1
|
Cui Y, Yu X, Bao J, Ping X, Shi S, Huang Y, Yin Q, Yang H, Chen R, Yao K, Chen X, Shentu X. Lens autophagy protein ATG16L1: a potential target for cataract treatment. Theranostics 2024; 14:3984-3996. [PMID: 38994020 PMCID: PMC11234268 DOI: 10.7150/thno.93864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/12/2024] [Indexed: 07/13/2024] Open
Abstract
Rationale: Cataract is the leading cause of blindness and low vision worldwide, yet its pathological mechanism is not fully understood. Although macroautophagy/autophagy is recognized as essential for lens homeostasis and has shown potential in alleviating cataracts, its precise mechanism remains unclear. Uncovering the molecular details of autophagy in the lens could provide targeted therapeutic interventions alongside surgery. Methods: We monitored autophagic activities in the lens and identified the key autophagy protein ATG16L1 by immunofluorescence staining, Western blotting, and transmission electron microscopy. The regulatory mechanism of ATG16L1 ubiquitination was analyzed by co-immunoprecipitation and Western blotting. We used the crystal structure of E3 ligase gigaxonin and conducted the docking screening of a chemical library. The effect of the identified compound riboflavin was tested in vitro in cells and in vivo animal models. Results: We used HLE cells and connexin 50 (cx50)-deficient cataract zebrafish model and confirmed that ATG16L1 was crucial for lens autophagy. Stabilizing ATG16L1 by attenuating its ubiquitination-dependent degradation could promote autophagy activity and relieve cataract phenotype in cx50-deficient zebrafish. Mechanistically, the interaction between E3 ligase gigaxonin and ATG16L1 was weakened during this process. Leveraging these mechanisms, we identified riboflavin, an E3 ubiquitin ligase-targeting drug, which suppressed ATG16L1 ubiquitination, promoted autophagy, and ultimately alleviated the cataract phenotype in autophagy-related models. Conclusions: Our study identified an unrecognized mechanism of cataractogenesis involving ATG16L1 ubiquitination in autophagy regulation, offering new insights for treating cataracts.
Collapse
Affiliation(s)
- Yilei Cui
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiaoning Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Jing Bao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Silu Shi
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Yuxin Huang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Qichuan Yin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Hao Yang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Ruoqi Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| | - Xiangjun Chen
- The Institute of Translational Medicine, Zhejiang University, Hangzhou310020, China
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou310009, China
| |
Collapse
|
2
|
Wang L, Lou W, Zhang Y, Chen Z, Huang Y, Jin H. HO-1-Mediated Autophagic Restoration Protects Lens Epithelial Cells Against Oxidative Stress and Cellular Senescence. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 38051262 DOI: 10.1167/iovs.64.15.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Purpose Oxidative stress and cellular senescence are risk factors for age-related cataract. Heme oxygenase 1 (HO-1) is a critical antioxidant enzyme and related to autophagy. Here, we investigate the crosstalk among HO-1, oxidative stress, and cellular senescence in mouse lens epithelial cells (LECs). Methods The gene expression of HO-1, p21, LC3, and p62 was measured in human samples. The protective properties of HO-1 were examined in hydrogen peroxide (H2O2)-damaged LECs. Autophagic flux was examined by Western blot and mRFP-GFP-LC3 assay. Western blotting and lysotracker staining were used to analyze lysosomal function. Flow cytometry was used to detect intracellular reactive oxygen species and analyze cell cycle. Senescence-associated β-galactosidase assay was used to determine cellular senescence. The crosstalk between HO-1 and transcription factor EB (TFEB) was further observed in TFEB-knockdown cells. The TFEB binding site in the promoter region of Hmox1 was predicted by the Jasper website and was confirmed by chromatin immunoprecipitation assay. Results