1
|
Zhao Q, Li C, Xu Y, Zhong J, Liu H, Yin Y, Liu Y, Yang C, Yu L, Liu L, Pan L, Tan B. Treadmill exercise supplemented by OPN promote axon regeneration through the IGF-1R/Akt/mTOR signaling pathway. Exp Neurol 2025; 385:115096. [PMID: 39657897 DOI: 10.1016/j.expneurol.2024.115096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Regeneration of the corticospinal tract (CST) is considered a therapeutic target to achieve improved recovery of motor function after spinal cord injury (SCI), which is an incurable CNS damage that affects millions of people. Exercise training is effective in improving multiple functions in spinal cord-injured patients. However, the effects of exercise training on axon regeneration have not been sufficiently reported. Osteopontin (OPN) has great potential application as a neuroprotective agent for the repair of the nervous system. Studies have shown that the extent of axon regeneration strongly correlates with the expression of OPN. Our previous studies demonstrated that treadmill exercise supplemented by OPN enhances motor function recovery, but axon regeneration is still limited. Extending the treadmill exercise for 12 weeks, we observed promoted axon regeneration, motor function improvement, and signaling pathway activation in mice with SCI after supplementing OPN. Axon regeneration was observed with an anterograde tracer, motor function recovery was evaluated by animal ethology and electrophysiology, and the levels of IGF-1R/Akt/mTOR signaling pathway were evaluated. The results showed that the CST of C5 crushed mice regenerated and formed synaptic connections with neurons after treadmill exercise supplemented by OPN, the horizontal ladder and cylinder rearing test of injured limbs were improved, motor evoked potential also suggested enhanced nerve conduction, and the expression of p-IR, p-Akt, and p-S6 were increased. And the improvements were more obvious than that of the exercise group. Collectively, our study found that treadmill exercise supplemented by OPN promote axon regeneration and motor function through the IGF-1R/Akt/mTOR signaling pathways, and these improvements can be inhibited by rapamycin and Methyl-β-CD(M-B-CD).
Collapse
Affiliation(s)
- Qin Zhao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China; Department of Rehabilitation Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Ci Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong province 250000, China.
| | - Yangjie Xu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Juan Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Hongzhen Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Yuan Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China.
| | - Lehua Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Li Liu
- Department of Brain, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400011, China.
| | - Lu Pan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Chongqing 400010, China.
| |
Collapse
|
2
|
Fell JD, Medina-Aguiñaga D, Burke DA, Hubscher CH. Impact of Activity-Based Training on Bowel Function in a Rat Model of Spinal Cord Injury. J Neurotrauma 2024; 41:1181-1195. [PMID: 38117145 DOI: 10.1089/neu.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Significant bowel-related issues after spinal cord injury (SCI) that affect morbidity and quality of life (QOL) include diminished bowel motility, loss of sphincter control, gastric ulcers, autonomic dysreflexia, pain, diarrhea, constipation, and fecal incontinence. Clinical diagnoses and research in humans have largely relied on anorectal manometry (ARM) procedures to increase understanding of the functional effects of SCI on colorectal motility and defecation physiology. Recent pre-clinical rodent studies have also used ARM to further our understanding of bowel-related dysfunctions post-SCI. In the present study, the benefits of different activity-based training (ABT) durations on bowel function were examined. Six groups of male rats including two non-training (NT; uninjured and SCI) and four ABT (quadrupedal [Quad or Q] stepping on a treadmill) groups. All ABT animals received 4 weeks of 1-h daily stepping beginning 2 weeks post-SCI followed by variable amounts for 4 additional weeks (none; daily; once a week; daily for final 4th week only). Outcome measures included fecal output (home cage; metabolic cage) throughout the study and terminal measurements (post 8-week ABT) of external anal sphincter (EAS) electromyography, resting anorectal pressure, and giant contraction (GC) activation under urethane anesthesia. The results indicate that treadmill training normalized defecation amount based on feces weight and food intake, as well as GC frequency, EAS latency and amplitude during fecal expulsion, and resting pressure in specific areas within the colorectum. The two intermittent training groups consistently showed recorded metrics comparable to the non-injured group. The results demonstrate bowel dysfunction in the rodent SCI contusion model with improvements in functional outcomes following ABT. Importantly, the benefits to bowel-related functions with versus without intermittent ABT illustrate the need for periodic therapy to maintain the functional gains of ABT.
