1
|
Sharma S, Gauba P, Tyagi A, Dang S. Chitosan-modified polymeric nanoparticles for the nose-to-brain drug delivery of paroxetine: an in vitro and in vivo evaluation. NANOSCALE 2025; 17:1687-1702. [PMID: 39641172 DOI: 10.1039/d4nr04250f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This work focuses on the development of PLGA nanoparticles and their surface modification by chitosan to enhance the mucoadhesive properties and colloidal stability for intranasal delivery. Chitosan-coated paroxetine-loaded PLGA nanoparticles (PAR-CS-PLGA-NPs) were developed and characterized along with in vitro and in vivo evaluation. Particle size of 181.8 nm with a zeta potential of 36.3 mV was obtained. Entrapment efficiency % and drug loading % were 87.5% and 13.4%, respectively. TEM, FTIR, and DSC were also performed. In vitro drug release studies were conducted in phosphate buffered saline (pH 7.4) and simulated nasal fluid (pH 5.5), and sustained release was found until 72 h. Cellular assays on mammalian cells depicted the cell viability to be >60% even at the maximum concentration of PAR-CS-PLGA-NPs and showed significantly higher uptake than PLGA-NPs. Histopathological studies on the nasal epithelium showed no damage or inflammation when treated with PAR-CS-PLGA-NPs. In vivo studies were performed using Swiss albino mice to estimate the drug biodistribution after intranasal delivery of PAR-CS-PLGA-NPs. A significantly increased drug concentration was observed in the mouse brains (p < 0.05). Pharmacodynamics studies of the PAR-CS-PLGA-NPs were carried out by forced swimming test and locomotor activity test, demonstrating improved behavioral analysis parameters (p < 0.05). Thus, intranasal delivery of paroxetine-loaded mucoadhesive chitosan-coated PLGA nanoparticles could be potentially used for the treatment of depression.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| |
Collapse
|
2
|
Dhandhi S, Yeshna, Vishal, Monika, Goel B, Chauhan S, Nishal S, Singh M, Jhawat V. The interplay of skin architecture and cellular dynamics in wound healing: Insights and innovations in care strategies. Tissue Cell 2024; 91:102578. [PMID: 39378666 DOI: 10.1016/j.tice.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Wound healing involves complex interactions among skin layers: the epidermis, which epithelializes to cover wounds; the dermis, which supports granulation tissue and collagen production; and the hypodermis, which protects overall skin structure. Key factors include neutrophils, activated by platelet degranulation and cytokines, and fibroblasts, which aid in collagen production during proliferation. The healing process encompasses inflammation, proliferation, and remodeling, with angiogenesis, fibroplasia, and re-epithelialization crucial for wound closure. Angiogenesis is characterized by the creation of collateral veins, the proliferation of endothelial cells, and the recruitment of perivascular cells. Collagen is produced by fibroblasts in granulation tissue, aiding in the contraction of wounds. The immunological response is impacted by T cells and cytokines. External topical application of various formulations and dressings expedites healing and controls microbial contamination. Polymeric materials, both natural and synthetic, and advanced dressings enhance healing by providing biodegradability, biocompatibility, and infection control, thus addressing tissue regeneration challenges. Numerous dressings promote healing, including films, hydrocolloids, hydrogels, foams, alginates, and tissue-engineered substitutes. Wound dressings are treated with growth factors, particularly PDGF, and antibacterial drugs to prevent infection. The challenges of tissue regeneration and infection control are evolving along with the field of wound care.
