1
|
Tachibana S, Hayashi S, Ikuta K, Anjiki K, Onoi Y, Suda Y, Wada K, Maeda T, Saito A, Tsubosaka M, Kamenaga T, Kuroda Y, Nakano N, Matsumoto T, Hosooka T, Ogawa W, Kuroda R. Downregulation of Krüppel-like factor 15 expression delays endochondral bone ossification during fracture healing. Bone 2024; 190:117302. [PMID: 39437873 DOI: 10.1016/j.bone.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture. METHODS We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 fl/fl Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3. RESULTS The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice. CONCLUSION KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.
Collapse
Affiliation(s)
- Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Saito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Kronemberger G, Spagnuolo FD, Karam AS, Chattahy K, Storey KJ, Kelly DJ. Rapidly Degrading Hydrogels to Support Biofabrication and 3D Bioprinting Using Cartilage Microtissues. ACS Biomater Sci Eng 2024; 10:6441-6450. [PMID: 39240109 PMCID: PMC11480940 DOI: 10.1021/acsbiomaterials.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
In recent years, there has been increased interest in the use of cellular spheroids, microtissues, and organoids as biological building blocks to engineer functional tissues and organs. Such microtissues are typically formed by the self-assembly of cellular aggregates and the subsequent deposition of a tissue-specific extracellular matrix (ECM). Biofabrication and 3D bioprinting strategies using microtissues may require the development of supporting hydrogels and bioinks to spatially localize such biological building blocks in 3D space and hence enable the engineering of geometrically defined tissues. Therefore, the aim of this work was to engineer scaled-up, geometrically defined cartilage grafts by combining multiple cartilage microtissues within a rapidly degrading oxidized alginate (OA) supporting hydrogel and maintaining these constructs in dynamic culture conditions. To this end, cartilage microtissues were first independently matured for either 2 or 4 days and then combined in the presence or absence of a supporting OA hydrogel. Over 6 weeks in static culture, constructs engineered using microtissues that were matured independently for 2 days generated higher amounts of glycosaminoglycans (GAGs) compared to those matured for 4 days. Histological analysis revealed intense staining for GAGs and negative staining for calcium deposits in constructs generated by using the supporting OA hydrogel. Less physical contraction was also observed in constructs generated in the presence of the supporting gel; however, the remnants of individual microtissues were more observable, suggesting that even the presence of a rapidly degrading hydrogel may delay the fusion and/or the remodeling of the individual microtissues. Dynamic culture conditions were found to modulate ECM synthesis following the OA hydrogel encapsulation. We also assessed the feasibility of 3D bioprinting of cartilage microtissues within OA based bioinks. It was observed that the microtissues remained viable after extrusion-based bioprinting and were able to fuse after 48 h, particularly when high microtissue densities were used, ultimately generating a cartilage tissue that was rich in GAGs and negative for calcium deposits. Therefore, this work supports the use of OA as a supporting hydrogel/bioink when using microtissues as biological building blocks in diverse biofabrication and 3D bioprinting platforms.
Collapse
Affiliation(s)
- Gabriela
S. Kronemberger
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Francesca D. Spagnuolo
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Aliaa S. Karam
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Kaoutar Chattahy
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Kyle J. Storey
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Daniel J. Kelly
- Trinity
Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Mechanical, Manufacturing and Biomedical Engineering, School of
Engineering, Trinity College Dublin, Dublin D02 R590, Ireland
- Department
of Anatomy and Regenerative Medicine, Royal
College of Surgeons in Ireland, Dublin D02 YN77, Ireland
- Advanced
Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin D02 F6N2, Ireland
| |
Collapse
|
3
|
Zohri M, Arefian E, Azizi Z, Akbari Javar H, Shadboorestan A, Fatahi Y, Chogan F, Taheri M, Karoobi S, Aghaee-Bakhtiari SH, Bonakdar S, Gazori T, Mohammadi S, Saadatpour F, Ghahremani MH. Activation of the BMP2/SMAD4 signaling pathway for enhancing articular cartilage regeneration of mesenchymal stem cells utilizing chitosan/alginate nanoparticles on 3D extracellular matrix scaffold. Int J Biol Macromol 2024; 277:133995. [PMID: 39038571 DOI: 10.1016/j.ijbiomac.2024.133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study investigated the efficacy of using chitosan/alginate nanoparticles loaded with recombinant human bone morphogenetic-2 (rhBMP-2) and SMAD4 encoding plasmid to enhance the chondrogenesis of human bone marrow mesenchymal stem cells (hBM-MSCs) seeded on an extracellular matrix (ECM). The research treatments included the stem cells treated with the biological cocktail (BC), negative control (NC), hBM-MSCs with chondrogenic medium (MCM), hBM-MSCs with naked rhBMP-2 and chondrogenic medium (NB/C), and hBM-MSCs with naked rhBMP-2 and chondrogenic medium plus SMAD4 encoding plasmid transfected with polyethyleneimine (PEI) (NB/C/S/P). The cartilage differentiation was performed with real-time quantitative PCR analysis and alizarin blue staining. The data indicated that the biological cocktail (BC) exhibited significantly higher expression of cartilage-related genes compared to significant differences with MCM and negative control (NC) on chondrogenesis. In the (NB/C/S/P), the expression levels of SOX9 and COLX were lower than those in the BC group. The expression pattern of the ACAN gene was similar to COL2A1 changes suggesting that it holds promising potential for cartilage regeneration.
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Chogan
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Karoobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Mashhad University of Medical Science, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Taraneh Gazori
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 1917733831 Tehran, Iran
| | - Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
4
|
Ge R, Liu C, Zhao Y, Wang K, Wang X. Endochondral Ossification for Spinal Fusion: A Novel Perspective from Biological Mechanisms to Clinical Applications. J Pers Med 2024; 14:957. [PMID: 39338212 PMCID: PMC11433020 DOI: 10.3390/jpm14090957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Degenerative scoliosis (DS), encompassing conditions like spondylolisthesis and spinal stenosis, is a common type of spinal deformity. Lumbar interbody fusion (LIF) stands as a conventional surgical intervention for this ailment, aiming at decompression, restoration of intervertebral height, and stabilization of motion segments. Despite its widespread use, the precise mechanism underlying spinal fusion remains elusive. In this review, our focus lies on endochondral ossification for spinal fusion, a process involving vertebral development and bone healing. Endochondral ossification is the key step for the successful vertebral fusion. Endochondral ossification can persist in hypoxic conditions and promote the parallel development of angiogenesis and osteogenesis, which corresponds to the fusion process of new bone formation in the hypoxic region between the vertebrae. The ideal material for interbody fusion cages should have the following characteristics: (1) Good biocompatibility; (2) Stable chemical properties; (3) Biomechanical properties similar to bone tissue; (4) Promotion of bone fusion; (5) Favorable for imaging observation; (6) Biodegradability. Utilizing cartilage-derived bone-like constructs holds promise in promoting bony fusion post-operation, thus warranting exploration in the context of spinal fusion procedures.
Collapse
Affiliation(s)
- Rile Ge
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Rd, Beijing 100050, China;
| | - Chenjun Liu
- Department of Spinal Surgery, Peking University People’s Hospital, 11th Xizhimen South Ave., Beijing 100044, China;
| | - Yuhong Zhao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China;
| | - Kaifeng Wang
- Department of Spinal Surgery, Peking University People’s Hospital, 11th Xizhimen South Ave., Beijing 100044, China;
| | - Xiluan Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
5
|
Li C, Tu Y, Rong R, Zhang Z, Chen W, Long L, Zhang Y, Wang C, Pan B, Wu X, Guan M, Yang B, Zheng L, Sheng P. Association of thyroid hormone with osteoarthritis: from mendelian randomization and RNA sequencing analysis. J Orthop Surg Res 2024; 19:429. [PMID: 39054551 PMCID: PMC11270794 DOI: 10.1186/s13018-024-04939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND The relationship between thyroid hormone (TH) levels in vivo and osteoarthritis (OA) remains inconclusive. This study aims to investigate the association between TH levels and OA, analyze the effect of triiodothyronine on hypertrophic chondrocyte differentiation and OA progression, and identify potential target genes of triiodothyronine in OA to evaluate its diagnostic value. METHODS Two-sample mendelian randomization method was used to probe the causal links between hyperthyroidism and OA. Differentially expressed genes (DEGs) from two RNA-sequencing data in Gene Expression Omnibus (GSE199847 and GSE114007) and enrichment analysis of DEGs (166 commonly upregulated genes and 71 commonly downregulated genes of GSE199847 and GSE114007) was performed to analyze the effect of triiodothyronine (T3) on hypertrophic chondrocyte differentiation and OA. C28/I2 cells treated with T3 and reverse transcription and quantitative real-time polymerase chain reaction were used to validate T3 targeted genes. The diagnostic performance of target genes was assessed by the receiver operating characteristic (ROC) curve and area under the curve (AUC). RESULTS There was a positive causal association between hyperthyroidism and OA (IVW result, OR = 1.330, 95% CI 1.136-1.557, P = 0.0004). Weighted median and Weighted mode analysis also demonstrated that hyperthyroidism had a positive causal association with OA (p < 0.05, OR > 1). Bioinformatics analysis indicated T3 can partially induce the emergence of late hypertrophic chondrocyte and promote OA through extracellular matrix organization, blood vessel development, skeletal system development and ossification. Post-T3 treatment, MAFB, C1QTNF1, COL3A1 and ANGPTL2 were significantly elevated in C28/I2 cells. ROC curves in GSE114007 showed that AUC of all above genes were ≥ 0.7. CONCLUSIONS This study identified that hyperthyroidism has a positive causal association with OA by MR analysis. T3 induced hypertrophic chondrocytes promote OA progression by upregulating genes such as MAFB, C1QTNF1, COL3A1 and ANGPTL2, which can also serve as OA diagnosis.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Yucheng Tu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Rong Rong
- Department of Nosocomial Infection, The First Affiliated Hospital, Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Weishen Chen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Lingli Long
- Research Center of Translational Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Yangchun Zhang
- Department of Orthopedics, People's Hospital of Shenzhen Baoan District, 118 Longjing 2nd Road, Shenzhen, 518101, Guangdong, China
| | - Chao Wang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Baiqi Pan
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Xiaoyu Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China
| | - Mingqiang Guan
- Joint Surgery Center, Foshan Traditional Chinese Medicine Hospital, 6 Qinren Road, Foshan, 528200, Guangdong, China
| | - Bo Yang
- Department of Orthopedics, The First Affiliated Hospital of Shantou University Medical College, 57 Chenghai Road, Shantou, 515041, Guangdong, China
| | - Linli Zheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China.