Collapse
Affiliation(s)
- Jason D Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Toloui A, Ramawad HA, Gharin P, Vaccaro AR, Zarei H, Hosseini M, Yousefifard M, Rahimi-Movaghar V. The Role of Exercise in the Alleviation of Neuropathic Pain Following Traumatic Spinal Cord Injuries: A Systematic Review and Meta-analysis. Neurospine 2023; 20:1073-1087. [PMID: 37798999 PMCID: PMC10562228 DOI: 10.14245/ns.2346588.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023] Open
Abstract
OBJECTIVE The objective of this systematic review and meta-analysis was to assess the efficacy of exercise in neuropathic pain following traumatic spinal cord injuries. METHODS The search was conducted in MEDLINE, Embase, Scopus, and Web of Science by the end of 2022. Two independent researchers included the articles based on the inclusion and exclusion criteria. A standardized mean difference was calculated for each data and they were pooled to calculate an overall effect size. To assess the heterogeneity between studies, I2 and chi-square tests were utilized. In the case of heterogeneity, meta-regression was performed to identify the potential source. RESULTS Fifteen preclinical studies were included. Meta-analysis demonstrated that exercise significantly improves mechanical allodynia (standardized mean difference [SMD], -1.59; 95% confidence interval [CI], -2.16 to -1.02; p < 0.001; I2 = 90.37%), thermal hyperalgesia (SMD, 1.95; 95% CI, 0.96-2.94; p < 0.001), and cold allodynia (SMD, -2.92; 95% CI, -4.4 to -1.43; p < 0.001). The improvement in mechanical allodynia is significantly more in animals with a compression model of SCI (meta-regression coefficient, -1.33; 95% CI, -1.84 to -0.57; p < 0.001) and in mild SCI (p < 0.001). Additionally, the improvement was more prominent if the training was started 7 to 8 days postinjury (coefficient, -2.54; 95% CI, -3.85 to -1.23; p < 0.001) and was continued every day (coefficient, -1.99; 95% CI, -3.07 to -0.9; p < 0.001). Likewise, voluntary exercise demonstrated a significantly more effect size (coefficient, -1.45; 95% CI, -2.67 to -0.23; p = 0.02). CONCLUSION Exercise is effective in the amelioration of neuropathic pain. This effect in mechanical allodynia is more prominent if voluntary, continuous training is initiated in the subacute phase of mild SCI.
Collapse
Affiliation(s)
- Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamzah Adel Ramawad
- Department of Emergency Medicine, NYC Health + Hospitals, Coney Island, New York, NY, USA
| | - Pantea Gharin
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hamed Zarei
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Deng J, Meng F, Gao J, Zhang K, Liu Z, Li M, Liu X, Li J, Wang Y, Zhang L, Tang P. Early-phase rotator training impairs tissue repair and functional recovery after spinal cord injury. Heliyon 2023; 9:e18158. [PMID: 37519672 PMCID: PMC10372239 DOI: 10.1016/j.heliyon.2023.e18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder that often results in severe sensorimotor function impairment with limited recovery of function. In recent years, rehabilitation training for spinal cord injury has gradually emerged, and some of them play an important role in the repair of spinal cord injury However, the optimal training regimen for SCI remains to be determined. In this study, we explore the effects of rotarod training (began at 7 days post-injury) on the recovery of motor function after SCI, as well as its possible repair mechanism from the aspects of function and histopathological changes, the behaviors of specific trophic factors and cytokines, and the expression profile of specific genes. Multiple functional assessments showed that rotarod training initiated at 7 days post-injury is unsuitable for promoting neuro-electrophysiological improvement and trunk stability, but impaired functional coordination and motor recovery. In addition, rotarod training has negative effects on spinal cord repair after SCI, which is manifested as an increase of lesion area, a decrease in neuronal viability, a deterioration in immuno-microenvironment and remyelination, a significant reduction in the expression of trophic factors and an increase in the expression of pro-inflammatory factors. RNA sequencing suggested that the genes associated with angiogenesis and synaptogenesis were significantly downregulated and the PI3K-AKT pathway was inhibited, which was detrimental to spinal cord repair and impeded nerve regeneration. These results indicate that immediate rotarod training after SCI is currently unsuitable for rehabilitation in mice.
