1
|
Radosavljevic T, Vukicevic D, Djuretić J, Gopcevic K, Labudovic Borovic M, Stankovic S, Samardzic J, Radosavljevic M, Vucevic D, Jakovljevic V. The Role of Macrophage Inhibitory Factor in TAA-Induced Liver Fibrosis in Mice: Modulatory Effects of Betaine. Biomedicines 2024; 12:1337. [PMID: 38927544 PMCID: PMC11201963 DOI: 10.3390/biomedicines12061337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Macrophage inhibitory factor (MIF) is a multipotent cytokine, involved in the inflammatory response to infections or injuries. This study investigates the role of MIF in liver fibrosis and the modulating effect of betaine on MIF in thioacetamide (TAA)-induced liver fibrosis. The wild-type and knockout MIF-/- C57BL/6 mice were divided into the following groups: control; Bet group, which received betaine; MIF-/-; MIF-/-+Bet; TAA group, which received TAA; TAA+Bet; MIF-/-+TAA; and MIF-/-+TAA+Bet group. After eight weeks of treatment, liver tissue was collected for further analysis. The results revealed that TAA-treated MIF-deficient mice had elevated levels of hepatic TGF-β1 and PDGF-BB, as well as MMP-2, MMP-9, and TIMP-1 compared to TAA-treated wild-type mice. However, the administration of betaine to TAA-treated MIF-deficient mice reduced hepatic TGF-β1 and PDGF-BB levels and also the relative activities of MMP-2, MMP-9 and TIMP-1, albeit less effectively than in TAA-treated mice without MIF deficiency. Furthermore, the antifibrogenic effect of MIF was demonstrated by an increase in MMP2/TIMP1 and MMP9/TIMP1 ratios. The changes in the hepatic levels of fibrogenic factors were confirmed by a histological examination of liver tissue. Overall, the dual nature of MIF highlights its involvement in the progression of liver fibrosis. Its prooxidant and proinflammatory effects may exacerbate tissue damage and inflammation initially, but its antifibrogenic activity suggests a potential protective role against fibrosis development. The study showed that betaine modulates the antifibrogenic effects of MIF in TAA-induced liver fibrosis, by decreasing TGF-β1, PDGF-BB, MMP-2, MMP-9, TIMP-1, and the deposition of ECM (Coll1 and Coll3) in the liver.
Collapse
Affiliation(s)
- Tatjana Radosavljevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dusan Vukicevic
- Uniklinik Mannheim, Theodor-Kutyer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine “Prof. Dr. Petar Matavulj”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sanja Stankovic
- Centre for Medical Biochemistry, University Clinical Centre of Serbia, 11000 Belgrade, Serbia;
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Milica Radosavljevic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.S.); (M.R.)
| | - Danijela Vucevic
- Institute of Pathophysiology “Ljubodrag Buba Mihailović”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia
| |
Collapse
|
2
|
Sun H, Cheng R, Zhang D, Guo Y, Li F, Li Y, Li Y, Bai X, Mo J, Huang C. MIF promotes cell invasion by the LRP1-uPAR interaction in pancreatic cancer cells. Front Oncol 2023; 12:1028070. [PMID: 36703790 PMCID: PMC9871987 DOI: 10.3389/fonc.2022.1028070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is characterized by high aggressiveness and a hypoxic tumour microenvironment. Macrophage migration inhibitory factor (MIF) is a hypoxia-related pleiotropic cytokine that plays important roles in cancer. However, its role in PDAC progression has not been fully elucidated. Methods The clinical significance of MIF and hypoxia inducible factor 1 subunit alpha (HIF1A) in PDAC was analysed using immunohistochemical staining on PDAC tissues and data from KM-Plotter database. Spatial distribution of MIF and HIF1A gene expression was visualized by spatial transcriptomics in PDAC cell xenografts. To monitor the role of MIF in PDAC cell malignancy, immunostaining, lentivirus shRNA, migration assays, flow cytometry, transcriptomics and in vivo tumorigenicity were performed. Results The spatial distribution of MIF and HIF1A was highly correlated and that high MIF expression was associated with poor prognosis of PDAC patients. MIF knockdown impaired cell invasion, with a decrease in the expression of urokinase-type plasminogen activator receptor (uPAR). Although PLAUR transcript was not reduced, a uPAR endocytic receptor, low-density lipoprotein receptor-related protein 1 (LRP1), was upregulated at both the mRNA and protein levels after MIF knockdown. The LRP1 antagonist RAP restored uPAR expression and invasiveness. MIF attenuated the nuclear translocation of p53, a transcriptional regulator of LRP1. Furthermore, MIF downregulation blunted the growth of PDAC cell xenografts and inhibited cell proliferation under normoxia and hypoxia. Transcriptome analysis also provided evidence for the role of MIF in cancer-associated pathways. Discussion We demonstrate a novel link between the two pro-invasive agents MIF and uPAR and explain how MIF increases PDAC cell invasion capability. This finding provides a basis for therapeutic intervention of MIF in PDAC progression.
