Conclusions. The clinical studies indicate that Chinese herbal medicines lower serum uric acid levels. Further studies with sophisticated research design can further demonstrate the efficacy and safety of these Chinese herbal medicines in lowering serum uric acid levels and reveal a comprehensive picture of the underlying mechanisms of action.
Collapse
Affiliation(s)
- Liqian Chen
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhengmao Luo
- Department of Nephrology, General Hospital of Southern Theatre Command, PLA, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jingru Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Li
- Department of Traditional Chinese Medicine, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Aladdin NA, Husain K, Jalil J, Sabandar CW, Jamal JA. Xanthine oxidase inhibitory activity of a new isocoumarin obtained from Marantodes pumilum var. pumila leaves. BMC Complement Med Ther 2020; 20:324. [PMID: 33109178 PMCID: PMC7590683 DOI: 10.1186/s12906-020-03119-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In traditional Malay medicine, Marantodes pumilum (Blume) Kuntze (family Primulaceae) is commonly used by women to treat parturition, flatulence, dysentery, dysmenorrhea, gonorrhea, and bone diseases. Preliminary screening of some Primulaceae species showed that they possess xanthine oxidase inhibitory activity. Thus, this study aimed to investigate the xanthine oxidase inhibitory activity of three varieties of M. pumilum and their phytochemical compounds. METHOD Dichloromethane, methanol, and water extracts of the leaves and roots of M. pumilum var. alata, M. pumilum var. pumila, and M. pumilum var. lanceolata were tested using an in vitro xanthine oxidase inhibitory assay. Bioassay-guided fractionation and isolation were carried out on the most active extract using chromatographic techniques. The structures of the isolated compounds were determined using spectroscopic techniques. RESULTS The most active dichloromethane extract of M. pumilum var. pumila leaves (IC50 = 161.6 μg/mL) yielded one new compound, 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), and five known compounds, viz. ardisiaquinone A (2), maesanin (3), stigmasterol (4), tetracosane (5), and margaric acid (6). The new compound was found to be the most active xanthine oxidase inhibitor with an IC50 value of 0.66 ± 0.01 μg/mL, which was not significantly different (p > 0.05) from that of the positive control, allopurinol (IC50 = 0.24 ± 0.00 μg/mL). CONCLUSION This study suggests that the new compound 3,7-dihydroxy-5-methoxy-4,8-dimethyl-isocoumarin (1), which was isolated from the dichloromethane extract of M. pumilum var. pumila leaves, could be a potential xanthine oxidase inhibitor.
Collapse
Affiliation(s)
- Nor-Ashila Aladdin
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Carla Wulandari Sabandar
- Department of Pharmacy, Faculty of Science and Technology, Universitas Sembilanbelas November Kolaka, Kolaka, Indonesia
| | - Jamia Azdina Jamal
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Protective Effects and Metabolic Regulatory Mechanisms of Shenyan Fangshuai Recipe on Chronic Kidney Disease in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5603243. [PMID: 32908562 PMCID: PMC7468650 DOI: 10.1155/2020/5603243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/22/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022]
Abstract
Background Chronic kidney disease (CKD) is one of the major causes of renal damage. Shenyan Fangshuai Recipe (SFR), a modified prescription of traditional medicine in China, showed potent effects in alleviating edema, proteinuria, and hematuria of CKD in clinical practices. In this study, we aimed to investigate scientific evidence-based efficacy as well as metabolic regulations of SFR in CKD treatment. Materials and Methods The effect of SFR on CKD was observed in a rat model which is established with oral administration of adenine-ethambutol mixture for 21 days. Further, metabolites in serum were detected and identified with ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). Metabolomics study was performed using Ingenuity Pathway Analysis (IPA) software. Results With H&E staining and Masson's trichrome, the results showed that chronic kidney damage is significantly rescued with SFR treatment and recovered to an approximately normal condition. Along with 44 differential metabolites discovered, the regulation of SFR on CKD was enriched in glycine biosynthesis I, mitochondrial L-carnitine shuttle pathway, phosphatidylethanolamine biosynthesis III, sphingosine-1-phosphate signaling, L-serine degradation, folate transformations I, noradrenaline and adrenaline degradation, salvage pathways of pyrimidine ribonucleotides, cysteine biosynthesis III (Mammalia), glycine betaine degradation, and cysteine biosynthesis/homocysteine degradation. Further, TGFβ-1 and MMP-9 were observed playing roles in this regulatory process by performing immunohistochemical staining. Conclusion SFR exerts potent effects of alleviating glomerular sclerosis and interstitial fibrosis in the kidney, mainly via integrated regulations on metabolism and production of homocysteine, L-carnitine, and epinephrine, as well as the expression of TGFβ-1. This study provides evidence for SFR's protective effects on CKD and reveals the metabolic mechanism behind these benefits for the first time.