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Zhong Shan 2nd Road, No. 58, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
6
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
7
|
Janssen A, Buschang PH, Tadlock LP, Kesterke MJ, Jing Y. The effects of dietary loading on the transdifferentiation of condylar chondrocytes. Am J Orthod Dentofacial Orthop 2024; 165:697-710. [PMID: 38573296 DOI: 10.1016/j.ajodo.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transdifferentiation of chondrocytes into bone cells explains most condylar growth during prenatal and early postnatal stages, but the mechanisms regulating chondrocyte transdifferentiation during late postnatal growth remain unknown. This study aimed to quantify the effects of dietary loading on chondrocyte-derived osteogenesis during late postnatal condylar growth. METHODS Two compound mouse lines were used to trace the fate of chondrocyte lineage in vivo. Twelve 3-week-old male Aggrecan-CreERT2 (AcanLineage); R26RTdTomato; 2.3 Col10a1-GFP and twelve 3-week-old male Col10a1-Cre (Col10a1Lineage); R26RTdTomato; 2.3Col1a1-GFP were randomly divided into experimental (soft-food diet, n = 6) and control (hard-food diet, n = 6) groups and kept for 6 weeks. One time, tamoxifen injections were given to AcanLineage mice at 3 weeks. Radiographic, microcomputed tomographic, and histomorphometric analyses were performed. RESULTS Radiologic analysis showed that mice with a soft-food diet had smaller mandible lengths as well as decreased bone volume and density for their condylar process. Histologically, mice with soft diets had reduced activity in chondrocyte proliferation and maturation compared with the controls. Cell lineage tracing results showed the number of AcanLineage-derived bone cells (293.8 ± 39.8 vs 207.1 ± 44.6; P = 0.005), as well as total bone cells (445.6 ± 31.7 vs 360.7 ± 46.9; P = 0.004), was significantly higher in the hard-diet group than in the soft-diet group, whereas the number of non-AcanLineage-derived bone cells was not significantly different among groups (P = 0.938). Col10a1Lineage mice showed the same trend. CONCLUSIONS Dietary loading directly affects condyle chondrogenesis and chondrocyte transdifferentiation, which alters the extent of condylar growth and remodeling.
Collapse
Affiliation(s)
- Abbey Janssen
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | - Peter H Buschang
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | - Larry P Tadlock
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex
| | | | - Yan Jing
- Department of Orthodontics, Texas A&M School of Dentistry, Dallas, Tex.
| |
Collapse
|
8
|
Mamachan M, Sharun K, Banu SA, Muthu S, Pawde AM, Abualigah L, Maiti SK. Mesenchymal stem cells for cartilage regeneration: Insights into molecular mechanism and therapeutic strategies. Tissue Cell 2024; 88:102380. [PMID: 38615643 DOI: 10.1016/j.tice.2024.102380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-β, BMP, Wnt/β-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.
Collapse
Affiliation(s)
- Merlin Mamachan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India; Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
| | - S Amitha Banu
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India; Orthopaedic Research Group, Coimbatore, Tamil Nadu, India; Department of Orthopaedics, Government Medical College, Kaur, Tamil Nadu, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Laith Abualigah
- Artificial Intelligence and Sensing Technologies (AIST) Research Center, University of Tabuk, Tabuk 71491, Saudi Arabia; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan; Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan; MEU Research Unit, Middle East University, Amman 11831, Jordan; Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon; Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan; School of Engineering and Technology, Sunway University Malaysia, Petaling Jaya 27500, Malaysia
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Notoh H, Yamasaki S, Suzuki N, Suzuki A, Okamoto S, Kanematsu T, Suzuki N, Katsumi A, Kojima T, Matsushita T, Tamura S. Basement membrane extract potentiates the endochondral ossification phenotype of bone marrow-derived mesenchymal stem cell-based cartilage organoids. Biochem Biophys Res Commun 2024; 701:149583. [PMID: 38330731 DOI: 10.1016/j.bbrc.2024.149583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Endochondral ossification is a developmental process in the skeletal system and bone marrow of vertebrates. During endochondral ossification, primitive cartilaginous anlages derived from mesenchymal stem cells (MSCs) undergo vascular invasion and ossification. In vitro regeneration of endochondral ossification is beneficial for research on the skeletal system and bone marrow development as well as their clinical aspects. However, to achieve the regeneration of endochondral ossification, a stem cell-based artificial cartilage (cartilage organoid, Cart-Org) that possesses an endochondral ossification phenotype is required. Here, we modified a conventional 3D culture method to create stem cell-based Cart-Org by mixing it with a basement membrane extract (BME) and further characterized its chondrogenic and ossification properties. BME enlarged and matured the bone marrow MSC-based Cart-Orgs without any shape abnormalities. Histological analysis using Alcian blue staining showed that the production of cartilaginous extracellular matrices was enhanced in Cart-Org treated with BME. Transcriptome analysis using RNA sequencing revealed that BME altered the gene expression pattern of Cart-Org to a dominant chondrogenic state. BME triggered the activation of the SMAD pathway and inhibition of the NK-κB pathway, which resulted in the upregulation of SOX9, COL2A1, and ACAN in Cart-Org. BME also facilitated the upregulation of genes associated with hypertrophic chondrocytes (IHH, PTH1R, and COL10A1) and ossification (SP7, ALPL, and MMP13). Our findings indicate that BME promotes cartilaginous maturation and further ossification of bone marrow MSC-based Cart-Org, suggesting that Cart-Org treated with BME possesses the phenotype of endochondral ossification.
Collapse
Affiliation(s)
- Hinako Notoh
- Graduate School of Health Sciences, Hokkaido University, Japan
| | | | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Medical Technique, Nagoya University Hospital, Japan
| | - Shuichi Okamoto
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Naruko Suzuki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Tetsuhito Kojima
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Aichi Health Promotion Foundation, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shogo Tamura
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan; Department of Clinical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
11
|
Wang XH, Liu N, Zhang H, Yin ZS, Zha ZG. From cells to organs: progress and potential in cartilaginous organoids research. J Transl Med 2023; 21:926. [PMID: 38129833 PMCID: PMC10740223 DOI: 10.1186/s12967-023-04591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
While cartilage tissue engineering has significantly improved the speed and quality of cartilage regeneration, the underlying metabolic mechanisms are complex, making research in this area lengthy and challenging. In the past decade, organoids have evolved rapidly as valuable research tools. Methods to create these advanced human cell models range from simple tissue culture techniques to complex bioengineering approaches. Cartilaginous organoids in part mimic the microphysiology of human cartilage and fill a gap in high-fidelity cartilage disease models to a certain extent. They hold great promise to elucidate the pathogenic mechanism of a diversity of cartilage diseases and prove crucial in the development of new drugs. This review will focus on the research progress of cartilaginous organoids and propose strategies for cartilaginous organoid construction, study directions, and future perspectives.
Collapse
Affiliation(s)
- Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zong-Sheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
12
|
Wei G, Lu K, Umar M, Zhu Z, Lu WW, Speakman JR, Chen Y, Tong L, Chen D. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res 2023; 11:63. [PMID: 38052778 PMCID: PMC10698167 DOI: 10.1038/s41413-023-00301-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Lu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - William W Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - John R Speakman
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
13
|
Chitchongyingcharoen N, Tawonsawatruk T, Phetfong J, Aroontanee W, Supokawej A. Application of human platelet lysate in chondrocyte expansion promotes chondrogenic phenotype and slows senescence progression via BMP-TAK1-p38 pathway. Sci Rep 2023; 13:21106. [PMID: 38036641 PMCID: PMC10689743 DOI: 10.1038/s41598-023-48544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal degenerative. OA treatments are aiming to slow down disease progression; however, lack of cartilage regeneration efficacy. Autologous chondrocyte implantation (ACI) is a promising cartilage-regeneration strategy that uses human articular chondrocytes (HACs) as cellular materials. However, the unreadiness of HACs from prolonged expansion, cellular senescence, and chondrogenic dedifferentiation occurred during conventional expansion, thus, minimizing the clinical efficacy of ACI. We aimed to examine the effects of a human platelet lysate (HPL) as an alternative human-derived HAC medium supplement to overcome the limitations of conventional expansion, and to explain the mechanism underlying the effects of HPL. During passages 2-4 (P2-P4), HPL significantly increased HAC proliferation capacities and upregulated chondrogenic markers. Simultaneously, HPL significantly reduced HAC senescence compared with conventional condition. HACs treated with LDN193189 exhibited a reduction in proliferation capacity and chondrogenic marker expression, whereas the HAC senescence increased slightly. These findings indicated involvement of BMP-2 signaling transduction in the growth-assistive, anti-senescent, and chondrogenic-inductive properties of HPL, which demonstrated its beneficial effects for application as HAC medium supplement to overcome current expansion limitations. Finally, our findings support the roles of platelets in platelet-rich plasma as a promising treatment for patients with OA.