Collapse
Affiliation(s)
- Sourav Dhandhi
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Yeshna
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vishal
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Bhawna Goel
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Suchitra Nishal
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Monika Singh
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Healthcare and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| |
Collapse
|
3
|
Ray E, Jadhav K, Kadian M, Sharma G, Sharma K, Jhilta A, Singh R, Kumar A, Verma RK. Inhalable chitosan-coated nano-assemblies potentiate niclosamide for targeted abrogation of non-small-cell lung cancer through dual modulation of autophagy and apoptosis. Int J Biol Macromol 2024; 279:135411. [PMID: 39245099 DOI: 10.1016/j.ijbiomac.2024.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Lung carcinoma, particularly non-small-cell lung cancer (NSCLC), accounts for a significant portion of cancer-related deaths, with a fatality rate of approximately 19 %. Niclosamide (NIC), originally an anthelmintic drug, has attracted attention for its potential in disrupting cancer cells through various intracellular signaling pathways. However, its effectiveness is hampered by limited solubility, reducing its bioavailability. This study investigates the efficacy of NIC against lung cancer using inhalable hybrid nano-assemblies with chitosan-functionalized Poly (ε-caprolactone) (PCL) as a carrier for pulmonary delivery. The evaluation encompasses various aspects such as aerodynamic and physicochemical properties, drug release kinetics, cellular uptake, biocompatibility, cell migration, autophagic flux, and apoptotic cell death in A549 lung cancer cells. Increasing NIC dosage correlates with enhanced inhibition of cell proliferation, showing a dose-dependent profile (approximately 75 % inhibition efficiency at 20 μg/mL of NIC). Optimization of inhaled dosage and efficacy is conducted in a murine model of NNK-induced tumor-bearing lung cancer. Following inhalation, NIC-CS-PCL-NA demonstrates significant lung deposition, retention, and metabolic stability. Inhalable nano-assemblies promote autophagy flux and induce apoptotic cell death. Preclinical trials reveal substantial tumor regression with minimal adverse effects, underscoring the potential of inhalable NIC-based nano-formulation as a potent therapeutic approach for NSCLC, offering effective tumor targeting and killing capabilities.
Collapse
Affiliation(s)
- Eupa Ray
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Monika Kadian
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Kritika Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Raghuraj Singh
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
4
|
Jain P, Parikh S, Patel P, Shah S, Patel K. Comprehensive insights into herbal P-glycoprotein inhibitors and nanoformulations for improving anti-retroviral therapy efficacy. J Drug Target 2024; 32:884-908. [PMID: 38748868 DOI: 10.1080/1061186x.2024.2356751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
The worldwide HIV cases were 39.0 million (33.1-45.7 million) in 2022. Due to genetic variations, HIV-1 is more easily transmitted than HIV-2 and favours CD4 + T cells and macrophages, producing AIDS. Conventional HIV drug therapy has many drawbacks, including adherence issues leading to resistance, side effects that lower life quality, drug interactions, high costs limiting global access, inability to eliminate viral reservoirs, chronicity requiring lifelong treatment, emerging toxicities, and a focus on managing infections. Conventional dosage forms have bioavailability issues due to intestinal P-glycoprotein (P-gp) efflux, which can reduce anti-retroviral drug efficacy and lead to resistance. Use of phyto-constituents with P-gp regulating actions has great benefits for semi-synthetic modification to create formulations with greater bioavailability and reduced toxicity, which improves drug effectiveness. Lipid-based nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanocarriers, and inorganic nanoparticles may inhibit P-gp efflux. Employing potent P-gp inhibitors within nanocarriers as a Trojan horse approach can enhance the intracellular accumulation of anti-retroviral drugs (ARDs), which are substrates for efflux transporters. This technique increases oral bioavailability and offers lower-dose options, boosting HIV patient compliance and lowering costs. Molecular docking of the inhibitor with P-gp may anticipate optimum binding and function, allowing drug efflux to be minimised.