HO-1 gene expression decreased in LECs of patients with age-related nuclear cataract, whereas mRNA expression levels of p21, LC3, and p62 increased. Upon H2O2-induced oxidative stress, LECs showed the characteristics of autophagic flux blockade, lysosomal dysfunction, and premature senescence. Interestingly, HO-1 significantly restored the impaired autophagic flux and lysosomal function and delayed cellular senescence. TFEB gene silencing greatly reduced the HO-1-mediated autophagic restoration, leading to a failure to prevent LECs from oxidative stress and premature senescence. Conclusions We demonstrated HO-1 effects on restoring autophagic flux and delaying cellular senescence under oxidative stress in LECs, which are dependent on TFEB.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Lou
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Zhang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziang Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Huang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiying Jin
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Li H, Gao L, Du J, Ma T, Li W, Ye Z, Li Z. Impacts of autophagy on the formation of organelle-free zone during the lens development. Mol Biol Rep 2023; 50:4551-4564. [PMID: 36877352 DOI: 10.1007/s11033-023-08323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
The thorough degeneration of organelles in the core of the lens is certainly a hallmark event during the lens development. Organelles degradation in the terminal differentiation process of lens fiber cells to form an organelle-free zone is critical for lens maturation and transparency. Several mechanisms have been proposed to expand our understanding of lens organelles degradation, including apoptotic pathways, the participation of ribozyme, proteolytic enzyme and phospholipase A and acyltransferase, and the newly discovered roles for autophagy. Autophagy is a lysosome-dependent degradation reaction during which the "useless" cellular components are degraded and recycled. These cellular components, such as incorrectly folded proteins, damaged organelles and other macromolecules, are first engulfed by the autophagosome before being further delivered to lysosomes for degradation. Although autophagy has been recognized involving in organelle degradation of the lens, the detailed functions remain to be discovered. Recent advances have revealed that autophagy not only plays a vital role in the intracellular quality control of the lens but is also involved in the degradation of nonnuclear organelles in the process of lens fiber cell differentiation. Herein, we first review the potential mechanisms of organelle-free zone formation, then discuss the roles of autophagy in intracellular quality control and cataract formation, and finally substantially summarize the potential involvement of autophagy in the development of organelle-free zone formation.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Lixiong Gao
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Jinlin Du
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Tianju Ma
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Wen Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Chen YQ, Gao LD, Liu YL, Shen Y, Diao JL, Yang WH, Wei RL. Autophagy in graves' ophthalmopathy. Front Cell Dev Biol 2023; 11:1158279. [PMID: 37123414 PMCID: PMC10140433 DOI: 10.3389/fcell.2023.1158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is an inflammatory autoimmune disease that affects the eyes. It can significantly alter the quality of life in patients because of its distinctive pathological appearance and the effect on vision. To date, the exact pathological mechanism of GO has not been explicitly discovered. However, several studies have associated autophagy with this disease. Autophagy is a catabolic process that helps maintain homeostasis in all organisms by protecting the cells and tissues from various endogenous and exogenous stress factors. Based on our results, patients affected with GO have comparatively elevated levels of autophagy, which critically affects the pathological mechanism of the GO. In this review, we have summarized the autophagy mechanism in the pathogenesis of GO.