Collapse
Affiliation(s)
- Narong Chitchongyingcharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jitrada Phetfong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Wrattya Aroontanee
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon Sai 4, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
14
|
Thielen NGM, van Caam APM, V Beuningen HM, Vitters EL, van den Bosch MHJ, Koenders MI, van de Loo FAJ, Blaney Davidson EN, van der Kraan PM. Separating friend from foe: Inhibition of TGF-β-induced detrimental SMAD1/5/9 phosphorylation while maintaining protective SMAD2/3 signaling in OA chondrocytes. Osteoarthritis Cartilage 2023; 31:1481-1490. [PMID: 37652257 DOI: 10.1016/j.joca.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial to control cartilage homeostasis. However, TGF-β can also have detrimental effects by signaling via SMAD1/5/9 and thereby contribute to diseases like osteoarthritis (OA). In this study, we aimed to block TGF-β-induced SMAD1/5/9 signaling in primary human OA chondrocytes, while maintaining functional SMAD2/3 signaling. DESIGN Human OA chondrocytes were pre-incubated with different concentrations of ALK4/5/7 kinase inhibitor SB-505124 before stimulation with TGF-β. Changes in SMAD C-terminal phosphorylation were analyzed using Western blot and response genes were measured with quantitative Polymerase Chain Reaction. To further explore the consequences of our ability to separate pathways, we investigated TGF-β-induced chondrocyte hypertrophy. RESULTS Pre-incubation with 0.5 µM SB-505124, maintained ±50% of C-terminal SMAD2/3 phosphorylation and induction of JUNB and SERPINE1, but blocked SMAD1/5/9-C phosphorylation and expression of ID1 and ID3. Furthermore, TGF-β, in levels comparable to those in the synovial fluid of OA patients, resulted in regulation of hypertrophic and dedifferentiation markers in OA chondrocytes; i.e. an increase in COL10, RUNX2, COL1A1, and VEGF and a decrease in ACAN expression. Interestingly, in a subgroup of OA chondrocyte donors, blocking only SMAD1/5/9 caused stronger inhibition on TGF-β-induced RUNX2 than blocking both SMAD pathways. CONCLUSION Our findings indicate that using low dose of SB-505124 we maintained functional SMAD2/3 signaling that blocks RUNX2 expression in a subgroup of OA patients. We are the first to show that SMAD2/3 and SMAD1/5/9 pathways can be separately modulated using low and high doses of SB-505124 and thereby split TGF-β's detrimental from protective function in chondrocytes.
Collapse
Affiliation(s)
- Nathalie G M Thielen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjan P M van Caam
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk M V Beuningen
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elly L Vitters
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn H J van den Bosch
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marije I Koenders
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons A J van de Loo
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esmeralda N Blaney Davidson
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter M van der Kraan
- Department of Experimental Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
15
|
Nguyen JKB, Gómez-Picos P, Liu Y, Ovens K, Eames BF. Common features of cartilage maturation are not conserved in an amphibian model. Dev Dyn 2023; 252:1375-1390. [PMID: 37083105 DOI: 10.1002/dvdy.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/04/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patsy Gómez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yiwen Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
16
|
Becker GM, Shira KA, Woods JL, Khilji SF, Schauer CS, Webb BT, Stewart WC, Murdoch BM. Angular limb deformity associated with TSPAN18, NRG3 and NOVA2 in Rambouillet rams. Sci Rep 2023; 13:16059. [PMID: 37749158 PMCID: PMC10520043 DOI: 10.1038/s41598-023-43320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
Angular limb deformity (ALD) affects many species of livestock and companion animals. The mechanisms of ALD development are not well understood, but previous research suggests the involvement of genetic risk factors. A case-control genome-wide association study (GWAS) was conducted with 40 ALD-affected and 302 unaffected Rambouillet rams and 40,945 single nucleotide polymorphisms (SNPs). Forelimbs of 6 ALD-affected rams were examined and diagnosed with osteochondrosis. Genome-wide or chromosome-wide significant SNPs were positioned exonic, intronic or within the 3'UTR of genes TSPAN18, NRG3 and NOVA2, respectively. These genes have previously described roles related to angiogenesis and osteoblast, osteoclast and chondrocyte proliferation and differentiation, which suggests the possibility for their involvement in the pathogenesis of osteochondrosis. Functional consequences of SNPs were evaluated through transcription factor binding site analysis, which predicted binding sites for transcription factors of known importance to bone growth, including SOX6, SOX9 and RUNX2. The identification of genetic risk factors for ALD may help to improve animal welfare and production in Rambouillet, a breed known to be at risk for ALD development. This study proposes genes TSPAN18, NRG3 and NOVA2 as targets for further research towards understanding the etiology of ALD in Rambouillet sheep.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Julia L Woods
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Sarem F Khilji
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Brett T Webb
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
17
|
Gross A, Buschang PH, Shakya A, Jing Y. Short-term effects of mechanical loading on the transdifferentiation of condylar chondrocytes. Am J Orthod Dentofacial Orthop 2023; 164:201-214. [PMID: 36922241 PMCID: PMC10659147 DOI: 10.1016/j.ajodo.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Transdifferentiation of chondrocytes into bone cells explains most of the prenatal and early postnatal condylar growth, but its role during later postnatal growth and the mechanisms regulating transdifferentiation remain unknown. This study aimed to quantify the effects of mechanical loading on chondrocyte-derived osteogenesis during late postnatal condylar growth using a short-term mandibular laterotrusion model. METHODS Thirty 4-week-old Aggrecan-CreERT2, R26RtdTomato, and 2.3Col1a1-GFP compound mice received tamoxifen injections and were divided into control and experimental groups. Appliances were bonded to shift the mandibles of the experimental mice for 5 days, causing protrusion and retrusion of the right and left condyles, respectively. Radiographic, microcomputed tomographic, and histomorphometric analyses were performed. RESULTS The experimental and control groups showed substantial transdifferentiation of chondrocytes into bone cells. The experimental mice developed asymmetric mandibles, with the protrusive side significantly longer than the retrusive side. The protrusive condyles showed significantly increased chondrogenesis and greater numbers of chondrocyte-derived osteogenic cells, especially in the posterior third. The opposite effects were seen on the retrusive side. CONCLUSIONS Transdifferentiation of chondrocytes into bone cells occurs during late postnatal condylar growth. Laterotrusion regulates condylar chondrogenesis and chondrocyte transdifferentiation, which alters the amount and direction of condylar growth. Our study demonstrated that chondrocytes are key players in condylar bone formation and should be the focus of studies to control and further understand condylar growth.
Collapse
Affiliation(s)
- Amanda Gross
- Department of Orthodontics, Texas A&M University School of Dentistry, Dallas, Tex
| | - Peter H Buschang
- Department of Orthodontics, Texas A&M University School of Dentistry, Dallas, Tex
| | - Ajay Shakya
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, Tex
| | - Yan Jing
- Department of Orthodontics, Texas A&M University School of Dentistry, Dallas, Tex.
| |
Collapse
|
18
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
19
|
Khaveh N, Schachler K, Berghöfer J, Jung K, Metzger J. Altered hair root gene expression profiles highlight calcium signaling and lipid metabolism pathways to be associated with curly hair initiation and maintenance in Mangalitza pigs. Front Genet 2023; 14:1184015. [PMID: 37351343 PMCID: PMC10282778 DOI: 10.3389/fgene.2023.1184015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Hair types have been under strong targeted selection in domestic animals for their impact on skin protection, thermoregulation and exterior morphology, and subsequent economic importance. In pigs, a very special hair phenotype was observed in Mangalitza, who expresses a thick coat of curly bristles and downy hair. Two breed-specific missense variants in TRPM2 and CYP4F3 were suggested to be associated with the Mangalitza pig's hair shape due to their role in hair follicle morphogenesis reported for human and mice. However, the mechanism behind this expression of a curly hair type is still unclear and needs to be explored. In our study, hair shafts were measured and investigated for the curvature of the hair in Mangalitza and crossbreeds in comparison to straight-coated pigs. For molecular studies, hair roots underwent RNA sequencing for a differential gene expression analysis using DESeq2. The output matrix of normalized counts was then used to construct weighted gene co-expression networks. The resulting hair root gene expression profiles highlighted 454 genes to be significantly differentially expressed for initiation of curly hair phenotype in newborn Mangalitza piglets versus post-initiation in later development. Furthermore, 2,554 genes showed a significant differential gene expression in curly hair in comparison to straight hair. Neither TRPM2 nor CYP4F3 were identified as differentially expressed. Incidence of the genes in weighted co-expression networks associated with TRPM2 and CYP4F3, and prominent interactions of subsequent proteins with lipids and calcium-related pathways suggested calcium signaling and/or lipid metabolism as essential players in the induction of the curly hair as well as an ionic calcium-dependency to be a prominent factor for the maintenance of this phenotype. Subsequently, our study highlights the complex interrelations and dependencies of mutant genes TRPM2 and CYP4F3 and associated gene expression patterns, allowing the initiation of curly hair type during the development of a piglet as well as the maintenance in adult individuals.