Collapse
Affiliation(s)
- Prexa Jain
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreni Parikh
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| |
Collapse
|
5
|
Iureva AM, Nikitin PI, Tereshina ED, Nikitin MP, Shipunova VO. The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: Comprehensive study. Eur J Pharm Biopharm 2024; 201:114366. [PMID: 38876361 DOI: 10.1016/j.ejpb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation. Here we investigate the effect of different polymer coatings of the surface on in vitro and in vivo properties of PLGA nanoparticles. Namely, cell binding efficiency, cytotoxicity, efficiency of fluorescent bioimaging, and tumor accumulation were tested. The highest binding efficiency in vitro and cytotoxicity were observed for positively charged polymers. Interestingly, in vivo fluorescent visualization of tumor-bearing mice and quantitative measurements of biodistribution of magnetite-loaded nanoparticles indicated different dependences of accumulation in tumors on the coating of PLGA nanoparticles. This means that nanoparticle surface properties can simultaneously enhance imaging efficiency and decrease quantitative accumulation in tumors. The obtained data demonstrate the complexity of the dependence of nanoparticles' effectiveness for theranostic applications on surface features. We believe that this study will contribute to the rational design of nanoparticles for effective cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Anna M Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Ekaterina D Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| |
Collapse
|
6
|
Grandhi S, Al-Tabakha M, Avula PR. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv Pharmacol Pharm Sci 2023; 2023:8902963. [PMID: 38029229 PMCID: PMC10676277 DOI: 10.1155/2023/8902963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
The intention of the current work was to develop and optimize the formulation of biodegradable polymeric nanocapsules for lamivudine (LMV) in order to obtain desired physical characteristics so as to have improved liver targetability. Nanocapsules were prepared in this study as aqueous-core nanocapsules (ACNs) with poly(lactide-co-glycolide) using a modified multiple emulsion technique. LMV was taken as a model drug to investigate the potential of ACNs developed in this work in achieving the liver targetability. Three formulations factors were chosen and 33 factorial design was adopted. The selected formulation factors were optimized statistically so as to have the anticipated characteristics of the ACNs viz. maximum entrapment efficiency, minimum particle size, and less drug release rate constant. The optimized LMV-ACNs were found to have 71.54 ± 1.93% of entrapment efficiency and 288.36 ± 2.53 nm of particle size with zeta potential of -24.7 ± 1.2 mV and 0.095 ± 0.006 h-1 of release rate constant. This optimized formulation was subjected to surface modification by treating with sodium lauryl sulphate (SLS), which increased the zeta potential to a maximum of -41.6 ± 1.3 mV at a 6 mM concentration of SLS. The results of in vivo pharmacokinetics from blood and liver tissues indicated that hepatic bioavailability of LMV was increased from 13.78 ± 3.48 μg/mL ∗ h for LMV solution to 32.94 ± 5.12 μg/mL ∗ h for the optimized LMV-ACNs and to 54.91 ± 6.68 μg/mL ∗ h for the surface-modified LMV-ACNs.
Collapse
Affiliation(s)
- Srikar Grandhi
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Moawia Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, P.O. Box 346, Ajman, UAE
| | - Prameela Rani Avula
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| |
Collapse
|
7
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
8
|
Asl FD, Mousazadeh M, Taji S, Bahmani A, Khashayar P, Azimzadeh M, Mostafavi E. Nano drug-delivery systems for management of AIDS: liposomes, dendrimers, gold and silver nanoparticles. Nanomedicine (Lond) 2023; 18:279-302. [PMID: 37125616 PMCID: PMC10242436 DOI: 10.2217/nnm-2022-0248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/08/2023] [Indexed: 05/02/2023] Open
Abstract
AIDS causes increasing mortality every year. With advancements in nanomedicine, different nanomaterials (NMs) have been applied to treat AIDS and overcome its limitations. Among different NMs, nanoparticles (NPs) can act as nanocarriers due to their enhanced solubility, sustained release, targeting abilities and facilitation of drug-dose reductions. This review discusses recent advancements in therapeutics for AIDS/HIV using various NMs, mainly focused on three classifications: polymeric, liposomal and inorganic NMs. Polymeric dendrimers, polyethylenimine-NPs, poly(lactic-co-glycolic acid)-NPs, chitosan and the use of liposomal-based delivery systems and inorganic NPs, including gold and silver NPs, are explored. Recent advances, current challenges and future perspectives on the use of these NMs for better management of HIV/AIDS are also discussed.