Collapse
Affiliation(s)
- Yu-Qing Chen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Lian-Di Gao
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Yi-Lin Liu
- Department of Nursing, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Jia-Le Diao
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| | - Wei-Hua Yang
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Rui-Li Wei, ; Wei-Hua Yang,
| | - Rui-Li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
- *Correspondence: Rui-Li Wei, ; Wei-Hua Yang,
| |
Collapse
|
5
|
Gao X, Zhang X, Jiang L, Xu J, Liu W, Qian Y, Jiang Y, Jin Q, Hong H, Chen M, Jin Z, Wei Z, Yang Z, Zhang H. Forsythin inhibits β-hydroxybutyrate-induced oxidative stress in bovine macrophages by regulating p38/ERK, PI3K/Akt, and Nrf2/HO-1 signaling pathways. Res Vet Sci 2023; 154:59-65. [PMID: 36463586 DOI: 10.1016/j.rvsc.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/03/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Ketosis is a metabolic disease of dairy cows in the perinatal period, β-hydroxybutyrate (β-HB) is the main component of ketosis. High levels of β-HB can trigger oxidative stress and inflammatory response in dairy cows, leading to decreased milk yield and multiple postpartum diseases. Forsythin (FOR), the major constituent of the herbal medicine Forsythia, has anti-inflammatory, anti-oxidant, and antiviral effects. FOR was demonstrated to have an antioxidant effect on PC12 cells. However, the effects of FOR on β-HB-stimulated bovine macrophages (BMs) has not been reported. Thus, the aim of the present study was to investigate the effects of FOR on β-HB-stimulated BMs. Firstly, the CCK8 test confirmed that FOR (50, 100, 200 μg/mL) has no effect on BMs activity, and we selected these concentrations for subsequent experiments. Secondly, through detecting the oxidation indexes ROS, MDA and antioxidant indexes CAT and SOD, we confirmed the antioxidant effect of FOR on BMs. Next, qRT-PCR confirmed that FOR dramatically reduced the mRNA levels of IL-1β and IL-6. Furthermore, the western blotting confirmed that FOR observably down-regulated β-HB-stimulated phosphorylation of p38, ERK and Akt and up-regulated expression of Nrf2, and HO-1. Above results suggested that FOR plays antioxidant effects on β-HB-induced BMs through p38, ERK and PI3K/Akt, Nrf2 and HO-1 signaling pathways. Therefore, we speculated that FOR may be a potential medicine to alleviate β-HB-induced inflammatory response and provide a preliminary reference for the research and development of FOR.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuxiao Qian
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yuqian Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Qinqin Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Hongrong Hong
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Meiyi Chen
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zha Jin
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Haoji Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
6
|
Ma J, Ye W, Yang Y, Wu T, Wang Y, Li J, Pei R, He M, Zhang L, Zhou J. The interaction between autophagy and the epithelial-mesenchymal transition mediated by NICD/ULK1 is involved in the formation of diabetic cataracts. Mol Med 2022; 28:116. [PMID: 36104669 PMCID: PMC9476327 DOI: 10.1186/s10020-022-00540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cataracts are the leading cause of blindness and a common ocular complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) and altered autophagic activity occur during the development of diabetic cataracts. The disturbed interaction of autophagy with EMT in LECs stimulated by high glucose levels may participate in cataract formation.
Methods
A rat diabetic cataract model induced by streptozotocin (STZ) and human lens epithelial cells (HLE-B3) stimulated with a high glucose concentration were employed in the study. These models were treated with rapamycin (an inhibitor of mammalian target of rapamycin (mTOR)), and N-(N-[3,5-difluorophenacetyl]-1-alanyl)-S-phenylglycine t-butyl ester (DAPT, an inhibitor of γ-secretase) alone or in combination. Lens opacity was observed and photographed under a slit-lamp microscope. Histological changes in paraffin sections of lenses were detected under a light microscope after hematoxylin and eosin staining. Alterations of autophagosomes in LECs were counted and evaluated under a transmission electron microscope. The expression levels of proteins involved in the EMT, autophagy, and the signaling pathways in LECs were measured using Western blotting and immunofluorescence staining. Cell migration was determined by performing transwell and scratch wound assays. Coimmunoprecipitation (Co-IP) was performed to verify protein-protein interactions. Proteins were overexpressed in transfected cells to confirm their roles in the signaling pathways of interest.
Results
In LECs, a high glucose concentration induces the EMT by activating Jagged1/Notch1/Notch intracellular domain (NICD)/Snail signaling and inhibits autophagy through the AKT/mTOR/unc 51-like kinase 1 (ULK1) signaling pathway in vivo and in vitro, resulting in diabetic cataracts. Enhanced autophagic activity induced by rapamycin suppressed the EMT by inducing Notch1 degradation by SQSTM1/p62 and microtubule-associated protein light chain 3 (LC3) in LECs, while inhibition of the Notch signaling pathway with DAPT not only prevented the EMT but also activated autophagy by decreasing the levels of NICD, which bound to ULK1, phosphorylated it, and then inhibited the initiation of autophagy.
Conclusions
We describe a new interaction of autophagy and the EMT involving NICD/ULK1 signaling, which mediates crosstalk between these two important events in the formation of diabetic cataracts. Activating autophagy and suppressing the EMT mutually promote each other, revealing a potential target and strategy for the prevention of diabetic cataracts.