Collapse
Affiliation(s)
- Nadia Khaveh
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kathrin Schachler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Berghöfer
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Mohan S, Pourteymoor S, Kesavan C. WNT16 Regulation of the Articular Chondrocyte Phenotype in Mice. Life (Basel) 2023; 13:878. [PMID: 37109407 PMCID: PMC10145094 DOI: 10.3390/life13040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The anabolic effects of WNT16 on osteoblasts are well established, however, little is known regarding the role of WNT16 in chondrocytes. In this study, we evaluated Wnt16 expression and its biological effects on mouse articular chondrocytes (ACs), since these cells are key to the development of osteoarthritis. While ACs derived from the long bone epiphysis of 7-day old C57BL/6J mice express multiple Wnts, Wnt5b and Wnt16 represent the two most highly expressed Wnts (expressed at several-fold higher levels than other Wnts). Treatment of serum-free AC cultures, with 100 ng/mL of recombinant human (rh) WNT16 for 24 h (hrs), increased proliferation (20%, p < 0.05) and expression levels of makers (Sox9 and Col2) of immature chondrocytes at both 24 h and 72 h, while Acan increased at 72 h. Expression of Mmp9, a marker of mature chondrocytes was decreased at 24 h. Additionally, WNT16 treatment regulated expression levels of Wnt ligands in a biphasic manner, inhibiting its expression at 24 h, while stimulating expression at 72 h. To determine whether WNT16 exerted anabolic effects on the AC phenotype, ex vivo cultures of tibial epiphyses were treated with rhWNT16 or vehicle for 9 days, and the articular cartilage phenotype was evaluated by safranin O cartilage staining and expression of articular cartilage marker genes. Both articular cartilage area and expression levels of AC markers were increased after rhWNT16 treatment. Our data suggest that Wnt16 expressed in ACs may play a role in regulating joint cartilage homeostasis via its direct effect, as well as through modulating the expression of other Wnt ligands.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| | - Shelia Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
21
|
Weißenberger M, Wagenbrenner M, Nickel J, Ahlbrecht R, Blunk T, Steinert AF, Gilbert F. Comparative in vitro treatment of mesenchymal stromal cells with GDF-5 and R57A induces chondrogenic differentiation while limiting chondrogenic hypertrophy. J Exp Orthop 2023; 10:29. [PMID: 36943593 PMCID: PMC10030724 DOI: 10.1186/s40634-023-00594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs. METHODS Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes. RESULTS Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type. CONCLUSIONS R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.
Collapse
Affiliation(s)
- Manuel Weißenberger
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany.
- Department of Orthopedic Surgery, University of Wuerzburg, König-Ludwig-Haus, Brettreichstraße 11, 97074, Würzburg, Germany.
| | - Mike Wagenbrenner
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Joachim Nickel
- Department of Tissue Engineering and Regenerative Medicine, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Rasmus Ahlbrecht
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, König-Ludwig-Haus, Würzburg, Germany
- Current address:, Department of Orthopaedic, Trauma, Shoulder and Arthroplasty Surgery, Rhön-Klinikum, Campus Bad Neustadt, Bad Neustadt, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
- Department of Trauma-, Hand-, Plastic- and Reconstructive Surgery, Julius-Maximilians-University Würzburg, University Hospital, Würzburg, Germany
| |
Collapse
|
22
|
Qu X, Li J, Liu L, Zhang J, Hua Y, Suzuki K, Harada A, Ishida M, Yoshida N, Okuzaki D, Sakai Y, Sawa Y, Miyagawa S. ONO-1301 enhances post-transplantation survival of human induced pluripotent stem cell-derived cardiac tissue sheet by promoting angiogenesis. J Heart Lung Transplant 2023; 42:716-729. [PMID: 36964085 DOI: 10.1016/j.healun.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Transplanting human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) tissue sheets effectively treat ischemic cardiomyopathy. Cardiac functional recovery relies on graft survival in which angiogenesis played an important part. ONO-1301 is a synthetic prostacyclin analog with proangiogenic effects. We hypothesized that transplantation of hiPSC-CM tissue sheets with slow-release ONO-1301 scaffold could promote hostgraft angiogenesis, enhance tissue survival and therapeutic effect. METHODS We developed hiPSC-CM tissue sheets with ONO-1301 slow-release scaffold and evaluated their morphology, gene expression, and effects on angiogenesis. Three tissue sheet layers were transplanted into a rat myocardial infarction (MI) model. Left ventricular ejection fraction, gene expression in the MI border zone, and angiogenesis effects were investigated 4 weeks after transplantation. RESULTS In vitro assessment confirmed the slow-release of ONO-1301, and its pro-angiogenesis effects. In addition, in vivo data demonstrated that ONO-1301 administration positively correlated with graft survival. Cardiac tissue as thick as ∼900 μm was retained in the ONO (+) treated group. Additionally, left ventricular ejection fraction of the ONO (+) group was significantly enhanced, compared to ONO (-) group. The ONO (+) group also showed significantly improved interstitial fibrosis, higher capillary density, increased number of mature blood vessels, along with an enhanced supply of oxygen, and nutrients. CONCLUSIONS Slow-release ONO-1301 scaffold provided an efficient delivery method for thick hiPSC-CM tissue. ONO-1301 promotes angiogenesis between the host and graft and improves nutritional and oxygen supply, thereby enhancing the survival of transplanted cells, effectively improving ejection fraction, and therapeutic effects.
Collapse
Affiliation(s)
- Xiang Qu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Junjun Li
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Li Liu
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jingbo Zhang
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ying Hua
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kota Suzuki
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masako Ishida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Noriko Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI Immunology Research Center, Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiki Sakai
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| |
Collapse
|
23
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
24
|
Guan P, Ji Y, Kang X, Liu W, Yang Q, Liu S, Lin Y, Zhang Z, Li J, Zhang Y, Liu C, Fan L, Sun Y. Biodegradable Dual-Cross-Linked Hydrogels with Stem Cell Differentiation Regulatory Properties Promote Growth Plate Injury Repair via Controllable Three-Dimensional Mechanics and a Cartilage-like Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8986-8998. [PMID: 36752284 DOI: 10.1021/acsami.2c20722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent breakthroughs in cell transplantation therapy have revealed the promising potential of bone marrow mesenchymal stem cells (BMSCs) for promoting the regeneration of growth plate cartilage injury. However, the high apoptosis rate and the uncertainty of the differentiation direction of cells often lead to poor therapeutic effects. Cells are often grown under three-dimensional (3D) conditions in vivo, and the stiffness and components of the extracellular matrix (ECM) are important regulators of stem cell differentiation. To this end, a 3D cartilage-like ECM hydrogel with tunable mechanical properties was designed and synthesized mainly from gelatin methacrylate (GM) and oxidized chondroitin sulfate (OCS) via dynamic Schiff base bonding under UV. The effects of scaffold stiffness and composition on the survival and differentiation of BMSCs in vitro were investigated. A rat model of growth plate injury was developed to validate the effect of the GMOCS hydrogels encapsulated with BMSCs on the repair of growth plate injury. The results showed that 3D GMOCS hydrogels with an appropriate modulus significantly promoted chondrogenic differentiation of BMSCs, and GMOCS/BMSC transplantation could effectively inhibit bone bridge formation and promote the repair of damaged growth plates. Accordingly, GMOCS/BMSC therapy can be engineered as a promising therapeutic candidate for growth plate injury.
Collapse
Affiliation(s)
- Pengfei Guan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yuelun Ji
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Xinchang Kang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weilu Liu
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qinfeng Yang
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shencai Liu
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yeying Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zuyu Zhang
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Junji Li
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Can Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
25
|
Effect of Hydrogen Oxide-Induced Oxidative Stress on Bone Formation in the Early Embryonic Development Stage of Chicken. Biomolecules 2023; 13:biom13010154. [PMID: 36671539 PMCID: PMC9855391 DOI: 10.3390/biom13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The current study aimed to monitor the impact of H2O2-induced oxidative stress on avian bone formation during the early stage of embryonic development. Fertilized Cobb broiler eggs were divided into five treatment groups and micro-injected with varying concentrations of H2O2, i.e., control (PBS; 0 nM), 10 nM, 30 nM, 100 nM, and 300 nM, on embryonic day 3, with continued incubation thereafter. The treatment concentrations were selected based on the level of lipid peroxidation and the survival rate of embryo. Embryos were collected at 6 h, 24 h, 48 h, and 72 h post-injection. The mRNA expression levels of apoptotic markers, antioxidant enzymes, and early bone formation gene markers were measured. The results showed that the microinjection of H2O2 altered the expression pattern of antioxidant enzymes' mRNA during early embryogenesis and decreased the expression of COL1A2 and COL2A1 at 6 h and 24 h post-injection. Decreased expression of BMP, BGLAP, and RUNX2 was observed 48 h post-injection. Additionally, a shorter embryo length was observed in the 100 nM and 300 nM H2O2 treatment groups 72 h post-injection. In conclusion, H2O2-induced oxidative stress suppressed the expression of bone formation gene markers, with chronic effects on avian embryonic development.