Collapse
Affiliation(s)
- Junhao Deng
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, 100050, China
| | - Jianpeng Gao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Kexue Zhang
- Department of Pediatric Surgery, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhongyang Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiantao Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Wang
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institue of Orthopaedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Licheng Zhang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Peifu Tang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Moderate-Intensity Treadmill Exercise Promotes mTOR-Dependent Motor Cortical Neurotrophic Factor Expression and Functional Recovery in a Murine Model of Crush Spinal Cord Injury (SCI). Mol Neurobiol 2023; 60:960-978. [PMID: 36385234 DOI: 10.1007/s12035-022-03117-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
Treadmill exercise is widely considered an effective strategy for restoration of skilled motor function after spinal cord injury (SCI). However, the specific exercise intensity that optimizes recovery and the underlying mechanistic basis of this recovery remain unclear. To that end, we sought to investigate the effect of different treadmill exercise intensities on cortical mTOR activity, a key regulator of functional recovery following CNS trauma, in an animal model of C5 crush spinal cord injury (SCI). Following injury, animals were subjected to treadmill exercise for 4 consecutive weeks at three different intensities (low intensity [LEI]; moderate intensity [MEI]; and high intensity [HEI]). Motor function recovery was assessed by horizontal ladder test, cylinder rearing test, and electrophysiology, while neurotrophic factors and cortical mechanistic target of rapamycin (mTOR) pathway-related proteins were assessed by Western blotting. The activation of the cortical mTOR pathway and axonal sprouting was evaluated by immunofluorescence and the changes of plasticity in motor cortex neurons were assessed by Golgi staining. In keeping with previous studies, we found that 4 weeks of treadmill training resulted in improved skilled motor function, enhanced nerve conduction capability, increased neuroplasticity, and axonal sprouting. Importantly, we also demonstrated that when compared with the LEI group, MEI and HEI groups demonstrated elevated expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), phosphorylated ribosomal S6 protein (p-S6), and protein kinase B (p-Akt), consistent with an intensity-dependent activation of the mTOR pathway and neurotrophic factor expression in the motor cortex. We also observed impaired exercise endurance and higher mortality during training in the HEI group than in the LEI and MEI groups. Collectively, our findings suggest that treadmill exercise following SCI is an effective means of promoting recovery and highlight the importance of the cortical mTOR pathway and neurotrophic factors as mediators of this effect. Importantly, our findings also demonstrate that excessive exercise can be detrimental, suggesting that moderation may be the optimal strategy. These findings provide an important foundation for further investigation of treadmill training as a modality for recovery following spinal cord injury and of the underlying mechanisms.
Collapse
|
6
|
Locke KC, Randelman ML, Hoh DJ, Zholudeva LV, Lane MA. Respiratory plasticity following spinal cord injury: perspectives from mouse to man. Neural Regen Res 2022; 17:2141-2148. [PMID: 35259820 PMCID: PMC9083159 DOI: 10.4103/1673-5374.335839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
The study of respiratory plasticity in animal models spans decades. At the bench, researchers use an array of techniques aimed at harnessing the power of plasticity within the central nervous system to restore respiration following spinal cord injury. This field of research is highly clinically relevant. People living with cervical spinal cord injury at or above the level of the phrenic motoneuron pool at spinal levels C3-C5 typically have significant impairments in breathing which may require assisted ventilation. Those who are ventilator dependent are at an increased risk of ventilator-associated co-morbidities and have a drastically reduced life expectancy. Pre-clinical research examining respiratory plasticity in animal models has laid the groundwork for clinical trials. Despite how widely researched this injury is in animal models, relatively few treatments have broken through the preclinical barrier. The three goals of this present review are to define plasticity as it pertains to respiratory function post-spinal cord injury, discuss plasticity models of spinal cord injury used in research, and explore the shift from preclinical to clinical research. By investigating current targets of respiratory plasticity research, we hope to illuminate preclinical work that can influence future clinical investigations and the advancement of treatments for spinal cord injury.
Collapse
Affiliation(s)
- Katherine C. Locke
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Margo L. Randelman
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Daniel J. Hoh
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lyandysha V. Zholudeva
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
- Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Michael A. Lane
- Department of Neurobiology & Anatomy, Drexel University, Philadelphia, PA, USA
- Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| |
Collapse
|
7
|
The Impact of Activity-Based Interventions on Neuropathic Pain in Experimental Spinal Cord Injury. Cells 2022; 11:cells11193087. [PMID: 36231048 PMCID: PMC9563089 DOI: 10.3390/cells11193087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Physical activity-based rehabilitative interventions represent the main treatment concept for people suffering from spinal cord injury (SCI). The role such interventions play in the relief of neuropathic pain (NP) states is emerging, along with underlying mechanisms resulting in SCI-induced NP (SCI-NP). Animal models have been used to investigate the benefits of activity-based interventions (ABI), such as treadmill training, wheel running, walking, swimming, and bipedal standing. These activity-based paradigms have been shown to modulate inflammatory-related alterations as well as induce functional and structural changes in the spinal cord gray matter circuitry correlated with pain behaviors. Thus far, the research available provides an incomplete picture of the cellular and molecular pathways involved in this beneficial effect. Continued research is essential for understanding how such interventions benefit SCI patients suffering from NP and allow the development of individualized rehabilitative therapies. This article reviews preclinical studies on this specific topic, goes over mechanisms involved in SCI-NP in relation to ABI, and then discusses the effectiveness of different activity-based paradigms as they relate to different forms, intensity, initiation times, and duration of ABI. This article also summarizes the mechanisms of respective interventions to ameliorate NP after SCI and provides suggestions for future research directions.