Collapse
|
7
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
8
|
Cui Y, Yang H, Shi S, Ping X, Zheng S, Tang X, Yu X, Shentu X. TP53INP2 Contributes to TGF-β2-Induced Autophagy during the Epithelial–Mesenchymal Transition in Posterior Capsular Opacification Development. Cells 2022; 11:cells11152385. [PMID: 35954230 PMCID: PMC9368444 DOI: 10.3390/cells11152385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Posterior capsule opacification (PCO) is the most common complication after cataract surgery, in which increased levels of transforming growth factor-beta 2 (TGF-β2) accelerate PCO formation; however, the pathological mechanisms are not fully understood. This study aims to explore the regulation mechanism of TGF-β2 in PCO formation via its autophagic functions. Methods: The autophagic effect of TGF-β2 was detected by transmission electron microscopy (TEM), Western blotting, and immunofluorescence analysis. The association between autophagy and the epithelial–mesenchymal transition (EMT) was evaluated by qPCR and Western blotting. The transcriptome analysis was used to uncover the molecular mechanism of TGF-β2-induced PCO formation. Results: TGF-β2 specifically promotes autophagy flux in human lens epithelial cells. The activation of autophagy by rapamycin can promote EMT marker synthesis and improve cell migration. However, the inhibition of autophagy by 3-MA attenuates EMT. To uncover the molecular mechanisms, we performed RNA sequencing and found that TGF-β2 elevated tumor protein p53-inducible nuclear protein2 (TP53INP2) expression, which was accompanied by a nuclear-to-cytoplasm translocation. Moreover, the knockdown of TP53INP2 blocked the TGF-β2-induced autophagy and EMT processes, revealing that TP53INP2 plays an important role in TGF-β2-induced autophagy during EMT. Conclusions: Taken together, the results of this study suggested that TP53INP2 was a novel regulator of PCO development by TGF-β2, and notably, TP53INP2, may be a potential target for the pharmacological treatment of PCO.
Collapse
Affiliation(s)
- Yilei Cui
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Hao Yang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Silu Shi
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Xiyuan Ping
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Sifan Zheng
- GKT School of Medical Education, King’s College London, London WC2R 2LS, UK;
| | - Xiajing Tang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Xiaoning Yu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
| | - Xingchao Shentu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; (Y.C.); (H.Y.); (S.S.); (X.P.); (X.T.); (X.Y.)
- Zhejiang Provincial Key Lab of Ophthalmology, Hangzhou 310009, China
- Correspondence: ; Tel.: +86-0571-13515818860
| |
Collapse
|
9
|
Miyahara H, Hasegawa K, Yashiro M, Ohara T, Fujisawa M, Yoshimura T, Matsukawa A, Tsukahara H. Thioredoxin interacting protein protects mice from fasting induced liver steatosis by activating ER stress and its downstream signaling pathways. Sci Rep 2022; 12:4819. [PMID: 35314758 PMCID: PMC8938456 DOI: 10.1038/s41598-022-08791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, fasting results in decreased protein disulfide isomerase (PDI) activity and accumulation of unfolded proteins, leading to the subsequent activation of the unfolded protein response (UPR)/autophagy signaling pathway to eliminate damaged mitochondria. Fasting also induces upregulation of thioredoxin-interacting protein (TXNIP) expression and mice deficient of this protein (TXNIP-KO mice) was shown to develop severe hypoglycemia, hyperlipidemia and liver steatosis (LS). In the present study, we aimed to determine the role of TXNIP in fasting-induced LS by using male TXNIP-KO mice that developed LS without severe hypoglycemia. In TXNIP-KO mice, fasting induced severe microvesicular LS. Examinations by transmission electron microscopy revealed mitochondria with smaller size and deformities and the presence of few autophagosomes. The expression of β-oxidation-associated genes remained at the same level and the level of LC3-II was low. PDI activity level stayed at the original level and the levels of p-IRE1 and X-box binding protein 1 spliced form (sXBP1) were lower. Interestingly, treatment of TXNIP-KO mice with bacitracin, a PDI inhibitor, restored the level of LC3-II after fasting. These results suggest that TXNIP regulates PDI activity and subsequent activation of the UPR/autophagy pathway and plays a protective role in fasting-induced LS.