Collapse
Affiliation(s)
- Fateme Davarani Asl
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88138-33435, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Shirinsadat Taji
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
- Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Abbas Bahmani
- Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec & Ghent University, Ghent, 9050, Belgium
| | - Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 89195-999, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Maponga CC, Monera-Penduka TG, Mtisi TJ, Difrancesco R, Makita-Chingombe F, Mazambara F, Tooley K, Mudzviti T, Morse GD. Two decades (1998 to 2018) of collaborative human immunodeficiency virus clinical pharmacology capacity building in a resource constrained setting. COST EFFECTIVENESS AND RESOURCE ALLOCATION 2021; 19:73. [PMID: 34758831 PMCID: PMC8579570 DOI: 10.1186/s12962-021-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/30/2021] [Indexed: 11/10/2022] Open
Abstract
While important advances have been made in the prevention and treatment of Human Immunodeficiency Virus (HIV) infection, limited expertise and resource constraints to effectively manage rollout of HIV programs often contribute to poor treatment outcomes in Sub-Saharan Africa. In 1998, the University of Zimbabwe (UZ) and the University at Buffalo, State University of New York (UB), developed a collaborative clinical pharmacology capacity building program in Zimbabwe to train the next generation of HIV researchers and support rollout of the national HIV program. The collaboration was funded by research and training grants that were competitively acquired through United States of America government funding mechanisms, between 1998 and 2016. Thirty-eight research fellows were trained and a specialty clinical pharmacology laboratory was established during this period. Knowledge and skills transfer were achieved through faculty and student exchange visits. Scientific dissemination output included sixty-two scholarly publications that influenced three national policies and provided development of guidelines for strategic leadership for an HIV infection-patient adherence support group. The clinical pharmacology capacity building program trained fellows that were subsequently incorporated into the national technical working group at the Ministry of Health and Child Care, who are responsible for optimizing HIV treatment guidelines in Zimbabwe. Despite serious economic challenges, consistent collaboration between UZ and UB strengthened UZ faculty scholarly capacity, retention of HIV clinical research workforce was achieved, and the program made additional contributions toward optimization of antiretroviral therapy in Zimbabwe.
Collapse
Affiliation(s)
- Charles C Maponga
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe
- Center for Integrated Global Biomedical Sciences, School of Pharmacy and Pharmaceutical Sciences, Translational Pharmacology Research Core, New York State Center of Excellence in Bioinformatics and Life Sciences, The State University of New York, Buffalo, NY, USA
| | - Tsitsi G Monera-Penduka
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe.
| | - Takudzwa J Mtisi
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe
| | - Robin Difrancesco
- Center for Integrated Global Biomedical Sciences, School of Pharmacy and Pharmaceutical Sciences, Translational Pharmacology Research Core, New York State Center of Excellence in Bioinformatics and Life Sciences, The State University of New York, Buffalo, NY, USA
| | - Faithful Makita-Chingombe
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe
| | - Fine Mazambara
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe
| | - Kathleen Tooley
- Center for Integrated Global Biomedical Sciences, School of Pharmacy and Pharmaceutical Sciences, Translational Pharmacology Research Core, New York State Center of Excellence in Bioinformatics and Life Sciences, The State University of New York, Buffalo, NY, USA
| | - Tinashe Mudzviti
- International Pharmacotherapy Education and Research Initiative (IPERI), Department of Pharmacy and Pharmaceutical Science, University of Zimbabwe Faculty of Medicine and Health Sciences, c/o Drug and Toxicology Information Services (DaTIS), PO Box A178, Avondale Harare, Zimbabwe
| | - Gene D Morse
- Center for Integrated Global Biomedical Sciences, School of Pharmacy and Pharmaceutical Sciences, Translational Pharmacology Research Core, New York State Center of Excellence in Bioinformatics and Life Sciences, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
12
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
13
|
Zeeshan M, Ali H, Khan S, Mukhtar M, Khan MI, Arshad M. Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease. Nanomedicine (Lond) 2019; 14:1945-1969. [DOI: 10.2217/nnm-2018-0415] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: To fabricate and evaluate the therapeutic efficacy of glycyrrhizic acid (GA)-loaded pH-sensitive nanoformulations that specifically target and combat mucosal inflammation of the colon. Methods: GA-loaded Eudragit® S100/poly-(lactic-co-glycolic acid) nanoparticles were developed through modified double-emulsion evaporation coupled with solvent evaporation coating techniques and analyzed for physicochemical characteristics, surface chemistry, release kinetics, site-retention and therapeutic effectiveness. Results: Nanoparticles have a particle size of approximately 200 nm, high encapsulation efficiency, desired surface chemistry with pH-dependent and sustained drug release behavior following the Gompertz kinetic model. In vivo retention and therapeutic effectiveness in the inflamed colon tissues were confirmed by macroscopic and microscopic indices, cytokine analysis and antioxidant assays. Conclusion: GA-loaded Eudragit S100/poly-(lactic-co-glycolic acid) nanoparticles could efficiently deliver GA to the colon and ameliorate the mucosal inflammation for a prolonged duration.