Collapse
|
8
|
Arabzadeh E, Reza Rahimi A, Zargani M, Feyz Simorghi Z, Emami S, Sheikhi S, Zaeri Amirani Z, Yousefi P, Sarshin A, Aghaei F, Feizollahi F. Resistance exercise promotes functional test via sciatic nerve regeneration, and muscle atrophy improvement through GAP-43 regulation in animal model of traumatic nerve injuries. Neurosci Lett 2022; 787:136812. [PMID: 35872241 DOI: 10.1016/j.neulet.2022.136812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Resistance training improves muscle strength through a combination of neural plasticity and muscle hypertrophy. This study aimed to evaluate the effects of resistance exercise on sciatic nerve regeneration and histology, growth-associated protein 43 (GAP-43) expressions, and soleus muscle atrophy following traumatic nerve injuries in Wistar rats. In the present study, 40 male Wistar rats were randomly assigned into four groups: healthy control (HC) as a sham group was exposed to the surgical procedures without any sciatic nerve compression, lesioned control (LC), resistance training (RT,non-lesioned), and lesioned rats+RT (LRT) (n=10 in each). The RT group performed a resistance-training program 5 days/week for 4 weeks. Sciatic functional index (SFI) score, beam score and Basso, Beattie, and Bresnahan (BBB) score decreased and the hot plate time increased significantly in the LC group compared to the HC (p<0.05) group. However, the LRT group showed a significant increase in the SFI score (p=0.001) and a significant decrease in hot plate time (p=0.0232) compared to the LC group. The LC group also showed neurological morphological damage and muscle atrophy and a decrease in GAP-43 in nerve tissue. In comparison to the LC group, a significant increase in sciatic nerve caliber, diameter, number of muscle fibers, and the expression of GAP-43 (p<0.05) was observed in the LRT group. Doing resistance training even for four weeks seems to affect sciatic nerve lesions and injuries. It can also repair and regenerate nerve tissue by upregulating GAP-43 expression, improving motor behavioral tests, and controlling muscle atrophy.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Reza Rahimi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Mehdi Zargani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Feyz Simorghi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Shaghayegh Emami
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Sahar Sheikhi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Zeinab Zaeri Amirani
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Parisa Yousefi
- Department of Exercise Physiology, Islamic Azad University, Karaj Branch, Karaj, Alborz, Iran
| | - Amir Sarshin
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Fariba Aghaei
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran
| | - Foad Feizollahi
- Clinical Care and Health Promotion Research Center, Karaj branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
9
|
Gumbel JH, Yang CB, Hubscher CH. Timeline of Changes in Biomarkers Associated with Spinal Cord Injury-Induced Polyuria. Neurotrauma Rep 2021; 2:462-475. [PMID: 34901942 PMCID: PMC8655813 DOI: 10.1089/neur.2021.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deficits in upper and lower urinary tract function, which include detrusor overactivity, urinary incontinence, detrusor-sphincter dyssynergia, and polyuria, are among the leading issues that arise after spinal cord injury (SCI) affecting quality of life. Given that overproduction of urine (polyuria) has been shown to be associated with an imbalance in key regulators of body fluid homeostasis, the current study examined the timing of changes in levels of various relevant hormones, peptides, receptors, and channels post-contusion injury in adult male Wistar rats. The results show significant up- or downregulation at various time points, beginning at 7 days post-injury, in levels of urinary atrial natriuretic peptide, serum arginine vasopressin (AVP), kidney natriuretic peptide receptor-A, kidney vasopressin-2 receptor, kidney aquaporin-2 channels, and kidney epithelial sodium channels (β- and γ-, but not α-, subunits). The number of AVP-labeled neurons in the hypothalamus (supraoptic and -chiasmatic, but not paraventricular, nuclei) was also significantly altered at one or more time points. These data show significant fluctuations in key biomarkers involved in body fluid homeostasis during the post-SCI secondary injury phase, suggesting that therapeutic interventions (e.g., desmopressin, a synthetic analogue of AVP) should be considered early post-SCI.