Collapse
|
26
|
Huang H, Yan J, Lan X, Guo Y, Sun M, Zhao Y, Zhang F, Sun J, Lu S. LncRNA WDR11-AS1 Promotes Extracellular Matrix Synthesis in Osteoarthritis by Directly Interacting with RNA-Binding Protein PABPC1 to Stabilize SOX9 Expression. Int J Mol Sci 2023; 24:817. [PMID: 36614257 PMCID: PMC9820994 DOI: 10.3390/ijms24010817] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of articular cartilage that is mainly characterized by chronic and mild inflammation of the joints. Recently, many studies have reported the crucial roles of long noncoding RNAs (lncRNAs) in OA as gene transcriptional regulatory factors, diagnostic biomarkers, or therapeutic targets. However, the exact mechanisms of lncRNAs in the regulation of OA progression remain unclear. In the present study, the lncRNA WDR11 divergent transcript (lncRNA WDR11-AS1) was shown to be downregulated in osteoarthritic cartilage tissues from patients, and to promote extracellular matrix (ECM) synthesis in osteoarthritic chondrocytes with knockdown and overexpression experiments. This function of lncRNA WDR11-AS1 was linked to its ability to interact with the polyadenylate-binding protein cytoplasmic 1 (PABPC1), which was screened by RNA pulldown and mass spectrometry analyses. PABPC1 was discovered to bind ECM-related mRNAs such as SOX9, and the inhibition of PABPC1 improved the mRNA stability of SOX9 to mitigate OA progression. Our results suggest that lncRNA WDR11-AS1 has a promising inhibitory effect on inflammation-induced ECM degradation in OA by directly binding PABPC1, thereby establishing lncRNA WDR11-AS1 and PABPC1 as potential therapeutic targets in the treatment of OA.
Collapse
Affiliation(s)
- Huang Huang
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xi Lan
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yuanxu Guo
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Mengyao Sun
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yitong Zhao
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Jian Sun
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| |
Collapse
|
27
|
Yoon DS, Kim EJ, Cho S, Jung S, Lee KM, Park KH, Lee JW, Kim SH. RUNX2 stabilization by long non-coding RNAs contributes to hypertrophic changes in human chondrocytes. Int J Biol Sci 2023; 19:13-33. [PMID: 36594090 PMCID: PMC9760429 DOI: 10.7150/ijbs.74895] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chondrocyte hypertrophy has been implicated in endochondral ossification and osteoarthritis (OA). In OA, hypertrophic chondrocytes contribute to the destruction and focal calcification of the joint cartilage. Although studies in this field have remarkably developed the modulation of joint inflammation using gene therapy and regeneration of damaged articular cartilage using cell therapy, studies that can modulate or prevent hypertrophic changes in articular chondrocytes are still lacking. Methods: In vitro hypertrophic differentiation and inflammation assays were conducted using human normal chondrocyte cell lines, TC28a2 cells. Human cartilage tissues and primary articular chondrocytes were obtained from OA patients undergoing total knee arthroplasty. Long non-coding RNAs (lncRNAs), LINC02035 and LOC100130207, were selected through RNA-sequencing analysis using RNAs extracted from TC28a2 cells cultured in hypertrophic medium. The regulatory mechanism was evaluated using western blotting, real-time quantitative polymerase chain reaction, osteocalcin reporter assay, RNA-immunoprecipitation (RNA-IP), RNA-in situ hybridization, and IP. Results: LncRNAs are crucial regulators of various biological processes. In this study, we identified two important lncRNAs, LINC02035 and LOC100130207, which play important roles in hypertrophic changes in normal chondrocytes, through RNA sequencing. Interestingly, the expression level of RUNX2, a master regulator of chondrocyte hypertrophy, was regulated at the post-translational level during hypertrophic differentiation of the normal human chondrocyte cell line, TC28a2. RNA-immunoprecipitation proved the potential interaction between RUNX2 protein and both lncRNAs. Knockdown (KD) of LINC02035 or LOC100130207 promoted ubiquitin-mediated proteasomal degradation of RUNX2 and prevented hypertrophic differentiation of normal chondrocyte cell lines, whereas overexpression of both lncRNAs stabilized RUNX2 protein and generated hypertrophic changes. Furthermore, the KD of the two lncRNAs mitigated the destruction of important cartilage matrix proteins, COL2A1 and ACAN, by hypertrophic differentiation or inflammatory conditions. We also confirmed that the phenotypic changes raised by the two lncRNAs could be rescued by modulating RUNX2 expression. In addition, the KD of these two lncRNAs suppressed hypertrophic changes during chondrogenic differentiation of mesenchymal stem cells. Conclusion: Therefore, this study suggests that LINC02035 and LOC100130207 contribute to hypertrophic changes in normal chondrocytes by regulating RUNX2, suggesting that these two novel lncRNAs could be potential therapeutic targets for delaying or preventing OA development, especially for preventing chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eun-Ji Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sehee Cho
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soyeong Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| | - Sung-Hwan Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea.,Arthroscopy and Joint Research Institute, Yonsei University College of Medicine, Seoul 03722, South Korea.,Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea.,✉ Corresponding authors: Jin Woo Lee, [; Phone: (82-2) 2228-2190 • Fax: (82-2) 363-1139] or Sung-Hwan Kim [; Phone: (82-2) 2019-3415 • Fax: (82-2) 573-5393]
| |
Collapse
|
28
|
Kikuchi K, Haneda M, Hayashi S, Maeda T, Nakano N, Kuroda Y, Tsubosaka M, Kamenaga T, Fujita M, Ikuta K, Anjiki K, Tachibana S, Onoi Y, Matsumoto T, Kuroda R. P21 deficiency exhibits delayed endochondral ossification during fracture healing. Bone 2022; 165:116572. [PMID: 36180020 DOI: 10.1016/j.bone.2022.116572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Endochondral ossification is a complex biological phenomenon involving a variety of factors and cells. Cyclin-dependent kinase inhibitor 1 (p21) inhibits cell cycle progression and is affected by external stress. We recently reported that embryonic endochondral ossification is unaffected by endogenous p21 deficiency. In this study, we evaluated whether p21 expression affects endochondral ossification during fracture healing. METHODS Tibial fractures were introduced into p21 knockout (p21-/-) (n = 24) and wild-type C57BL/6 (p21+/+) (n = 24) mice at age 10 weeks. Fracture healing was evaluated using radiological, histological, and immunohistochemical (IHC) analyses. The effect of p21 small interfering RNA (siRNA) on ATDC5 cells was assessed in vitro. RESULTS The Allen score for fracture healing was lower in p21-/- mice than in p21+/+ mice. In addition, p21-/- mice exhibited larger calluses and lower bone mineral density. IHC analyses showed that p21-/- mice exhibited delayed endochondral ossification via the Ihh-Runx2-Osterix pathway in vivo. Down-regulation of p21 expression in ATDC5 cells delayed endochondral ossification in vitro. CONCLUSIONS p21 deficiency leads to delayed endochondral ossification by attenuating the Ihh-Runx2-Osterix pathway in vivo, and p21 deficiency in hypertrophic chondrocytes causes delayed differentiation of hypertrophic chondrocytes in vitro. p21 plays a role in endochondral ossification during fracture healing.
Collapse
Affiliation(s)
- Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiko Haneda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
29
|
Zinck NW, Franz-Odendaal TA. Quantification and comparison of teleost scleral cartilage development and growth. J Anat 2022; 241:1014-1025. [PMID: 36574601 PMCID: PMC9482698 DOI: 10.1111/joa.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
The ocular skeleton is composed of the scleral cartilage and the scleral ossicles. Teleost scleral cartilage is composed of a single layer of chondrocytes embedded in the sclera of the eye. The teleost scleral cartilage ring can vary in depth across teleost families and species, from a narrow ring a few cells wide to a deeper ring that resembles a cup and surrounds the entire sclera. However, very little research has been conducted on the development and morphology of teleost scleral cartilage. Thus, this study aims to characterize the development of the scleral cartilage in the zebrafish and Mexican tetra, with respect to the timing of emergence, depth throughout development, and positioning within the eye. We hypothesized that the scleral cartilage would first emerge in the scleral tissue closely abutting the ora serrata, and that growth would proceed in an anterior-to-posterior direction, resulting in differences in scleral cartilage depth between different fish species. We found that the scleral cartilage ring does not develop uniformly along its circumference, and that its relationship to the ora serrata varies between the rostral and caudal regions. Furthermore, distinct differences in the growth trajectory of the scleral cartilage indicate that the deep scleral cartilage of the Pachón cavefish is the result of both decreased eye size and prolonged cartilage growth. A significant difference in the size of the scleral chondrocytes was also noted. Overall, this study provides the first characterization of early scleral cartilage development in teleost fish and indicates that some aspects of scleral cartilage development and morphology are highly conserved while others are not.