Collapse
Affiliation(s)
- Huizhi Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Runfen Cheng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yuhong Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| | - Chongbiao Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China,*Correspondence: Chongbiao Huang, ; Jing Mo,
| |
Collapse
|
3
|
Luo P, Chen J, Zhang Q, Xia F, Wang C, Bai Y, Tang H, Liu D, Gu L, Du Q, Xiao W, Yang C, Wang J. Dissection of cellular and molecular mechanisms of aristolochic acid-induced hepatotoxicity via single-cell transcriptomics. PRECISION CLINICAL MEDICINE 2022; 5:pbac023. [PMID: 36349141 PMCID: PMC9635452 DOI: 10.1093/pcmedi/pbac023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aristolochic acids (AAs), a class of carcinogenic and mutagenic natural products from Aristolochia and Asarum plants, are well-known to be responsible for inducing nephrotoxicity and urothelial carcinoma. Recently, accumulating evidence suggests that exposure to AAs could also induce hepatotoxicity and even hepatocellular carcinoma, though the mechanisms are poorly defined. Methods Here, we aimed to dissect the underlying cellular and molecular mechanisms of aristolochic acid I (AAI)-induced hepatotoxicity by using advanced single-cell RNA sequencing (scRNA-seq) and proteomics techniques. We established the first single-cell atlas of mouse livers in response to AAI. Results In hepatocytes, our results indicated that AAI activated NF-κB and STAT3 signaling pathways, which may contribute to the inflammatory response and apoptosis. In liver sinusoidal endothelial cells (LSECs), AAI activated multiple oxidative stress and inflammatory associated signaling pathways and induced apoptosis. Importantly, AAI induced infiltration of cytotoxic T cells and activation of proinflammatory macrophage and neutrophil cells in the liver to produce inflammatory cytokines to aggravate inflammation. Conclusions Collectively, our study provides novel knowledge of AAs-induced molecular characteristics of hepatotoxicity at a single-cell level and suggests future treatment options for AAs associated hepatotoxicity.
Collapse
Affiliation(s)
- Piao Luo
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiayun Chen
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yunmeng Bai
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Chuanbin Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Jigang Wang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523125, China
| |
Collapse
|
4
|
Chen J, Luo P, Wang C, Yang C, Bai Y, He X, Zhang Q, Zhang J, Yang J, Wang S, Wang J. Integrated single-cell transcriptomics and proteomics reveal cellular-specific response and microenvironment remodeling in aristolochic acid nephropathy. JCI Insight 2022; 7:157360. [PMID: 35852860 PMCID: PMC9462482 DOI: 10.1172/jci.insight.157360] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
Aristolochic acid nephropathy (AAN) is characterized by acute proximal tubule necrosis and immune cell infiltration, contributing to the global burden of chronic kidney disease and urothelial cancer. Although the proximal tubule has been defined as the primary target of aristolochic acids I (AAI), the mechanistic underpinning of gross renal deterioration caused by AAI has not been explicitly explained, prohibiting effective therapeutic intervention. To this point, we employed integrated single-cell RNA-Seq, bulk RNA-Seq, and mass spectrometry–based proteomics to analyze the mouse kidney after acute AAI exposure. Our results reveal a dramatic reduction of proximal tubule epithelial cells, associated with apoptotic and inflammatory pathways, indicating permanent damage beyond repair. We found the enriched development pathways in other nephron segments, suggesting activation of reparative programs triggered by AAI. The divergent response may be attributed to the segment-specific distribution of organic anion channels along the nephron, including OAT1 and OAT3. Moreover, we observed dramatic activation and recruitment of cytotoxic T and macrophage M1 cells, highlighting inflammation as a principal contributor to permanent renal injury. Ligand-receptor pairing revealed that critical intercellular crosstalk underpins damage-induced activation of immune cells. These results provide potentially novel insight into the AAI-induced kidney injury and point out possible pathways for future therapeutic intervention.
Collapse
Affiliation(s)
- Jiayun Chen
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Piao Luo
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Yunmeng Bai
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xueling He
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junzhe Zhang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Shuang Wang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
5
|
Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. Int J Mol Sci 2022; 23:ijms23094908. [PMID: 35563296 PMCID: PMC9102975 DOI: 10.3390/ijms23094908] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Renal inflammation is an initial pathological process during progressive renal injury regardless of the initial cause. Macrophage migration inhibitory factor (MIF) is a truly proinflammatory stress mediator that is highly expressed in a variety of both inflammatory cells and intrinsic kidney cells. MIF is released from the diseased kidney immediately upon stimulation to trigger renal inflammation by activating macrophages and T cells, and promoting the production of proinflammatory cytokines, chemokines, and stress molecules via signaling pathways involving the CD74/CD44 and chemokine receptors CXCR2, CXCR4, and CXCR7 signaling. In addition, MIF can function as a stress molecule to counter-regulate the immunosuppressive effect of glucocorticoid in renal inflammation. Given the critical position of MIF in the upstream inflammatory cascade, this review focuses on the regulatory role and molecular mechanisms of MIF in kidney diseases. The therapeutic potential of targeting MIF signaling to treat kidney diseases is also discussed.