Collapse
Affiliation(s)
- Jason H. Gumbel
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Cui Bo Yang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Neckel ND, Dai H, Hanckel J, Lee Y, Albanese C, Rodriguez O. Skilled reach training enhances robotic gait training to restore overground locomotion following spinal cord injury in rats. Behav Brain Res 2021; 414:113490. [PMID: 34358574 DOI: 10.1016/j.bbr.2021.113490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Rehabilitative training has been shown to improve motor function following spinal cord injury (SCI). Unfortunately, these gains are primarily task specific; where reach training only improves reaching, step training only improves stepping and stand training only improves standing. More troublesome is the tendency that the improvement in a trained task often comes at the expense of an untrained task. However, the task specificity of training does not preclude the benefits of combined rehabilitative training. Here we show that robot assisted gait training alone can partially reduce the deficits in unassisted overground locomotion following a C4/5 overhemisection injury in rats. When robot-assisted gait training is done in conjunction with skilled forelimb training, we observe a much greater level of recovery of unassisted overground locomotion. In order to provide reach training that would not interfere with our robotic gait training schedule, we prompted rats to increase the use of their forelimbs by replacing the standard overhead feeder with a custom made, deep welled hopper that dispensed nutritionally equivalent small milled pellets. We speculate that the increase in recovery from combined training is due to a more robust interneuronal relay network around the injury site. in vivo manganese-enhanced magnetic resonance imaging of the spinal cord indicated that there was no increase in the cellular activity, however ex vivo diffusion tensor imaging (DTI) suggested an increase in collateralization around the injury site in rats that received both reach training and robot assisted gait training.
Collapse
Affiliation(s)
- Nathan D Neckel
- Department of Neuroscience, Georgetown University, United States; Department of Rehabilitation Medicine, Georgetown University, United States.
| | - Haining Dai
- Department of Neuroscience, Georgetown University, United States
| | - John Hanckel
- Department of Neuroscience, Georgetown University, United States
| | - Yichien Lee
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| | - Christopher Albanese
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| | - Olga Rodriguez
- Department of Oncology, Georgetown University, United States; Center for Translational Imaging, Georgetown University, United States
| |
Collapse
|
11
|
Leitzelar BN, Koltyn KF. Exercise and Neuropathic Pain: A General Overview of Preclinical and Clinical Research. SPORTS MEDICINE-OPEN 2021; 7:21. [PMID: 33751253 PMCID: PMC7984211 DOI: 10.1186/s40798-021-00307-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a disease of the somatosensory system that is characterized by tingling, burning, and/or shooting pain. Medication is often the primary treatment, but it can be costly, thus there is an interest in understanding alternative low-cost treatments such as exercise. The following review includes an overview of the preclinical and clinical literature examining the influence of exercise on neuropathic pain. Preclinical studies support the hypothesis that exercise reduces hyperalgesia and allodynia in animal models of neuropathic pain. In human research, observational studies suggest that those who are more physically active have lower risk of developing neuropathic pain compared to those who are less active. Exercise studies suggest aerobic exercise training (e.g., 16 weeks); a combination of aerobic and resistance exercise training (e.g., 10–12 weeks); or high-intensity interval training (e.g., 15 weeks) reduces aspects of neuropathic pain such as worst pain over the past month, pain over the past 24 h, pain scores, or pain interference. However, not all measures of pain improve following exercise training (e.g., current pain, heat pain threshold). Potential mechanisms and future directions are also discussed to aid in the goal of understanding the role of exercise in the management of neuropathic pain. Future research using standardized methods to further understanding of the dose of exercise needed to manage neuropathic pain is warranted.
Collapse
Affiliation(s)
- Brianna N Leitzelar
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
12
|
Hoey RF, Medina-Aguiñaga D, Khalifa F, Ugiliweneza B, Zdunowski S, Fell J, Naglah A, El-Baz AS, Herrity AN, Harkema SJ, Hubscher CH. Bladder and bowel responses to lumbosacral epidural stimulation in uninjured and transected anesthetized rats. Sci Rep 2021; 11:3268. [PMID: 33558526 PMCID: PMC7870824 DOI: 10.1038/s41598-021-81822-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 01/09/2023] Open
Abstract
Spinal cord epidural stimulation (scES) mapping at L5-S1 was performed to identify parameters for bladder and bowel inhibition and/or contraction. Using spinally intact and chronic transected rats of both sexes in acute urethane-anesthetized terminal preparations, scES was systematically applied using a modified Specify 5-6-5 (Medtronic) electrode during bladder filling/emptying cycles while recording bladder and colorectal pressures and external urethral and anal sphincter electromyography activity. The results indicate frequency-dependent effects on void volume, micturition, bowel peristalsis, and sphincter activity just above visualized movement threshold intensities that differed depending upon neurological intactness, with some sex-dependent differences. Thereafter, a custom-designed miniature 15-electrode array designed for greater selectivity was tested and exhibited the same frequency-dependent urinary effects over a much smaller surface area without any concurrent movements. Thus, select activation of autonomic nervous system circuitries with scES is a promising neuromodulation approach for expedient translation to individuals with SCI and potentially other neurologic disorders.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Daniel Medina-Aguiñaga
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Sharon Zdunowski
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Jason Fell
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA
| | - Ahmed Naglah
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - Ayman S El-Baz
- Bioengineering Department, University of Louisville J. B. Speed School of Engineering, Louisville, KY, USA
| | - April N Herrity
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Susan J Harkema
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, MDR, 511 S. Floyd St., Room 111, Louisville, KY, 40202, USA.