Collapse
|
10
|
Ren JL, Zhang AH, Kong L, Han Y, Yan GL, Sun H, Wang XJ. Analytical strategies for the discovery and validation of quality-markers of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153165. [PMID: 31954259 DOI: 10.1016/j.phymed.2019.153165] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/23/2019] [Accepted: 12/28/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Quality control of traditional Chinese medicine (TCM) is the basis of clinical efficacy. Due to the complexity of TCM, it is difficult to unify the quality control, and hinders the further implementation of the quality standardization of TCM. As a new concept, quality-marker (Q-marker) plays a powerful role in promoting the standardization of quality control system of TCM. HYPOTHESIS/PURPOSE The present review aims to provide reference and scientific basis for further development of Q-marker and assist standardization of quality control of TCM. METHODS Extensive search of various documents and electronic databases such as Pubmed, Royal Society of Chemistry, Science Direct, Springer, Web of Science, and Wiley, etc., were used to search scientific contributions. Other online academic libraries, e.g. Google Scholars, Scopus and national pharmacology literature were also been employed to learn more relevant information about Q-marker. RESULTS Q-markers play vital role in promoting the standardization of quality control of TCM. The factors that affect the quality of TCM, the advantages and disadvantages of the analytical techniques commonly used in Q-marker research were reviewed, as well as the systematic research strategies, which were verified by practices. CONCLUSION The proposal of Q-marker not only provided a new perspective to break through the bottleneck of current quality control, but also can be used in the evaluation of pharmacological efficiency, therapeutic discovery, toxicology, etc. In addition, the Q-marker analysis strategies summarized in this paper is helpful to standardize the quality control of TCM and promote the internationalization of TCM.
Collapse
Affiliation(s)
- Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, Guangxi, China.
| |
Collapse
|
11
|
The Impact of Natural Product Dietary Supplements on Patients with Gout: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7976130. [PMID: 32047527 PMCID: PMC7003261 DOI: 10.1155/2020/7976130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Natural product dietary supplements (NPDS) are frequently used for the treatment of gout, but reliable efficacy and safety data are generally lacking or not well organized to guide clinical decision making. This review aims to explore the impacts of NPDS for patients with gout. An electronic literature search was conducted to retrieve data published in English language from databases from inception to August 14, 2019. Randomized controlled trials (RCTs) that compared NPDS with or without placebo, diet modification, conventional pharmaceutics, or the other Chinese medicine treatment for gout patients were included. Two authors screened the articles, extracted the data, and assessed the risk of bias of each included trial independently. Meta-analysis was performed using Review Manager version 5.3.5. Results. Nine RCTS were enrolled in this review. The methodological quality of the nine RCTs was poor. The study results showed that in the majority of trials, NPDS demonstrated some degree of therapeutic efficacy for joint swelling, pain, and activity limitation. In contradistinction, serum uric acid (SUA) level (SMD -1.80, 95% CI: -4.45 to 0.86) (p > 0.05) and CRP levels (N = 232; SMD, -0.26; 95% CI, -0.55 to 0.04) (p > 0.05) did not improve significantly. The incidence of adverse events (AEs) was not lower in the participants treated with NPDS (N = 750; RR, 0.47; 95% CI, 0.20-1.11) (p > 0.05). Conclusion. Current existing evidence is not sufficient to provide clinical guidance regarding the efficacy and safety of NPDS as a treatment for gout due to poor trial quality and lack of standardized evaluation criteria. Larger and more rigorously designed RCTs are needed in the future.