Collapse
|
6
|
Pan Y, Liu L, Yang H, Chen W, Chen Z, Xu J. Sacubitril/Valsartan Improves Progression of Early Diabetic Nephropathy in Rats Through Inhibition of NLRP3 Inflammasome Pathway. Diabetes Metab Syndr Obes 2022; 15:2479-2488. [PMID: 35992034 PMCID: PMC9386175 DOI: 10.2147/dmso.s366518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Diabetic nephropathy (DN), a global disease, is the leading cause of end-stage renal disease. There is a lack of specific treatment for this disease, and early intervention in disease progression is essential. In this paper, we used a rat model of early diabetic nephropathy to explore the therapeutic mechanism of sacubitril/valsartan in rats with early diabetic nephropathy. MATERIALS AND METHODS Rats were grouped into 1 normal group; 2. Model group (DN group): STZ (45 mg/kg/d) induced early diabetic nephropathy rats; 3. Sac group: DN rats + Sac group (orally, 60 mg/kg/d) for 6 weeks. After 6 weeks, the levels of serum albumin (ALB), glucose (GLU), creatinine (Cr), urea nitrogen (BUN) and 24-h urinary protein excretion were measured. In renal tissue homogenates, NLRP3 inflammasome, proinflammatory factors IL1-β and TNF-α, oxidative stress MDA and pro-fibrotic cytokine TGF-β1 were performed. Histological analysis of kidneys by hematoxylin and eosin (HE), PAS and Masson trichrome staining. RESULTS 1. Sacubitril/valsartan (Sac) significantly improved renal hypertrophy, proteinuria and serum albumin levels in rats with early diabetic nephropathy (P < 0.001), and decreased GLU, Scr (P<0.001), and BUN levels (P < 0.01).2. Light microscopy of renal tissues showed glomerular hypertrophy and interstitial inflammatory cell infiltration, and mean glomerular area (MGA) and mean glomerular volume (MGV) were crucially increased in early diabetic nephropathy (P < 0.001), and the Sac group showed reduced renal pathology and improved MGA and MGV (P < 0.001).3. Kidney tissue homogenate levels of NLRP3, Caspase-1, IL1-β, TNF-α, MDA and TGF-β1 were critically, increased in DN rats (P < 0.001), and SOD was significantly decreased. All these indicators above were improved after treatment (P < 0.0001). CONCLUSION Nlrp3-inflammasome promote progression of diabetic nephropathy through inflammation, fibrosis and oxidative stress; sacubitril/valsartan ameliorated early diabetes-induced renal damage by inhibiting NLRP3 pathway activation.
Collapse
Affiliation(s)
- Yan Pan
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
- Correspondence: Yan Pan, Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Longzihu District, Bengbu City, Anhui Province, 233000, People’s Republic of China, Tel +86 13865030612, Email
| | - Lei Liu
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
| | - Huijuan Yang
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
| | - Weidong Chen
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
| | - Zheng Chen
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
| | - Jing Xu
- Department of Nephrology, First Affiliated Hospital of Bengbu Medical College, Bengbu City, People’s Republic of China
| |
Collapse
|
7
|
Musiał K, Zwolińska D. Bone Morphogenetic Proteins (BMPs), Extracellular Matrix Metalloproteinases Inducer (EMMPRIN), and Macrophage Migration Inhibitory Factor (MIF): Usefulness in the Assessment of Tubular Dysfunction Related to Chronic Kidney Disease (CKD). J Clin Med 2021; 10:jcm10214893. [PMID: 34768412 PMCID: PMC8585016 DOI: 10.3390/jcm10214893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
Bone morphogenetic proteins (BMP), extracellular matrix metalloproteinases inducer (EMMPRIN), and macrophage migration inhibitory factor (MIF) are known to be closely connected to renal tubule damage by experimental data; however, this has not been analyzed in children with chronic kidney disease (CKD). The aim of this study was to determine their usefulness in the assessment of CKD-related tubular dysfunction. The study group consisted of 61 children with CKD stages 1–5 and 23 controls. The serum and urine concentrations of BMP-2, BMP-6, EMMPRIN, and MIF were assessed by ELISA and their fractional excretion (FE) was calculated. The serum and urine concentrations of BMP-2, BMP-6, EMMPRIN, and MIF were significantly elevated in children with CKD vs. controls. The FE of BMP-2, FE BMP-6, and EMMPRIN increased significantly in CKD stages 1–2, but exceeded 1% in CKD stages 3–5. FE MIF became higher than in controls no sooner than in CKD 3–5, but remained below 1%. The FE values for BMP-2, BMP-6, and EMMPRIN of <1% may result from the tubular adaptive mechanisms, whereas those surpassing 1% suggest irreversible tubular damage. The analysis of serum/urinary concentrations and fractional excretion of examined parameters may allow the assessment of CKD-related tubular dysfunction.