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
13
|
Herrity AN, Aslan SC, Ugiliweneza B, Mohamed AZ, Hubscher CH, Harkema SJ. Improvements in Bladder Function Following Activity-Based Recovery Training With Epidural Stimulation After Chronic Spinal Cord Injury. Front Syst Neurosci 2021; 14:614691. [PMID: 33469421 PMCID: PMC7813989 DOI: 10.3389/fnsys.2020.614691] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) results in profound neurologic impairment with widespread deficits in sensorimotor and autonomic systems. Voluntary and autonomic control of bladder function is disrupted resulting in possible detrusor overactivity, low compliance, and uncoordinated bladder and external urethral sphincter contractions impairing storage and/or voiding. Conservative treatments managing neurogenic bladder post-injury, such as oral pharmacotherapy and catheterization, are important components of urological surveillance and clinical care. However, as urinary complications continue to impact long-term morbidity in this population, additional therapeutic and rehabilitative approaches are needed that aim to improve function by targeting the recovery of underlying impairments. Several human and animal studies, including our previously published reports, have documented gains in bladder function due to activity-based recovery strategies, such as locomotor training. Furthermore, epidural stimulation of the spinal cord (scES) combined with intense activity-based recovery training has been shown to produce volitional lower extremity movement, standing, as well as improve the regulation of cardiovascular function. In our center, several participants anecdotally reported improvements in bladder function as a result of training with epidural stimulation configured for motor systems. Thus, in this study, the effects of activity-based recovery training in combination with scES were tested on bladder function, resulting in improvements in overall bladder storage parameters relative to a control cohort (no intervention). However, elevated blood pressure elicited during bladder distention, characteristic of autonomic dysreflexia, was not attenuated with training. We then examined, in a separate, large cross-sectional cohort, the interaction between detrusor pressure and blood pressure at maximum capacity, and found that the functional relationship between urinary bladder distention and blood pressure regulation is disrupted. Regardless of one's bladder emptying method (indwelling suprapubic catheter vs. intermittent catheterization), autonomic instability can play a critical role in the ability to improve bladder storage, with SCI enhancing the vesico-vascular reflex. These results support the role of intersystem stimulation, integrating scES for both bladder and cardiovascular function to further improve bladder storage.
Collapse
Affiliation(s)
- April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Sevda C. Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Ahmad Z. Mohamed
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Charles H. Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
14
|
Ying X, Xie Q, Li S, Yu X, Zhou K, Yue J, Chen X, Tu W, Yang G, Jiang S. Water treadmill training attenuates blood-spinal cord barrier disruption in rats by promoting angiogenesis and inhibiting matrix metalloproteinase-2/9 expression following spinal cord injury. Fluids Barriers CNS 2020; 17:70. [PMID: 33292360 PMCID: PMC7722327 DOI: 10.1186/s12987-020-00232-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background The permeability of the blood-spinal cord barrier (BSCB) is mainly determined by junction complexes between adjacent endothelial cells (ECs), including tight junctions (TJs) and adherens junctions (AJs), which can be severely damaged after spinal cord injury (SCI). Exercise training is a recognized method for the treatment of SCI. The destruction of the BSCB mediated by matrix metalloproteinases (MMPs) leads to inflammation, neurotoxin production, and neuronal apoptosis. The failure of new blood vessels to effectively regenerate is also an important cause of delayed recovery after SCI. For the first time, we introduced water treadmill training (TT) to help SCI rats successfully exercise and measured the effects of TT in promoting recovery after SCI and the possible mechanisms involved. Methods Sprague-Dawley (200–250 g) rats were randomly divided into the following three groups: sham operated, SCI, and SCI + TT. Animals were sacrificed at 7 or 14 days post-surgery. The degree of neurological deficit, tissue morphology and BSCB permeability were assessed by the Basso-Beattie-Bresnahan (BBB) motor function scale and appropriate staining protocols, and apoptosis, protein expression and vascular EC ultrastructure were assessed by TUNEL staining, Western blotting, immunofluorescence and transmission electron microscopy (TEM). Results Our experiments showed that TT reduced permeability of the BSCB and decreased structural tissue damage. TT significantly improved functional recovery when compared with that in the SCI group; TJ and AJ proteins expression increased significantly after TT, and training reduced apoptosis induced by SCI. TT could promote angiogenesis, and MMP-2 and MMP-9 expression was significantly inhibited by TT. Conclusions The results of this study indicate that TT promotes functional recovery for the following reasons: TT (1) protects residual BSCB structure from further damage, (2) promotes vascular regeneration, and (3) inhibits MMP-2/9 expression to mitigate BSCB damage.