Collapse
Affiliation(s)
- Mahira Zeeshan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mahwash Mukhtar
- Department of Pharmaceutical Technology, University of Szeged, Eötvös u. 6, 6720, Hungary
| | - Muhammad Ijaz Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Pharmacy, University of Swabi, Anbar-23561, Swabi, Pakistan
| | - Muhammad Arshad
- Department of Nanoscience & Technology, National Centre for Physics, Quaid-i-Azam University campus, Islamabad, Pakistan
| |
Collapse
|
14
|
A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf B Biointerfaces 2018; 175:231-238. [PMID: 30537619 DOI: 10.1016/j.colsurfb.2018.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Conventional chemotherapy suffers from several drawbacks, including toxic side effects together with the development of resistance to the chemical agents. Therefore, exploring alternative therapeutic approaches as well as developing targeted delivery systems are in demand. Oligonucleotide-based therapy has emerged as a promising and alternative procedure for treating malignancies involving gene-related diseases. In the current study, a targeted delivery system was designed to target cancer cells based on two biocompatible polymers of poly (β amino ester) (PβAE) and poly (d, l-lactide-co-glycolide) (PLGA). In this system, antimir-21 as an inhibitor of microRNA-21 (miR-21) which is an oncomiR overexpressed in several human cancers was condensed with PβAE polymer and then PLGA was electrostatically deposited on this complex and provided a reservoir for positively charged drug, epirubicin (Epi). At the final stage, MUC1 aptamer as a targeting agent was covalently attached to the nanoparticles for selectively guided therapeutic delivery. The obtained results demonstrated that the fabricated MUC1 aptamer-modified nanocomplex could efficiently be internalized into MCF7 (human breast carcinoma cell) and C26 (murine colon carcinoma cell) cells through interaction between MUC1 aptamer and its receptor on the surfaces of these cell lines and decline cell viability in these cells but not in CHO cells (Chinese hamster ovary cell) as nontarget cells (MUC1 negative cells). The safety of PLGA-Epi-PβAE-antimir-21 nanocomplex and synergetic effect of Epi and antimir-21 in reducing cell viability of target cells were confirmed by treating MCF-7 and CHO cells with nanocomplex and MUC1 aptamer-modified nanocomplex. Moreover, it was demonstrated that MUC1 aptamer-modified nanocomplex could remarkably inhibit tumor growth in tumor-bearing mice compared with Epi alone.
Collapse
|
15
|
Hajavi J, Ebrahimian M, Sankian M, Khakzad MR, Hashemi M. Optimization of PLGA formulation containing protein or peptide-based antigen: Recent advances. J Biomed Mater Res A 2018; 106:2540-2551. [DOI: 10.1002/jbm.a.36423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/25/2018] [Accepted: 03/15/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine; Gonabad University of Medical Sciences; Gonabad Iran
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahboubeh Ebrahimian
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences; Mashhad Iran
- Department of Immunology, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Reza Khakzad
- Innovated Medical Research Center & Department of Immunology; Mashhad Branch, Islamic Azad University; Mashhad Iran
| | - Maryam Hashemi
- Nanotechnology Research Center; Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
16
|
Khan N, Ameeduzzafar, Khanna K, Bhatnagar A, Ahmad FJ, Ali A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int J Biol Macromol 2018; 116:648-663. [DOI: 10.1016/j.ijbiomac.2018.04.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
|
17
|
Fujii M, Inoue M, Fukami T. Novel amino acid-based surfactant for silicone emulsification and its application in hair care products: a promising alternative to quaternary ammonium cationic surfactants. Int J Cosmet Sci 2017; 39:556-563. [PMID: 28699164 DOI: 10.1111/ics.12414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Quaternary ammonium cationic surfactants (ACSs) and N-[3-alkyl(12,14)oxy-2-hydroxypropyl]-l-arginine hydrochloride (N-AOHPA) were used to emulsify silicone. The potential of the resulting emulsions in hair conditioning products was investigated. METHODS The emulsions were prepared using a homogenizer and/or high-pressure homogenizer. ACSs and N-AOHPA were used as silicone emulsifiers. The stability of the emulsions was evaluated by measuring particle sizes, creaming fractions, polydispersity indexes and zeta potentials. Moreover, the N-AOHPA-stabilized emulsion was compared with the ACS-stabilized emulsion