Collapse
Affiliation(s)
- Nicholas W Zinck
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Tamara A Franz-Odendaal
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| |
Collapse
|
30
|
Primary Cilia: A Cellular Regulator of Articular Cartilage Degeneration. Stem Cells Int 2022; 2022:2560441. [PMID: 36193252 PMCID: PMC9525753 DOI: 10.1155/2022/2560441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that can cause pain and disability in adults. The main pathological characteristic of OA is cartilage degeneration, which is caused by chondrocyte apoptosis, cartilage matrix degradation, and inflammatory factor destruction. The current treatment for patients with OA focuses on delaying its progression, such as oral anti-inflammatory analgesics or injection of sodium gluconate into the joint cavity. Primary cilia are an important structure involved in cellular signal transduction. Thus, they are very sensitive to mechanical and physicochemical stimuli. It is reported that the primary cilia may play an important role in the development of OA. Here, we review the correlation between the morphology (location, length, incidence, and orientation) of chondrocyte primary cilia and OA and summarize the relevant signaling pathways in chondrocytes that could regulate the OA process through primary cilia, including Hedgehog, Wnt, and inflammation-related signaling pathways. These data provide new ideas for OA treatment.
Collapse
|
31
|
Riegger J, Maurer S, Pulasani S, Brenner RE. Simvastatin and fluvastatin attenuate trauma-induced cell death and catabolism in human cartilage. Front Bioeng Biotechnol 2022; 10:965302. [PMID: 36159664 PMCID: PMC9500391 DOI: 10.3389/fbioe.2022.965302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Joint injuries are known to induce pathomechanisms that might lead to posttraumatic osteoarthritis (PTOA). In this regard, statins with their pleiotropic effects could represent potential therapeutic agents in preventing the development of PTOA. Therefore, we investigated the effects of simvastatin and fluvastatin in a drop-tower-based human ex vivo cartilage trauma model. After 7 days, a mechanical impact (0.59 J) resulted in a decrease of the cell viability and increased expression of catabolic enzymes in cartilage explants. Simvastatin and fluvastatin treatment of impacted cartilage demonstrated cell protective effects in a concentration dependent manner. Moreover, statin therapy exhibited chondroprotective effects as demonstrated by attenuated expression of MMP-2 and MMP-13 as well as subsequent breakdown of collagen type II (after impact). Further analysis indicated antioxidative properties of the statins by upregulating the gene expression of SOD2 and suppression that of NOX2 and NOX4. Despite its protective effects, simvastatin impaired the biosynthesis of collagen type II, which was confirmed during chondrogenic redifferentiation of high passage chondrocytes. However, while long-term administration of statins for 4 weeks impaired chondrogenic redifferentiation, addition of simvastatin at low concentrations for 1 week exhibited a slightly promoting effect. In conclusion, our data imply that simvastatin and fluvastatin are suitable in terms of initial harm reduction after cartilage trauma.
Collapse
|
32
|
Gene Expression Landscape of Chronic Myeloid Leukemia K562 Cells Overexpressing the Tumor Suppressor Gene PTPRG. Int J Mol Sci 2022; 23:ijms23179899. [PMID: 36077295 PMCID: PMC9456469 DOI: 10.3390/ijms23179899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expression analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of ontological term analysis are presented along with some results of current interest for forthcoming experimental research in the field of the transcriptomic landscape of CML. In particular, we present two methods that differ in the order of the analysis steps. After a gene selection based on fold-change value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we applied two different methods on the set of differentially expressed genes. With the first method (Method 1), we implemented GSEA, followed by the identification of transcription factors. With the second method (Method 2), we first selected the transcription factors from the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to identify transcription factors more specifically involved in biological processes relevant to the CML condition. Both methods have been equipped in ontological knowledge mining and word cloud analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, further validating the approach and identifying a new molecular mechanism of tumor suppression governed by PTPRG in a CML context.
Collapse
|
33
|
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis: Cause of Inflammation and Treatment. Bioengineering (Basel) 2022; 9:bioengineering9070321. [PMID: 35877372 PMCID: PMC9311863 DOI: 10.3390/bioengineering9070321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.
Collapse
|
34
|
Palchesko RN, Du Y, Geary ML, Carrasquilla S, Shiwarski DJ, Khandaker I, Funderburgh JL, Feinberg AW. In vivo engraftment into the cornea endothelium using extracellular matrix shrink-wrapped cells. COMMUNICATIONS MATERIALS 2022; 3:25. [PMID: 39175945 PMCID: PMC11340414 DOI: 10.1038/s43246-022-00247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/28/2022] [Indexed: 08/24/2024]
Abstract
Cell injection is a common clinical approach for therapeutic delivery into diseased and damaged tissues in order to achieve regeneration. However, cell retention, viability, and engraftment at the injection site have generally been poor, driving the need for improved approaches. Here, we developed a technique to shrink-wrap micropatterned islands of corneal endothelial cells in a basement membrane-like layer of extracellular matrix that enables the cells to maintain their cell-cell junctions and cytoskeletal structure while in suspension. These μMonolayers exhibited the ability to rapidly engraft into intact, high-density corneal endothelial monolayers in both in vitro and in vivo model systems. Importantly, the engrafted μMonolayers increased local cell density, something that the clinical-standard single cells in suspension failed to do. These results show that shrink-wrapping cells in extracellular matrix dramatically improves engraftment and provides a potential alternative to cornea transplant when low endothelial cell density is the cause of corneal blindness.
Collapse
Affiliation(s)
- Rachelle N. Palchesko
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Moira L. Geary
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Santiago Carrasquilla
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - James L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
35
|
Thielen NGM, Neefjes M, Vitters EL, van Beuningen HM, Blom AB, Koenders MI, van Lent PLEM, van de Loo FAJ, Blaney Davidson EN, van Caam APM, van der Kraan PM. Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells 2022; 11:cells11071232. [PMID: 35406794 PMCID: PMC8998018 DOI: 10.3390/cells11071232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
During osteoarthritis (OA), hypertrophy-like chondrocytes contribute to the disease process. TGF-β's signaling pathways can contribute to a hypertrophy(-like) phenotype in chondrocytes, especially at high doses of TGF-β. In this study, we examine which transcription factors (TFs) are activated and involved in TGF-β-dependent induction of a hypertrophy-like phenotype in human OA chondrocytes. We found that TGF-β, at levels found in synovial fluid in OA patients, induces hypertrophic differentiation, as characterized by increased expression of RUNX2, COL10A1, COL1A1, VEGFA and IHH. Using luciferase-based TF activity assays, we observed that the expression of these hypertrophy genes positively correlated to SMAD3:4, STAT3 and AP1 activity. Blocking these TFs using specific inhibitors for ALK-5-induced SMAD signaling (5 µM SB-505124), JAK-STAT signaling (1 µM Tofacitinib) and JNK signaling (10 µM SP-600125) led to the striking observation that only SB-505124 repressed the expression of hypertrophy factors in TGF-β-stimulated chondrocytes. Therefore, we conclude that ALK5 kinase activity is essential for TGF-β-induced expression of crucial hypertrophy factors in chondrocytes.
Collapse
|
36
|
Yari D, Ebrahimzadeh MH, Movaffagh J, Shahroodi A, Shirzad M, Qujeq D, Moradi A. Biochemical Aspects of Scaffolds for Cartilage Tissue Engineering; from Basic Science to Regenerative Medicine. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:229-244. [PMID: 35514762 PMCID: PMC9034797 DOI: 10.22038/abjs.2022.55549.2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Chondral defects are frequent and important causes of pain and disability. Cartilage has limited self-repair and regeneration capacity. The ideal approach for articular cartilage defects is the regeneration of hyaline cartilage with sustainable symptom-free constructs. Tissue engineering provides new strategies for the regeneration of functional cartilage tissue through optimized scaffolds with architectural, mechanical, and biochemical properties similar to the native cartilage tissue. In this review, the basic science of cartilage structure, interactions between proteins, stem cells, as well as biomaterials, scaffold characteristics and fabrication methods, as well as current and potential therapies in regenerative medicine will be discussed mostly from a biochemical point of view. Furthermore, the recent trends in scaffold-based therapies and supplementary factors in cartilage tissue engineering will be considered.