Collapse
Affiliation(s)
- Hiroyuki Miyahara
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Kosei Hasegawa
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masato Yashiro
- Department of Pediatrics, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokazu Tsukahara
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
10
|
Dong D, Wu J, Sheng L, Gong X, Zhang Z, Yu C. FUNDC1 induces apoptosis and autophagy under oxidative stress via PI3K/Akt/mTOR pathway in cataract lens cells. Curr Eye Res 2022; 47:547-554. [PMID: 35179404 DOI: 10.1080/02713683.2021.2021586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This purpose of the study is to explore the mRNA and protein expression of FUNDC1 in cataract cells and tissues, clarify the function and mechanism of FUNDC1 in cataract cells under oxidative stress. METHODS We used bioinformatic analysis to screen DEGs in cataract from GSE153933. The expression of FUNDC1 in cataract specimens and cells was measured by RT-qPCR and western blotting. MethPrimer was used to predict CpG island of FUNDC1 promoter. The methylation of FUNDC1 in cataract specimens and cells was determined by MSP assay. Flow cytometry assay was used to measure cell apoptosis in FUNDC1-knockdown and -overexpression SRA01/04 cells. The expression of LC3 was analyzed by immunofluorescence assay. The expression of apoptosis related proteins, autophagy and PI3K/Akt/mTOR related proteins was determined by western blotting. RESULTS The results of bioinformatic analysis revealed that FUNDC1 was upregulation in cataract. FUNDC1 was further high expression in SRA01/04 cells with H2O2 treatment whereas hypomethylation of FUNDC1 in cataract lens cells under oxidative stress. Knockdown of FUNDC1 decreased cell apoptosis and autophagy compared with negative control of SRA01/04 cells. While overexpression of FUNDC1 elevated cell apoptosis and autophagy compared to empty vector group in SRA01/04 cells. Mechanically, FUNDC1 reduced the phosphorylation of PI3K/Akt/mTOR pathway under oxidative stress in SRA01/04 cells. CONCLUSION Our study suggested that FUNDC1 deficiency restrains cell apoptosis and autophagy through inhibiting PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Duo Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Jing Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Lijie Sheng
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Xuewu Gong
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Zhichang Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Caihan Yu
- Department of Ophthalmology, Xianning Central Hospital, The first Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| |
Collapse
|
11
|
Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions. Antioxidants (Basel) 2021; 10:antiox10121884. [PMID: 34942987 PMCID: PMC8698322 DOI: 10.3390/antiox10121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an essential process for the degradation of non-useful components, although the mechanism involved in its regulation is less known in plants than in animal systems. Redox regulation of autophagy components is emerging as a possible key mechanism with thioredoxins (TRXs) proposed as involved candidates. In this work, using overexpressing PsTRXo1 tobacco cells (OEX), which present higher viability than non-overexpressing cells after H2O2 treatment, we examine the functional interaction of autophagy and PsTRXo1 in a collaborative response. OEX cells present higher gene expression of the ATG (Autophagy related) marker ATG4 and higher protein content of ATG4, ATG8, and lipidated ATG8 as well as higher ATG4 activity than control cells, supporting the involvement of autophagy in their response to H2O2. In this oxidative situation, autophagy occurs in OEX cells as is evident from an accumulation of autolysosomes and ATG8 immunolocalization when the E-64d autophagy inhibitor is used. Interestingly, cell viability decreases in the presence of the inhibitor, pointing to autophagy as being involved in cell survival. The in vitro interaction of ATG4 and PsTRXo1 proteins is confirmed by dot-blot and co-immunoprecipitation assays as well as the redox regulation of ATG4 activity by PsTRXo1. These findings extend the role of TRXs in mediating the redox regulation of the autophagy process in plant cells.