Collapse
|
8
|
Jiang W, Xu C, Xu S, Su W, Du C, Dong J, Feng R, Huang C, Li J, Ma T. Macrophage-derived, LRG1-enriched extracellular vesicles exacerbate aristolochic acid nephropathy in a TGFβR1-dependent manner. Cell Biol Toxicol 2021; 38:629-648. [PMID: 34677723 DOI: 10.1007/s10565-021-09666-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Aristolochic acid nephropathy (AAN) is a progressive kidney disease caused by some herbal medicines, but treatment remains ineffective. We previously found that leucine-rich α-2-glycoprotein 1 (LRG1), which regulates cellular processes, plays an important role in a kidney injury model. However, the underlying mechanism by which LRG1 regulates AAN is still unknown. In this study, we established an AAN model in vivo, a coculture system of macrophages and TECs, and a macrophage/TEC conditioned media culture model in vitro. We found that macrophage infiltration promoted injury, oxidative stress, and apoptosis in TECs. Furthermore, the role of macrophages in AAN was dependent on macrophage-derived extracellular vesicles (EVs). Importantly, we found that macrophage-derived, LRG1-enriched EVs induced TEC injury and apoptosis via a TGFβR1-dependent process. This study may help design a better therapeutic strategy to treat AAN patients.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Songbing Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wan Su
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Rui Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther 2021; 233:108024. [PMID: 34673115 DOI: 10.1016/j.pharmthera.2021.108024] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine encoded within a functionally polymorphic genetic locus. MIF was initially recognized as a cytokine generated by activated T cells, but in recent days it has been identified as a multipotent key cytokine secreted by many other cell types involved in immune response and physiological processes. MIF is a highly conserved 12.5 kDa secretory protein that is involved in numerous biological processes. The expression and secretion profile of MIF suggests that MIF to be ubiquitously and constitutively expressed in almost all mammalian cells and is vital for numerous physiological processes. MIF is a critical upstream mediator of host innate and adaptive immunity and survival pathways resulting in the clearance of pathogens thus playing a protective role during infectious diseases. On the other hand, MIF being an immune modulator accelerates detrimental inflammation, promotes cancer metastasis and progression, thus worsening disease conditions. Several reports demonstrated that genetic and physiological factors, including MIF gene polymorphisms, posttranslational regulations, and receptor binding control the functional activities of MIF. Taking into consideration the multi-faceted role of MIF both in physiology and pathology, we thought it is timely to review and summarize the expressional and functional regulation of MIF, its functional mechanisms associated with its beneficial and pathological roles, and MIF-targeting therapies. Thus, our review will provide an overview on how MIF is regulated, its response, and the potency of the therapies that target MIF.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA..
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey PA-17033, USA.
| |
Collapse
|
10
|
Liu Y, He X, Wang Y, Zhou H, Zhang Y, Ma J, Wang Z, Yang F, Lu H, Yang Y, Deng Z, Qi X, Gong L, Ren J. Aristolochic acid I induces impairment in spermatogonial stem cell in rodents. Toxicol Res (Camb) 2021; 10:436-445. [PMID: 34141157 DOI: 10.1093/toxres/tfab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
Aristolochic acid I (AAI) is a natural bioactive substance found in plants from the Aristolochiaceae family and impairs spermatogenesis. However, whether AAI-induced spermatogenesis impairment starts at the early stages of spermatogenesis has not yet been determined. Spermatogonial stem cells (SSCs) are undifferentiated spermatogonia that balance self-renewing and differentiating divisions to maintain spermatogenesis throughout adult life and are the only adult stem cells capable of passing genes onto the next generation. The objective of this study was to investigate whether AAI impairs SSCs during the early stages of spermatogenesis. After AAI treatment, we observed looser, smaller and fewer colonies, decreased cell viability, a decreased relative cell proliferation index, and increased apoptosis in SSCs in a concentration- and/or time-dependent manner. Additionally, AAI promoted apoptosis in SSCs, which was accompanied by upregulation of caspase 3, P53 and BAX expression and downregulation of Bcl-2 expression, and suppressed autophagy, which was accompanied by upregulation of P62 expression and downregulation of ATG5 and LC3B expression, in a concentration-dependent manner. Then we found that AAI impaired spermatogenesis in rats, as identified by degeneration of the seminiferous epithelium, and increased apoptosis of testicular cells. Taken together, our findings demonstrate that AAI causes damage to SSCs and implicate apoptosis and autophagy in this process. The impairment of SSCs may contribute to AAI-induced testicular impairment. Our findings provide crucial information for the human application of botanical products containing trace amounts of AAI.
Collapse
Affiliation(s)
- Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Xiang He
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yuli Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Houzu Zhou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yuan Zhang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Jianyun Ma
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Zhaochu Wang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Fangfang Yang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Zhongping Deng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Building A, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| |
Collapse
|
11
|
Liu Y, Liu Y, Wang Q, Song Y, Chen S, Cheng B, Zhang Y, Cui Z, Wu Z, Zhu C. MIF inhibitor ISO-1 alleviates severe acute pancreatitis-associated acute kidney injury by suppressing the NLRP3 inflammasome signaling pathway. Int Immunopharmacol 2021; 96:107555. [PMID: 33823428 DOI: 10.1016/j.intimp.2021.107555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/28/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is an important complication of severe acute pancreatitis (SAP) with a poor prognosis. The methyl ester of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1), an inhibitor of macrophage migration inhibitory factor (MIF), has protective effects against many diseases. Our previous study confirmed MIF inhibition alleviated SAP. Here, we explored the effects of ISO-1 in an experimental mouse model of SAP-associated AKI induced by l-arginine. METHODS Mice were randomly divided into four treatment groups (n = 6 each): control (CON), SAP, SAP + ISO-1, and ISO-1. Histopathologic examination was used to observe damage in pancreatic and renal tissues. Biochemical and enzyme-linked immunosorbent assays (ELISA) kits were used to measure the serologic indicators amylase, lipase, creatinine, uric acid, interleukin (IL)-6, and tumor necrosis factor (TNF)-α. Immunohistochemistry was used to detect protein expression of NLRP3, ASC and caspase-1, and the infiltration of myeloperoxidase (MPO)-positive neutrophils in kidney tissue. Western blotting was used to detect NLRP3, ASC and caspase-1 and IL-1β protein expression, and real-time PCR was used to measure MIF, IL-6, TNF-α, IL-1β and IL-18 mRNA levels in kidney tissue. RESULTS ISO-1 treatment alleviated pathological damage in pancreatic and renal tissues, and reduced the serum levels of amylase, lipase, creatinine, uric acid, IL-6 and TNF-α. ISO-1 also reduced protein expression of NLRP3, ASC, caspase-1 and IL-1β, mRNA expression of MIF, IL-6, TNF-α, IL-1β and IL-18, and the infiltration of MPO-positive neutrophils in kidney tissue. CONCLUSION ISO-1 has a protective effect against experimental SAP-associated AKI. And the mechanism may be associated with ISO-1 inhibiting NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Yanna Liu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Qiaofang Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Yaodong Song
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Sanyang Chen
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Bo Cheng
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Yan Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Zongchao Cui
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Zhongwei Wu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China
| | - Changju Zhu
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No 1 Eastern Jianshe Road, Zhengzhou 450052, Henan, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, China; Henan Key Laboratory of Emergency and Trauma Research Medicine, China.