Collapse
|
12
|
|
13
|
Effects of Alismatis Rhizoma and Rhizoma Smilacis Glabrae Decoction on Hyperuricemia in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4541609. [PMID: 31511779 PMCID: PMC6714326 DOI: 10.1155/2019/4541609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 11/18/2022]
Abstract
The combination of Alismatis Rhizoma (AR) and Rhizoma Smilacis Glabrae (RSG), as Chinese herb medicine, has been used for their uric acid-lowering effect. However, the effects and mechanism of the combination of the two medicines have not been fully reported. Therefore, to explore the effects of AR-RSG combination decoction on the treatment of chronic hyperuricemia (HUA) in rats as well as the underlying mechanisms, in this study, at the first stage, a long-term HUA rats model was established by gavage of oteracil potassium plus adenine; allopurinol was used as the positive control, and the uric acid-lowering effects of AR or RSG decoction alone with low and high dose were evaluated, respectively. Serum uric acid (UA) and xanthine oxidase (XOD) were determined mainly, and pathological analysis of the kidney and liver was carried out after sacrifice of the animals. And then, at the second stage, four dose groups of AR-RSG combination treatment were investigated in HUA rats. In addition to the indicators measured at the first stage, the expression of urate anion exchanger 1 (URAT1) in rat kidney was determined by immunohistochemistry. We discovered that the UA levels of the model group in both stages were significantly and steadily higher than those of control groups. AR and RSG alone or in combination possess ability to decrease serum UA level of HUA rats, with effects more marked in the combination groups. The uric acid-lowering mechanism of AR-RSG combination may be related to its inhibiting activity of XOD, improving kidney damage and downregulating the expression of URAT1 in kidney.
Collapse
|
14
|
Zhang D, Liu H, Luo P, Li Y. Production Inhibition and Excretion Promotion of Urate by Fucoidan from Laminaria japonica in Adenine-Induced Hyperuricemic Mice. Mar Drugs 2018; 16:E472. [PMID: 30486413 PMCID: PMC6315909 DOI: 10.3390/md16120472] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022] Open
Abstract
This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.
Collapse
Affiliation(s)
- Dayan Zhang
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
- College of Food Science & Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huazhong Liu
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ping Luo
- College of Chemistry & Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yanqun Li
- College of Food Science & Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
15
|
Meng X, Mao Z, Li X, Zhong D, Li M, Jia Y, Wei J, Yang B, Zhou H. Baicalein decreases uric acid and prevents hyperuricemic nephropathy in mice. Oncotarget 2018; 8:40305-40317. [PMID: 28445133 PMCID: PMC5522264 DOI: 10.18632/oncotarget.16928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/24/2017] [Indexed: 12/28/2022] Open
Abstract
Baicalein, a natural flavonoid, is structurally advantageous for binding to xanthine oxidoreductase. In our study, molecular docking analysis and Surface Plasmon Resonance revealed a direct interaction between baicalein and xanthine oxidoreductase. Moreover, 50 mg/kg/d baicalein treatment significantly suppressed the viability of xanthine oxidoreductase in hyperuricemia mouse model. The data showed that baicalein remarkably prevented renal dysfunction, ameliorated kidney fibrosis, alleviated epithelial-mesenchymal transition and oxidative stress in hyperuricemia mice. Thus, we concluded that baicalein executed a kidney-protection action in hyperuricemia and therefore may be used as a therapeutic alternative for hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Xiaolu Meng
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Zhuo Mao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Xin Li
- Drug Clinical Trial Institution, The Affiliated Hospital of Qingdao University, Qingdao, 266003, P.R. China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Min Li
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Yingli Jia
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
16
|
A Review of the Potential of Phytochemicals from Prunus africana (Hook f.) Kalkman Stem Bark for Chemoprevention and Chemotherapy of Prostate Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3014019. [PMID: 28286531 PMCID: PMC5327751 DOI: 10.1155/2017/3014019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/22/2017] [Indexed: 01/17/2023]
Abstract
Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.
Collapse
|