Collapse
Affiliation(s)
- Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Shengcun Li
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolan Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Kecheng Zhou
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Jingjing Yue
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Xiaolong Chen
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China. .,Department of Intelligent Rehabilitation International (Cross-Strait), Alliance of Wenzhou Medical University, Zhejiang, Wenzhou, 325000, China.
| |
Collapse
|
15
|
Hoey RF, Hubscher CH. Investigation of Bowel Function with Anorectal Manometry in a Rat Spinal Cord Contusion Model. J Neurotrauma 2020; 37:1971-1982. [PMID: 32515264 DOI: 10.1089/neu.2020.7145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bowel dysfunction after chronic spinal cord injury (SCI) is a common source of morbidity and rehospitalization. Typical complications include constipation, fecal impaction, incontinence, abdominal distention, autonomic dysreflexia, and the necessity of interventions (i.e., suppositories, digital stimulation) to defecate. Numerous surveys have confirmed that the remediation of bowel complications is more highly valued for quality of life than improvements in walking. Much of what is known about bowel function after SCI for diagnosis and research in humans has been gained using anorectal manometry (ARM) procedures. However, ARM has been underutilized in pre-clinical animal work. Therefore, a novel combination of outcome measures was examined in the current study that incorporates functional output of the bowel (weekly fecal measurements), weight gain (pre-injury to terminal weight), and terminal ARM measurement with external anal sphincter electromyography under urethane anesthesia. The results indicate higher fecal output after contusion during the sub-acute period (4-7 days) post-injury, changes in the composition of the feces, and functionally obstructive responses in a specific section of the rectum (increased baseline pressure, increased frequency of contraction, and reduced ability to trigger a giant contraction to a distension stimulus). These results demonstrate significant bowel dysfunction in the rodent SCI contusion model that is consistent with data from human research. Thus, the combined measurement protocol enables the detection of changes and can be used, with minimal cost, to assess effectiveness of therapeutic interventions on bowel complications.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
16
|
Palandi J, Bobinski F, de Oliveira GM, Ilha J. Neuropathic pain after spinal cord injury and physical exercise in animal models: A systematic review and meta-analysis. Neurosci Biobehav Rev 2019; 108:781-795. [PMID: 31837360 DOI: 10.1016/j.neubiorev.2019.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022]
Abstract
The aim of this systematic review was to summarize the effects of physical exercise on neuropathic pain (NP) in animal models of SCI. The search was conducted in Medline and Science Direct to identify experimental preclinical studies involving animal models of SCI, physical exercise as an intervention and the assessment of NP. Fifteen articles met the eligibility criteria. The review shows that in studies of NP involving animal models of SCI, rodents are the most common species. Thoracic contusion is the most common injury and mechanical and thermal nociception are the most frequently assessed NP components. The benefits of physical exercise vary according to its starting period and total duration. In addition, there is considerable heterogeneity regarding the type and intensity of exercise capable of alleviating NP after SCI. Furthermore, physical exercise has beneficial effects on mechanical, thermal and cold nociception, and spontaneous pain. These results are weakened by the paucity of studies involving these pain outcomes. The review protocol is published for free access on the SyRF platform (http://syrf.org.uk/protocols/).