| |
Collapse
|
12
|
Chen YH, Chen HL, Fan HC, Tung YT, Kuo CW, Tu MY, Chen CM. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9090790. [PMID: 32858955 PMCID: PMC7555286 DOI: 10.3390/antiox9090790] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The increased prevalence of renal dysfunction and chronic kidney disease (CKD) and the high costs and poor outcomes of treatment are a significant health issue. The consequence of chronic high blood pressure is the increased prevalence of target organ end-stage renal disease, which has been proven to be a strong independent risk factor for adverse cardiovascular disease. A previous study showed that kefir products have anti-inflammatory and anti-hypertensive activities and immunological modulation functions. However, no data regarding the beneficial effects of kefir peptides (KPs) on salt-induced renal damage or related kidney diseases are available. In this study, KPs were orally administered to aged salt-induced stroke-prone spontaneously hypertensive (SHRSP) rats, and the effects of KPs against inflammation and oxidative stress and their ability to protect against renal dysfunction were evaluated. Fifty-five-week-old SHRSP rats under induction with 1% NaCl in drinking water for 4 weeks showed multiple renal injuries with increased renal inflammation, fibrosis, oxidative stress, tubular atrophy, and glomerulosclerosis. In contrast, oral gavage with KPs reduced the urine protein to creatinine (UPC) ratio, the fractional excretion of electrolytes (FeNa and FeCl), extracellular matrix deposition, and the interstitial fibrotic α-smooth muscle actin (α-SMA) levels in salt-induced SHRSP rats. The renal infiltration of inflammatory cells; the release of monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), endothelin-1 (ET-1), and the cytokine nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) and transforming growth factor-β (TGF-β); the reactive oxygen species (ROS) levels; and histopathological lesions were also decreased in salt-induced SHRSP rats. Furthermore, KP treatment significantly increased the renal superoxide dismutase (SOD) activity and the glomerular filtration rate (GFR), which exerted potent protection against salt-induced chronic kidney disease in SHRSP rats. The results of this study suggest that KPs ameliorate salt-induced renal damage, tubular atrophy, and glomerular dysfunction through anti-inflammatory, antioxidative stress, and antifibrotic activities, and might be a promising protective agent against high salt-induced renovascular-related diseases.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Health Research Institutes, Taichung 402, Taiwan
| | - Hsiao-Ling Chen
- Department of Biomedical Sciences, Da-Yeh University, Changhwa 515, Taiwan;
| | - Hueng-Chuen Fan
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Miaoli 356, Taiwan
| | - Yu-Tang Tung
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Wen Kuo
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
- Department of Orthopaedic Surgery, Taichung Armed Forces General Hospital, Taichung 411, Taiwan
| | - Min-Yu Tu
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- Aviation Physiology Research Laboratory, Kaohsiung Armed Forces General Hospital Gangshan Branch, Kaohsiung 820, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, and Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; (Y.-H.C.); (H.-C.F.); (Y.-T.T.); (C.-W.K.); (M.-Y.T.)
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-6309
| |
Collapse
|
13
|
Li JH, Tang Y, Lv J, Wang XH, Yang H, Tang PMK, Huang XR, He ZJ, Zhou ZJ, Huang QY, Klug J, Meinhardt A, Fingerle-Rowson G, Xu AP, Zheng ZH, Lan HY. Macrophage migration inhibitory factor promotes renal injury induced by ischemic reperfusion. J Cell Mol Med 2019; 23:3867-3877. [PMID: 30968541 PMCID: PMC6533527 DOI: 10.1111/jcmm.14234] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 11/29/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is pleiotropic cytokine that has multiple effects in many inflammatory and immune diseases. This study reveals a potential role of MIF in acute kidney injury (AKI) in patients and in kidney ischemic reperfusion injury (IRI) mouse model in MIF wild‐type (WT) and MIF knockout (KO) mice. Clinically, plasma and urinary MIF levels were largely elevated at the onset of AKI, declined to normal levels when AKI was resolved and correlated tightly with serum creatinine independent of disease causes. Experimentally, MIF levels in plasma and urine were rapidly elevated after IRI‐AKI and associated with the elevation of serum creatinine and the severity of tubular necrosis, which were suppressed in MIF KO mice. It was possible that MIF may mediate AKI via CD74/TLR4‐NF‐κB signalling as mice lacking MIF were protected from AKI by largely suppressing CD74/TLR‐4‐NF‐κB associated renal inflammation, including the expression of MCP‐1, TNF‐α, IL‐1β, IL‐6, iNOS, CXCL15(IL‐8 in human) and infiltration of macrophages, neutrophil, and T cells. In conclusion, our study suggests that MIF may be pathogenic in AKI and levels of plasma and urinary MIF may correlate with the progression and regression of AKI.