Collapse
Affiliation(s)
- Davood Yari
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran,Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Shahroodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Moradi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Duan M, Liu Y, Guo D, Kan S, Niu Z, Pu X, Bai M, Zhang D, Du W, Xie J. TGF-β2 increases cell-cell communication in chondrocytes via p-Smad3 signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119175. [PMID: 34863793 DOI: 10.1016/j.bbamcr.2021.119175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) plays a crucial role in the pathology and physiology of joint tissues. Transforming growth factor-β2 (TGF-β2), one of the potent regulatory factors in chondrocytes, plays a key role in the regulation of cell cycle and development of joint diseases. However, it is still unknown how TGF-β2 mediates GJIC in chondrocytes. The aim of this study was to explore the potential mechanism by which TGF-β2 regulates GJIC in chondrocytes. CCK-8 assays and scratch assays were performed to define the role of TGF-β2 on cell proliferation and migration. The scrape loading/dye transfer assay and scanning electron microscopy (SEM) were used to verify the effect of TGF-β2 on GJIC between chondrocytes. qPCR was performed to analyse the expression of genes in the gap junction protein family in chondrocytes. The expression of the Cx43 protein and phosphorylated Smad3 (p-Smad3) was evaluated by western blot assay. Immunofluorescence staining was used to explore p-Smad3 signalling pathway activation and Cx43 distribution. From these experiments, we found that the Cx43 protein was the most highly expressed member of the gap junction protein family in chondrocytes. We also found that TGF-β2 facilitated cell-to-cell communication in chondrocytes by upregulating Cx43 expression in chondrocytes. Finally, we found that TGF-β2 activated Smad3 signalling and promoted the nuclear aggregation of p-Smad3. Inhibition experiments by SIS3 also confirmed that TGF-β2-mediated GJIC through p-Smad3 signalling. For the first time, this study confirmed that TGF-β2 could regulate the formation of Cx43-mediated GJIC in chondrocytes via the canonical p-Smad3 signalling pathway.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Razwinani M, Motaung KS. The influence of friedelin, resinone, tingenone and betulin of compounds on chondrogenic differentiation of porcine adipose-derived mesenchymal stem cells (pADMSCs). Biochimie 2022; 196:234-242. [PMID: 35121053 DOI: 10.1016/j.biochi.2022.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
The study investigated the influence of friedelin, resinone, tingenone and betulin plant-based secondary metabolite compounds on cellular proliferation, extracellular matrix (ECM) components synthesis, expression of chondrogenic markers and maturation of differentiated chondrocytes (cell proliferation and hypertrophy) in porcine adipose-derived mesenchymal stem cells (pADMSCs) undergoing chondrogenic differentiation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Cyquant assays were used to determine cell proliferation, viability, and total cellular DNA, DMMB (Dimethyl methylene blue) was used for glycosaminoglycan (GAG) synthesis, RT-qPCR for gene expression and histology combined with immunohistochemistry for cartilage ECM proteoglycan deposition. The MTT results showed that friedelin at 37 μM, resinone at 36 μM and betulin at 18 μM with cell viability of above 100% compared to control. Tingenone at 37 μM showed cell viability of about 76%. These concentrations were considered the most effective with no toxicity effect on the cells and were further analysed with TGF-β3 (10 ng/mL) as a positive control. The results showed a high synthesis of DNA with friedelin on day 14. There was up-regulation of SOX 9, Col II and Col X with friedelin and resinone at day 14 with the significance of p < 0.01. Pellet from friedelin, resinone and tingenone showed more staining of the matrix for Safranin-O and Toluidine blue at day 14. Immunohistostaining of collagen type X (COL-10) showed more stain intensity at friedelin and resinone on day 21. These results provided new knowledge on the potential use of natural isolated secondary metabolites compounds as inducers for chondrogenic and bone differentiation.
Collapse
Affiliation(s)
- Mapula Razwinani
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa
| | - Keolebogile Shirley Motaung
- Durban University of Technology, Technology Transfer and Innovation, Steve Biko Campus, Durban, South Africa.
| |
Collapse
|
39
|
Gomez GA, Aghajanian P, Pourteymoor S, Larkin D, Mohan S. Differences in pathways contributing to thyroid hormone effects on postnatal cartilage calcification versus secondary ossification center development. eLife 2022; 11:76730. [PMID: 35098920 PMCID: PMC8830887 DOI: 10.7554/elife.76730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
The proximal and distal femur epiphyses of mice are both weight-bearing structures derived from chondrocytes but differ in development. Mineralization at the distal epiphysis occurs in an osteoblast-rich secondary ossification center (SOC), while the chondrocytes of the proximal femur head (FH), in particular, are directly mineralized. Thyroid hormone (TH) plays important roles in distal knee SOC formation, but whether TH also affects proximal FH development remains unexplored. Here, we found that TH controls chondrocyte maturation and mineralization at the FH in vivo through studies in thyroid stimulating hormone receptor (Tshr-/-) hypothyroid mice by X-ray, histology, transcriptional profiling, and immunofluorescence staining. Both in vivo and in vitro studies conducted in ATDC5 chondrocyte progenitors concur that TH regulates expression of genes that modulate mineralization (Ibsp, Bglap2, Dmp1, Spp1, and Alpl). Our work also delineates differences in prominent transcription factor regulation of genes involved in the different mechanisms leading to proximal FH cartilage calcification and endochondral ossification at the distal femur. The information on the molecular pathways contributing to postnatal cartilage calcification can provide insights on therapeutic strategies to treat pathological calcification that occurs in soft tissues such as aorta, kidney, and articular cartilage.
Collapse
Affiliation(s)
- Gustavo A Gomez
- Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
| | | | - Sheila Pourteymoor
- Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
| | - Destiney Larkin
- Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Centre, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, United States
| |
Collapse
|
40
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
41
|
Roncada T, Bonithon R, Blunn G, Roldo M. Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. J Tissue Eng 2022; 13:20417314221122121. [PMID: 36199979 PMCID: PMC9528007 DOI: 10.1177/20417314221122121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold great promise for the treatment of cartilage related injuries. However, selectively promoting stem cell differentiation in vivo is still challenging. Chondrogenic differentiation of MSCs usually requires the use of growth factors that lead to the overexpression of hypertrophic markers. In this study, for the first time the effect of stiffness on MSC differentiation has been tested without the use of growth factors. Three-dimensional collagen and alginate scaffolds were developed and characterised. Stiffness significantly affected gene expression and ECM deposition. While, all hydrogels supported chondrogenic differentiation and allowed deposition of collagen type II and aggrecan, the 5.75 kPa hydrogel showed limited production of collagen type I compared to the other two formulations. These findings demonstrated for the first time that stiffness can guide MSCs differentiation without the use of growth factors within a tissue engineering scaffold suitable for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Roxane Bonithon
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
- Marta Roldo, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
42
|
In Vitro Study of Licorice on IL-1β-Induced Chondrocytes and In Silico Approach for Osteoarthritis. Pharmaceuticals (Basel) 2021; 14:ph14121337. [PMID: 34959737 PMCID: PMC8709290 DOI: 10.3390/ph14121337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA.
Collapse
|
43
|
Shen PC, Chou SH, Lu CC, Huang HT, Chien SH, Huang PJ, Liu ZM, Shih CL, Su SJ, Chen LM, Tien YC. Shockwave Treatment Enhanced Extracellular Matrix Production in Articular Chondrocytes Through Activation of the ROS/MAPK/Nrf2 Signaling Pathway. Cartilage 2021; 13:238S-253S. [PMID: 34238028 PMCID: PMC8804851 DOI: 10.1177/19476035211012465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Shockwave application is a potential treatment for osteoarthritis (OA), but the underlying mechanism remains unknown. Oxidative stress and a counterbalancing antioxidant system might be the key to understanding this mechanism. We hypothesized that reactive oxygen species (ROS) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2),which is an important regulator of cellular redox homeostasis, are plausible elements. DESIGN Porcine chondrocytes were cultured in a 3-dimensional pellet model and subjected to shockwaves. The effects of shockwaves with various energy-flux densities on optimal extracellular matrix (ECM) synthesis were assessed. ROS, mitogen-activated protein kinase (MAPK) signaling, and the redox activity of Nrf2 were measured. To investigate the signaling mechanism involved in the shockwave treatment in chondrocytes, specific inhibitors of ROS, MAPK signaling, and Nrf2 activity were targeted. RESULTS Shockwaves increased ECM synthesis without affecting cell viability or proliferation. Furthermore, they induced transient ROS production mainly through xanthine oxidase. The phosphorylation of ERK1/2 and p38 and the nuclear translocation of Nrf2 were activated by shockwaves. By contrast, suppression of ROS signaling mitigated shockwave-induced MAPK phosphorylation, Nrf2 nuclear translocation, and ECM synthesis. Pretreatment of chondrocytes with the specific inhibitors of MEK1/2 and p38, respectively, mitigated the shockwave-induced nuclear translocation of Nrf2 and ECM synthesis. Nrf2 inhibition by both small hairpin RNA knockdown and brusatol reduced the shockwave-enhanced ECM synthesis. CONCLUSIONS Shockwaves activated Nrf2 activity through the induction of transient ROS signaling and subsequently enhanced ECM synthesis in chondrocytes. This study provided fundamental evidence confirming the potential of shockwaves for OA management.