to evaluate the adsorption amount of silicone on healthy and bleached hair surfaces and the inhibitory effects on amino acid dissolution from bleached hair. The adsorption site of the N-AOHPA-stabilized emulsion was observed using a scanning electron microscope. RESULTS For all surfactants, the silicone emulsions prepared using the high-pressure homogenizer were more stable than those prepared using the homogenizer. When N-AOHPA was used as the surfactant, the silicone emulsion was especially stable. Furthermore, the d50 value of the N-AOHPA-stabilized emulsion was smaller than that of the ACS-stabilized emulsion. The adsorption behaviour of the silicone droplets in the different emulsions varied depending on the nature of the surfactant and the preparation method. The amount of ACS-stabilized silicone adsorbed on healthy hair was higher than that adsorbed on bleached hair, especially when the emulsion was prepared using the homogenizer. In contrast, the amount of N-AOHPA-stabilized silicone adsorbed on bleached hair was high, and no differences were observed between the N-AOHPA-stabilized emulsions prepared using the homogenizer and high-pressure homogenizer. The emulsified droplets, especially the N-AOHPA-stabilized droplets prepared using the high-pressure homogenizer, prevented amino acid dissolution from bleached hair. It was concluded that the silicone droplet adsorption site affected the dissolution process because the small N-AOHPA-stabilized droplets adsorbed at cuticle edges. CONCLUSION This study shows that N-AOHPA has good potential for use as an emulsifier in products used for improving the condition of damaged hair.
Collapse
Affiliation(s)
- M Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.,Milott Cosmetic Corporation, 2976-12 Sugetacho, Yokohama, Kanagawa, 221-0864, Japan
| | - M Inoue
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - T Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
18
|
Joshy KS, George A, Jose J, Kalarikkal N, Pothen LA, Thomas S. Novel dendritic structure of alginate hybrid nanoparticles for effective anti-viral drug delivery. Int J Biol Macromol 2017; 103:1265-1275. [PMID: 28559185 DOI: 10.1016/j.ijbiomac.2017.05.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022]
Abstract
Lipid-polymer hybrid nanoparticles have recently gathered much attention as nanoplatforms for drug delivery applications due to their unique structural properties. In this study zidovudine (AZT) loaded hybrid nanoparticles of alginate (ALG) and stearic acid- poly ethylene glycol (SA-PEG) were synthesized. The structural characterization of drug loaded hybrid nanoparticles were studied using FT-IR spectroscopy, DLS and TEM analysis. These hybrid nanoparticles showed dendritic morphology and it can be used as an efficient carrier for zidovudine. In this drug loaded hybrid system of Alginate -Stearicacid/Poly (ethyleneglycol) Nanoparticles (ASNPs), AZT and alginate form the core wherein SA-PEG forms the external shell. We observed a dendritic morphology with internal voids and channels formed by the core molecule and the external shell forms the closed pack surface groups. The optimized formulation achieved a sub micron size of 407.67±19.18nm with drug encapsulation of 83.18±1.22%, and surface potential of -42.53mV, and has significant stability for six months. Haemolysis and aggregation studies revealed that there were no lysis and aggregation in WBC, RBC and platelets. In-vitro cytotoxicity and cellular uptake of the nanoparticles in Glioma, Neuro2a and Hela cells showed that ASNPs are non toxic. The results indicate that the synthesized hybrid nanoparticles represent a potential carrier for zidovudine, thus possibly increasing zidovudine's efficiency as an anti-HIV drug.
Collapse
Affiliation(s)
- K S Joshy
- Department of Chemistry, CMS College, Kottayam, Kerala, India; International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Anne George
- Department of Anatomy, Government Medical College, Kottayam, India
| | - Jiya Jose
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India
| | - Laly A Pothen
- Department of Chemistry, Bishop Moore College, Mavelikkara, Kerala, India
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686 560, Kerala, India.
| |
Collapse
|
19
|
Badran MM, Mady MM, Ghannam MM, Shakeel F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int J Biol Macromol 2017; 95:643-649. [PMID: 27908720 DOI: 10.1016/j.ijbiomac.2016.11.098] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
|
20
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:ph9040078. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|