Collapse
Affiliation(s)
- Jin H Li
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.,Department of Medicine and Therapeutics, Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Ying Tang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Lv
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao H Wang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hui Yang
- Department of Medicine and Therapeutics, Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick M K Tang
- Department of Medicine and Therapeutics, Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiao R Huang
- Department of Medicine and Therapeutics, Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Zhi J He
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi J Zhou
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiu Y Huang
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne, and Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - An P Xu
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi H Zheng
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zheng J, Guo R, Tang Y, Fu Q, Chen J, Wu L, Leng L, Bucala R, Song Y, Lu L. miR-152 Attenuates the Severity of Lupus Nephritis Through the Downregulation of Macrophage Migration Inhibitory Factor (MIF)-Induced Expression of COL1A1. Front Immunol 2019; 10:158. [PMID: 30787934 PMCID: PMC6372555 DOI: 10.3389/fimmu.2019.00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The role of miR-152 in lupus nephritis has not been elucidated. The aim of this study was to investigate the role of miR-152 in the pathogenesis of lupus nephritis (LN). Methods: miR-152 expression was detected using RT-PCR in LN tissue and normal controls. The miR-152 expression was compared with clinical parameters such as 24 h urine protein excretion level, serum creatinine, and serum complement level and SLEDAI score. The function of miR-152 was examined using human renal proximal tubular epithelial cells (HRPTE). miR-152 mimics and inhibitors were transfected to HRPTEs to ascertain the effects of miR-152. Results: miR-152 expression was downregulated in LN tissue. There was an inverse correlation between miR-152 expression in LN tissue and clinical parameters like 24 h urine protein excretion levels and serum creatinine, but not serum complement levels or SLEDAI. Further analysis showed that macrophage migration inhibitory factor (MIF) was a direct target of miR-152. Downregulation of MIF through complementary binding of miR-152 inhibited the renal expression of COL1A1. Conclusion: miR-152 expression was tapered in LN tissue and miR-152 expression was inversely correlated with chronicity index (CI), serum creatinine and severity of proteinuria. miR-152 may attenuate the severity of LN through the downregulation of MIF-induced expression of COL1A1. These findings suggest that miR-152 may be a potential target for the treatment of LN.
Collapse
Affiliation(s)
- Jiayi Zheng
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanjia Tang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Wu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yang Song
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Günther S, Bordenave J, Hua-Huy T, Nicco C, Cumont A, Thuillet R, Tu L, Quatremarre T, Guilbert T, Jalce G, Batteux F, Humbert M, Savale L, Guignabert C, Dinh-Xuan AT. Macrophage Migration Inhibitory Factor (MIF) Inhibition in a Murine Model of Bleomycin-Induced Pulmonary Fibrosis. Int J Mol Sci 2018; 19:ijms19124105. [PMID: 30567353 PMCID: PMC6321607 DOI: 10.3390/ijms19124105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 11/25/2022] Open
Abstract
Background: Pulmonary hypertension (PH) is a common complication of idiopathic pulmonary fibrosis (IPF) that significantly contributes to morbidity and mortality. Macrophage migration inhibitory factor (MIF) is a critical factor in vascular remodeling of the pulmonary circulation. Objectives: We tested the effects of two small molecules targeting MIF on bleomycin (BLM)-induced collagen deposition, PH, and vascular remodeling in mouse lungs. Methods: We examined the distribution pattern of MIF, CD74, and CXCR4 in the lungs of patients with IPF-PH and the lungs of BLM-injected mice. Then, treatments were realized with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) and N-(3-hydroxy-4-fluorobenzyl)-5 trifluoromethylbenzoxazol-2-thione 31 (20 mg/kg/day per os for 3 weeks) started 24 h after an intratracheal BLM administration. Results: More intense immunoreactivity was noted for MIF, CD74, and CXCR4 in lungs from IPF-PH patients and BLM-injected mice. Furthermore, we found that treatments of BLM-injected mice with ISO-1 or compound 31 attenuated lung collagen deposition and right ventricular systolic pressure increase. Additionally, reduced pulmonary inflammatory infiltration and pulmonary arterial muscularization were observed in the lungs of BLM-injected mice treated with ISO-1 or compound 31. Conclusions: Treatments with ISO-1 or compound 31 attenuates BLM-induced inflammation and fibrosis in lung, and prevents PH development in mice, suggesting that MIF is an important factor for IPF-PH development.
Collapse
Affiliation(s)
- Sven Günther
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France.
| | - Jennifer Bordenave
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Thông Hua-Huy
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France.
| | - Carole Nicco
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
| | - Amélie Cumont
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Timothée Quatremarre
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Thomas Guilbert
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
- National Centre for Scientific Research (CNRS) UMR 8104, 75014 Paris, France.
| | | | - Frédéric Batteux
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, DHU Thorax Innovation, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), 94270 Le Kremlin-Bicêtre, France.
| | - Laurent Savale
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
- Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire, DHU Thorax Innovation, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), 94270 Le Kremlin-Bicêtre, France.
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France.
| | - Anh-Tuan Dinh-Xuan
- National Institute for Health and Medical Research (INSERM) UMR_S 1016, Cochin Institute, 75014 Paris, France.
- Université Paris-Descartes, Sorbonne Paris Cité, 75014 Paris, France.