Collapse
Affiliation(s)
- Po-Chih Shen
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Shih-Hsiang Chou
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Cheng-Chang Lu
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung,Department of Orthopaedic Surgery,
Kaohsiung Municipal Siaoqang Hospital, Kaohsiung
| | - Hsuan-Ti Huang
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Department of Orthopaedic Surgery,
Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung
| | - Song-Hsiung Chien
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Peng-Ju Huang
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Zi-Miao Liu
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Chia-Lung Shih
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung
| | - Shu-Jem Su
- Department of Medical Laboratory
Science and Biotechnology, School of Medicine and Health Sciences, Fooyin
University, Kaohsiung
| | - Li-Min Chen
- Departments of Pediatrics, E-DA
Hospital, I-Shou University, Kaohsiung City
| | - Yin-Chun Tien
- Department of Orthopaedic Surgery,
Kaohsiung Medical University Hospital, Kaohsiung,Graduate Institute of Medicine, College
of Medicine, Kaohsiung Medical University, Kaohsiung,Yin-Chun Tien, Department of Orthopaedic
Surgery, Kaohsiung Medical University Hospital, 100 Tzu-You 1st Road, Kaohsiung
807.
| |
Collapse
|
44
|
Lindberg GCJ, Cui X, Durham M, Veenendaal L, Schon BS, Hooper GJ, Lim KS, Woodfield TBF. Probing Multicellular Tissue Fusion of Cocultured Spheroids-A 3D-Bioassembly Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103320. [PMID: 34632729 PMCID: PMC8596109 DOI: 10.1002/advs.202103320] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/02/2023]
Abstract
While decades of research have enriched the knowledge of how to grow cells into mature tissues, little is yet known about the next phase: fusing of these engineered tissues into larger functional structures. The specific effect of multicellular interfaces on tissue fusion remains largely unexplored. Here, a facile 3D-bioassembly platform is introduced to primarily study fusion of cartilage-cartilage interfaces using spheroids formed from human mesenchymal stromal cells (hMSCs) and articular chondrocytes (hACs). 3D-bioassembly of two adjacent hMSCs spheroids displays coordinated migration and noteworthy matrix deposition while the interface between two hAC tissues lacks both cells and type-II collagen. Cocultures contribute to increased phenotypic stability in the fusion region while close initial contact between hMSCs and hACs (mixed) yields superior hyaline differentiation over more distant, indirect cocultures. This reduced ability of potent hMSCs to fuse with mature hAC tissue further underlines the major clinical challenge that is integration. Together, this data offer the first proof of an in vitro 3D-model to reliably study lateral fusion mechanisms between multicellular spheroids and mature cartilage tissues. Ultimately, this high-throughput 3D-bioassembly model provides a bridge between understanding cellular differentiation and tissue fusion and offers the potential to probe fundamental biological mechanisms that underpin organogenesis.
Collapse
Affiliation(s)
- Gabriella C. J. Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Mitchell Durham
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Laura Veenendaal
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Benjamin S. Schon
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Gary J. Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) GroupDepartment of Orthopaedic SurgeryUniversity of Otago Christchurch2 Riccarton AvenueChristchurch8011New Zealand
| |
Collapse
|
45
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
46
|
Extracellular vesicles as novel approaches for the treatment of osteoarthritis: a narrative review on potential mechanisms. J Mol Histol 2021; 52:879-891. [PMID: 34510315 DOI: 10.1007/s10735-021-10017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Current treatment approaches have focused on controlling the OA symptoms, pain, and inflammation. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Despite promising outcomes, there are some limitations in the application of MSCs for OA treatment. It has been demonstrated that the regenerative potential of stem cells is related to the production of paracrine factors. Extracellular vehicles (EVs), the main component of cell secretome, are membrane-bounded structures that deliver biologically active agents. The delivery of molecules (e.g., nucleic acids, proteins, and lipids) leads to cell-to-cell communication and the alteration of cell functions. In this review, general characteristics of EVs, as well as their potential mechanisms in the prevention and treatment of OA were considered. Based on in vitro and in vivo studies, EVs have shown to contribute to cartilage regeneration via suppression of degenerative factors and regulation of chondrocyte function in the synthesis of extracellular matrix components. Also, they inhibit the progression of OA or protect the cartilage from degradation via their impact on inflammatory cytokines. The different signaling pathways of EVs against the pathologic features of OA were summarized in this review. According to the results obtained from several investigations, more investigations should be design to prove the safety and effectiveness of EVs in the treatment and prevention of OA progression.
Collapse
|
47
|
Qiao K, Chen Q, Cao Y, Li J, Xu G, Liu J, Cui X, Tian K, Zhang W. Diagnostic and Therapeutic Role of Extracellular Vesicles in Articular Cartilage Lesions and Degenerative Joint Diseases. Front Bioeng Biotechnol 2021; 9:698614. [PMID: 34422779 PMCID: PMC8371972 DOI: 10.3389/fbioe.2021.698614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Two leading contributors to the global disability are cartilage lesions and degenerative joint diseases, which are characterized by the progressive cartilage destruction. Current clinical treatments often fail due to variable outcomes and an unsatisfactory long-term repair. Cell-based therapies were once considered as an effective solution because of their anti-inflammatory and immunosuppression characteristics as well as their differentiation capacity to regenerate the damaged tissue. However, stem cell-based therapies have inherent limitations, such as a high tumorigenicity risk, a low retention, and an engraftment rate, as well as strict regulatory requirements, which result in an underwhelming therapeutic effect. Therefore, the non-stem cell-based therapy has gained its popularity in recent years. Extracellular vesicles (EVs), in particular, like the paracrine factors secreted by stem cells, have been proven to play a role in mediating the biological functions of target cells, and can achieve the therapeutic effect similar to stem cells in cartilage tissue engineering. Therefore, a comprehensive review of the therapeutic role of EVs in cartilage lesions and degenerative joint diseases can be discussed both in terms of time and favorability. In this review, we summarized the physiological environment of a joint and its pathological alteration after trauma and consequent changes in EVs, which are lacking in the current literature studies. In addition, we covered the potential working mechanism of EVs in the repair of the cartilage and the joint and also discussed the potential therapeutic applications of EVs in future clinical use.
Collapse
Affiliation(s)
- Kai Qiao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Li
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Qingdao University of Science and Technology, Qingdao, China
| | - Xiaolin Cui
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Kang Tian
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weiguo Zhang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
48
|
Yi D, Yu H, Lu K, Ruan C, Ding C, Tong L, Zhao X, Chen D. AMPK Signaling in Energy Control, Cartilage Biology, and Osteoarthritis. Front Cell Dev Biol 2021; 9:696602. [PMID: 34239878 PMCID: PMC8258395 DOI: 10.3389/fcell.2021.696602] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) was initially identified as an enzyme acting as an "energy sensor" in maintaining energy homeostasis via serine/threonine phosphorylation when low cellular adenosine triphosphate (ATP) level was sensed. AMPK participates in catabolic and anabolic processes at the molecular and cellular levels and is involved in appetite-regulating circuit in the hypothalamus. AMPK signaling also modulates energy metabolism in organs such as adipose tissue, brain, muscle, and heart, which are highly dependent on energy consumption via adjusting the AMP/ADP:ATP ratio. In clinics, biguanides and thiazolidinediones are prescribed to patients with metabolic disorders through activating AMPK signaling and inhibiting complex I in the mitochondria, leading to a reduction in mitochondrial respiration and elevated ATP production. The role of AMPK in mediating skeletal development and related diseases remains obscure. In this review, in addition to discuss the emerging advances of AMPK studies in energy control, we will also illustrate current discoveries of AMPK in chondrocyte homeostasis, osteoarthritis (OA) development, and the signaling interaction of AMPK with other pathways, such as mTOR (mechanistic target of rapamycin), Wnt, and NF-κB (nuclear factor κB) under OA condition.
Collapse
Affiliation(s)
- Dan Yi
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huan Yu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Lu
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changshun Ruan
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liping Tong
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
49
|
Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-Associated Early Molecular Changes in Mouse Articular Chondrocytes. Cells 2021; 10:cells10061462. [PMID: 34200880 PMCID: PMC8230441 DOI: 10.3390/cells10061462] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.
Collapse
|
50
|
Schott NG, Friend NE, Stegemann JP. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:199-214. [PMID: 32854589 PMCID: PMC8349721 DOI: 10.1089/ten.teb.2020.0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Inadequate vascularization of engineered tissue constructs is a main challenge in developing a clinically impactful therapy for large, complex, and recalcitrant bone defects. It is well established that bone and blood vessels form concomitantly during development, as well as during repair after injury. Endothelial cells (ECs) and mesenchymal stromal cells (MSCs) are known to be key players in orthopedic tissue regeneration and vascularization, and these cell types have been used widely in tissue engineering strategies to create vascularized bone. Coculture studies have demonstrated that there is crosstalk between ECs and MSCs that can lead to synergistic effects on tissue regeneration. At the same time, the complexity in fabricating, culturing, and characterizing engineered tissue constructs containing multiple cell types presents a challenge in creating multifunctional tissues. In particular, the timing, spatial distribution, and cell phenotypes that are most conducive to promoting concurrent bone and vessel formation are not well understood. This review describes the processes of bone and vascular development, and how these have been harnessed in tissue engineering strategies to create vascularized bone. There is an emphasis on interactions between ECs and MSCs, and the culture systems that can be used to understand and control these interactions within a single engineered construct. Developmental engineering strategies to mimic endochondral ossification are discussed as a means of generating vascularized orthopedic tissues. The field of tissue engineering has made impressive progress in creating tissue replacements. However, the development of larger, more complex, and multifunctional engineered orthopedic tissues will require a better understanding of how osteogenesis and vasculogenesis are coupled in tissue regeneration. Impact statement Vascularization of large engineered tissue volumes remains a challenge in developing new and more biologically functional bone grafts. A better understanding of how blood vessels develop during bone formation and regeneration is needed. This knowledge can then be applied to develop new strategies for promoting both osteogenesis and vasculogenesis during the creation of engineered orthopedic tissues. This article summarizes the processes of bone and blood vessel development, with a focus on how endothelial cells and mesenchymal stromal cells interact to form vascularized bone both during development and growth, as well as tissue healing. It is meant as a resource for tissue engineers who are interested in creating vascularized tissue, and in particular to those developing cell-based therapies for large, complex, and recalcitrant bone defects.
Collapse
Affiliation(s)
- Nicholas G. Schott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|