Collapse
Affiliation(s)
- Juliete Palandi
- Physical Therapy Graduate Program, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil; Spinal Cord Injury Research Group, Neuromotor System Laboratory, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil
| | - Franciane Bobinski
- Physical Therapy Graduate Program, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil; Experimental Neuroscience Laboratory, Graduate Program in Health Sciences, University of Southern of Santa Catarina (UNISUL), Palhoça, 88137-272, SC, Brazil
| | - Gabriela Martins de Oliveira
- Spinal Cord Injury Research Group, Neuromotor System Laboratory, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil
| | - Jocemar Ilha
- Physical Therapy Graduate Program, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil; Spinal Cord Injury Research Group, Neuromotor System Laboratory, Department of Physical Therapy, College of Health and Sport Science, Santa Catarina State University (UDESC), Florianópolis, 88080-350, SC, Brazil.
| |
Collapse
|
17
|
Boström AF, Hyytiäinen HK, Koho P, Cizinauskas S, Hielm-Björkman AK. Development of the Finnish neurological function testing battery for dogs and its intra- and inter-rater reliability. Acta Vet Scand 2018; 60:56. [PMID: 30223905 PMCID: PMC6142623 DOI: 10.1186/s13028-018-0408-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background The Finnish neurological function testing battery for dogs (FINFUN) was developed to meet the increasing demand for objective outcome measures in veterinary physiotherapy. The testing battery should provide consistent, reproducible results and have established face and content validity. Internal consistency and intra- and inter-rater reliability of the FINFUN were also investigated. Results The FINFUN comprised 11 tasks: lying, standing up from lying, sitting, standing up from sitting, standing, proprioceptive positioning, starting to walk, walking, trotting, walking turns and walking stairs. A score from 0 to 4, (0: unable to perform task, 4: performing task with normal motor function) was given for each task, the maximum score being 44. Twenty-six dogs were filmed when performing the FINFUN. Seven observers scored the performances from the video recordings. The FINFUN was considered to have appropriate face and content validity based on a pilot study, clinical experience and critical reflection of the development process. Its internal consistency was excellent, with no Cronbach’s alpha values below 0.922. The intra-rater reliability for total score of experienced observers was almost perfect: 0.999 (observer 1) and 0.994 (observer 2). The inter-rater reliability for both experienced and novice observers’ total scores was also almost perfect (0.919–0.993). Analysis of each individual task showed substantial intra-rater and inter-rater agreement for the tasks “lying” and “sitting”. Conclusions The FINFUN is an objective, valid and reliable tool with standardized scoring criteria for evaluation of motor function in dogs recovering from spinal cord injury. Electronic supplementary material The online version of this article (10.1186/s13028-018-0408-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Li X, Wu Q, Xie C, Wang C, Wang Q, Dong C, Fang L, Ding J, Wang T. Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord 2018; 57:65-74. [DOI: 10.1038/s41393-018-0173-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/09/2022]
|
19
|
Neckel ND. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury. J Neuroeng Rehabil 2017; 14:96. [PMID: 28903771 PMCID: PMC5598057 DOI: 10.1186/s12984-017-0308-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
Background Common gait measures such as stride length, cycle time, and step height are not independent variables, but different aspects of the same multidimensional step. This complicates comparisons between experimental groups. Here we present a novel multidimensional gait analysis method and use this method to assess the ability of body weight supported treadmill training (BWSTT) to improve rodent stepping after spinal cord injury (SCI). Methods In lieu of reducing a step to a collection of gait measures and comparing the means of several of these, we developed a multidimensional analysis technique that compares the step as a whole. While in a passive robotic gait training device, the pre-injury hindlimb stepping of 108 rats was recorded while they walked in a quadrupedal posture at 8 cm/s. Following a C4/5 over-hemisection spinal cord injury the weekly changes in stepping were tracked for 17 untrained and 10 BWSTT animals for 7 weeks. The performance of trained rats was recorded during training with BWS, as well as at the end of the training week without BWS. An additional six uninjured rats were trained for 5 weeks. Results Our novel multidimensional analysis shows that stepping is asymmetrically altered 1 week after SCI. The differences in stepping change over the following weeks, with the less impaired left hindlimb deviating further away from pre-injury than the more impaired right hindlimb. Uninjured rats do not significantly alter their stepping over 5 weeks. BWSTT improves the stepping of the right hindlimb, but only when the BWS is active. If the BWS is not present, the performance of trained animals is worse than untrained rats. The left hindlimb performance of BWSTT rats is worse than untrained rats, during both training sessions and weekly assessments. Conclusions We feel that our novel multidimensional analysis is a more appropriate method to address the inter-dependencies of gait measures. Untrained rats exhibit both initial impairments as well as the development of compensatory techniques. BWSTT does not improve this spontaneous recovery, but exacerbates it, particularly in the less impaired left hindlimb.
Collapse
Affiliation(s)
- Nathan D Neckel
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd, Washington, DC, NW, 20007, USA.
| |
Collapse
|
20
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|