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), 75014 Paris, France.
| |
Collapse
|
16
|
Adzavon YM, Zhao P, Ma J, Zhang X, Zhang X, Zhang M, Liu M, Wang L, Chen D, Abisso TG, Lv B, Wang L, Xie F, Ma X. Macrophage migration inhibitory factor contributes to the pathogenesis of benign lymphoepithelial lesion of the lacrimal gland. Cell Commun Signal 2018; 16:70. [PMID: 30348174 PMCID: PMC6196440 DOI: 10.1186/s12964-018-0284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Background Benign Lymphoepithelial Lesion (BLEL) is a rare disease observed in the adult population. Despite the growing numbers of people suffering from BLEL, the etiology and mechanisms underlying its pathogenesis remain unknown. Methods In the present study, we used gene and cytokines expression profiling, western blot and immunohistochemistry to get further insight into the cellular and molecular mechanisms involved in the pathogenesis of BLEL of the lacrimal gland. Results The results showed that Macrophage Migration Inhibitory Factor (MIF) was the most highly expressed cytokine in BLEL, and its expression positively correlated with the expression of Th2 and Th17 cells cytokines. MIF was found to regulate biological functions and pathways involved in BLEL pathogenesis, such as proliferation, resistance to apoptosis, MAPK and PI3K/Akt pathways. We also found that MIF promotes fibrosis in BLEL by inducing BLEL fibroblast differentiation into myofibroblasts as well as the synthesis and the deposit of extracellular matrix in BLEL tissues. Conclusions Our findings demonstrate the contribution of MIF to the pathogenesis of BLEL of the lacrimal gland and suggested MIF as a promising therapeutic target for its treatment. Electronic supplementary material The online version of this article (10.1186/s12964-018-0284-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Mawulikplimi Adzavon
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Pengxiang Zhao
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Jianmin Ma
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Beijing Ophthalmology & Vision Science Key Lab, Beijing Tongren Eye Center, Beijing, 100730, People's Republic of China
| | - Xujuan Zhang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xin Zhang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Mengyu Liu
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Limin Wang
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Danying Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China
| | - Tarekegn Gebreyesus Abisso
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Baobei Lv
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Lei Wang
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China.,Beijing Ophthalmology & Vision Science Key Lab, Beijing Tongren Eye Center, Beijing, 100730, People's Republic of China
| | - Fei Xie
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xuemei Ma
- College of Life Science and Bio-engineering, Beijing Molecular Hydrogen Research Center, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
17
|
Li J, Tang Y, Tang PMK, Lv J, Huang XR, Carlsson-Skwirut C, Da Costa L, Aspesi A, Fröhlich S, Szczęśniak P, Lacher P, Klug J, Meinhardt A, Fingerle-Rowson G, Gong R, Zheng Z, Xu A, Lan HY. Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Mol Ther 2018; 26:2523-2532. [PMID: 30077612 DOI: 10.1016/j.ymthe.2018.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is elevated in patients with acute kidney injury (AKI) and is suggested as a potential predictor for renal replacement therapy in AKI. In this study, we found that MIF also plays a pathogenic role and is a therapeutic target for AKI. In a cisplatin-induced AKI mouse model, elevated plasma MIF correlated with increased serum creatinine and the severity of renal inflammation and tubular necrosis, whereas deletion of MIF protected the kidney from cisplatin-induced AKI by largely improving renal functional and histological injury, and suppressing renal inflammation including upregulation of cytokines such as interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), MCP-1, IL-8, and infiltration of macrophages, neutrophils, and T cells. We next developed a novel therapeutic strategy for AKI by blocking the endogenous MIF with an MIF inhibitor, ribosomal protein S19 (RPS19). Similar to the MIF-knockout mice, treatment with RPS19, but not the mutant RPS19, suppressed cisplatin-induced AKI. Mechanistically, we found that both genetic knockout and pharmacological inhibition of MIF protected against AKI by inactivating the CD74-nuclear factor κB (NF-κB) signaling. In conclusion, MIF is pathogenic in cisplatin-induced AKI. Targeting MIF with an MIF inhibitor RPS19 could be a promising therapeutic potential for AKI.
Collapse
Affiliation(s)
- Jinhong Li
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ying Tang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick M K Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Christine Carlsson-Skwirut
- Department of Woman and Child Health, Paediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U1149, CRI, Faculté de Médecine Bichat-Claude Bernard, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy; Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti," University of Turin, Turin, Italy
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Pawel Szczęśniak
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Philipp Lacher
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne and Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Rujun Gong
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Zhihua Zheng
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Anping Xu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Tang M, Zhang K, Li Y, He QH, Li GQ, Zheng QY, Zhang KQ. Mesenchymal stem cells alleviate acute kidney injury by down-regulating C5a/C5aR pathway activation. Int Urol Nephrol 2018; 50:1545-1553. [PMID: 29594894 DOI: 10.1007/s11255-018-1844-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) leads to serious renal damage, and early inhibition of inflammation is necessary for its treatment. C5a/C5aR signaling activation promotes inflammatory response in tissue injury. Anti-inflammatory activity of mesenchymal stem cells (MSCs) makes it possible to alleviate AKI by controlling the C5a/C5aR signaling activation. METHODS Ischemia reperfusion (I/R)-induced AKI models in wild-type and C5aR KO mice were used. In addition, human bone marrow MSCs (hBM-MSCs) or C5aR antagonist were injected in this model. All animals were killed at 72 h after reperfusion. In vitro, the LPS-activated macrophage line RAW264.7 cells were co-cultured with or without hBM-MSCs in the presence of recombinant C5a or not for indicated time points. After that, C5aR expression, the inflammatory factor production, and NF-κB translocation in RAW264.7 cells were measured. RESULTS hBM-MSC treatment and C5a/C5aR signaling blockade or C5aR-deficiency exhibited similar attenuated effects on I/R-induced AKI, macrophages infiltration, and the pro-inflammatory cytokines TNF-α and IL-1β expression in renal tissues in mice. Moreover, hBM-MSC administration led to a significant reduction in C5a levels in serum and C5aR expression in the kidney tissues in mice after I/R. In vitro, upon co-culture with hBM-MSCs, both C5aR expression and the secretion of pro-inflammatory factors TNF-α, IL-6, and nitric oxide in LPS-activated macrophages were markedly reduced. Accordingly, recombinant complement C5a accelerated LPS-induced NF-κB translocation and pro-inflammatory factors expression in macrophages, but the addition of hBM-MSCs reversed these C5a-induced effects. CONCLUSIONS The present study indicates that hBM-MSCs alleviate AKI via suppressing C5a/C5aR-NF-κB pathway activation.
Collapse
Affiliation(s)
- Ming Tang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - You Li
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Hui He
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gui-Qing Li
- Department of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Quan-You Zheng
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ke-Qin Zhang
- Department of Nephrology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
19
|
Zhou Y, Zhao L, Mei F, Hong Y, Xia H, Zuo T, Ding Y, Wang W. Macrophage migration inhibitory factor antagonist (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester attenuates inflammation and lung injury in rats with acute pancreatitis in pregnancy. Mol Med Rep 2018; 17:6576-6584. [PMID: 29512741 PMCID: PMC5928642 DOI: 10.3892/mmr.2018.8672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine involved in many acute and chronic inflammatory diseases. However, its role in acute lung injury associated with acute pancreatitis in pregnancy (APIP) has not yet been elucidated. The present study was undertaken to clarify the effect and potential mechanism of MIF antagonist (S,R)3‑(4‑hydroxyphenyl)‑4,5‑dihydro‑5‑isoxazole acetic acid methyl ester (ISO‑1) in the development of acute lung injury in rats with APIP. Eighteen late‑gestation SD rats were randomly assigned to three groups: Sham operation (SO) group, APIP group, and ISO‑1 group. All the rats were sacrificed 6 h after modeling. The severity of pancreatitis was evaluated by serum amylase (AMY), lipase (LIPA), tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 and assessing the histopathological score. Lung injury was determined by performing histology and inflammatory cell infiltration investigations. Western blot analysis was used to detect the protein expression of MIF, phosphorylated and total P38 and nuclear factor‑κB (NF‑κB) protein in lungs. The results showed that MIF was upregulated in the lung of APIP rats. Compared with APIP group, the intervention of ISO‑1 alleviated the pathological injury of the pancreas and lungs, decreased serum AMY and LIPA, attenuated serum concentrations of TNF‑α, IL‑1β, and IL‑6, reduced the number of MPO‑positive cells in the lung and inhibited the activation of P38MAPK and NF‑κB. These results suggest that MIF is activated in lung injury induced by APIP. Furhtermore, the present findings indicate that the MIF antagonist ISO‑1 has a protective effect on lung injury and inflammation, which may be associated with deactivating the P38MAPK and NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Yu Zhou
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangchao Mei
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yupu Hong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He Xia
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Zuo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Youming Ding
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
20
|
Guo ZD, Zhao L, Wang P, Deng WH, Shi Q, Zuo T, Hong YP, Wang WX. Fetal liver injury ameliorated by migration inhibitory factor inhibition in a rat model of acute pancreatitis in pregnancy. J Obstet Gynaecol Res 2017; 44:374-383. [PMID: 29227009 DOI: 10.1111/jog.13538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
AIM This study was designed to investigate and assess fetal liver injury in a rat model of acute pancreatitis in pregnancy (APIP) as well as its possible mechanisms and potential therapeutic targets. METHODS The APIP model was induced by sodium taurocholate in Sprague-Dawley rats during the third trimester. ISO-1, a macrophage migration inhibitory factor (MIF) antagonist, was given before the induction of APIP. In addition, sham-operated rats at later gestation were set as controls. Histological changes in the fetal liver and maternal pancreas were assessed. Amylase and lipase activity as well as the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were examined. The expression of MIF in fetal liver was determined by immunochemistry and the expression of NF-κB, IκBα, high mobility group box-1 protein (HMGB1), TNF-α, and IL-1β in fetal liver was determined by Western blot analysis. Ultrastructures of hepatic cells in fetal rats were observed under transmission electron microscopy. RESULTS ISO-1 ameliorated the following: (i) pathological injuries in maternal pancreas and fetal liver; (ii) levels of TNF-α and IL-1β in maternal serum; and (iii) levels of MIF, myeloperoxidase, NF-κB, HMGB1, TNF-α, and IL-1β in fetal liver. CONCLUSION Pathological damage and an inflammatory response in fetal liver were induced by APIP, and MIF inhibition ameliorated fetal liver injury by inhibiting the inflammatory cascade.
Collapse
Affiliation(s)
- Zheng-Da Guo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liang Zhao
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen-Hong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiao Shi
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Teng Zuo
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Pu Hong
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-Xing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|