Collapse
|
12
|
Wang Y, Wu Z, Huang Y, Zhang Y. Hsa_circ_0004058 inhibits apoptosis of SRA01/04 cells by promoting autophagy via miR-186/ATG7 axis. Exp Eye Res 2021; 211:108721. [PMID: 34375588 DOI: 10.1016/j.exer.2021.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Senile cataract is a common age-related disease in ophthalmology. Hsa_circ_0004058 has been reported to be down-regulated in the lens epithelial cells of senile cataract patients, suggesting that hsa_circ_0004058 is associated with senile cataract. However, the underlying mechanism is still unknown. This study attempted to determine the functional role of hsa_circ_0004058 in senile cataract. We treated human lens epithelial cells (SRA01/04) with H2O2 as senile cataract model, and found that cell viability and autophagy of SRA01/04 cells were severely decreased by H2O2 treatment. Hsa_circ_0004058 was notably down-regulated in H2O2-treated SRA01/04 cells. Moreover, hsa_circ_0004058 overexpression reduced apoptotic cells and the expression of Cleaved-caspase-3 and Bax, and enhanced Bcl-2 expression in H2O2-treated SRA01/04 cells. However, hsa_circ_0004058 silencing caused the opposite results. Hsa_circ_0004058 up-regulation accelerated the expression of autophagy-related proteins LC3-II/LC3-I and Beclin-1 in H2O2-treated SRA01/04 cells, which was partly abolished by 3-Methyladenine (autophagy inhibitor). Additionally, hsa_circ_0004058 functioned as a competing endogenous RNA to competitive binding miR-186, and thus accelerated the expression of its down-stream target, ATG7. Hsa_circ_0004058 promoted autophagy of SRA01/04 cells by regulating miR-186/ATG7 axis. In conclusion, these data demonstrates that hsa_circ_0004058 inhibits apoptosis of SRA01/04 cells by promoting autophagy, which attributes to regulate miR-186/ATG7 axis. Thus, hsa_circ_0004058 may be a potential target for senile cataract treatment.
Collapse
Affiliation(s)
- Yingfei Wang
- Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No 7 Weiwu Road, Zhengzhou, 450003, China.
| | - Zhong Wu
- Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No 7 Weiwu Road, Zhengzhou, 450003, China
| | - Yalin Huang
- Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No 7 Weiwu Road, Zhengzhou, 450003, China
| | - Ying Zhang
- Department of Ophthalmology, Henan Provincial People's Hospital, Henan Eye Hospital, Henan Eye Institute, No 7 Weiwu Road, Zhengzhou, 450003, China
| |
Collapse
|
13
|
Autophagy attenuates high glucose-induced oxidative injury to lens epithelial cells. Biosci Rep 2021; 40:222411. [PMID: 32186721 PMCID: PMC7109002 DOI: 10.1042/bsr20193006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose: Autophagic dysfunction and abnormal oxidative stress are associated with cataract. The purpose of the present study was to investigate the changes of cellular autophagy and oxidative stress and their association in lens epithelial cells (LECs) upon exposure to high glucose. Methods: Autophagy and oxidative stress-related changes were detected in streptozotocin-induced Type 1 diabetic mice and normal mouse LECs incubated in high glucose conditions. Rapamycin at a concentration of 100 nm/l or 50 μM chloroquine was combined for analysis of the relationship between autophagy and oxidative stress. The morphology of LECs during autophagy was observed by transmission electron microscopy. The expressions of autophagy markers (LC3B and p62) were identified, as well as the key factors of oxidative stress (SOD2 and CAT) and mitochondrial reactive oxygen species (ROS) generation. Results: Transmission electron microscopy indicated an altered autophagy activity in diabetic mouse lens tissues with larger autophagosomes and multiple mitochondria. Regarding the expressions, LC3B was elevated, p62 was decreased first and then increased, and SOD2 and CAT were increased before a decrease during 4 months of follow-up in diabetic mice and 72 h of culture under high glucose for mouse LECs. Furthermore, rapamycin promoted the expressions of autophagy markers but alleviated those of oxidative stress markers, whereas chloroquine antagonized autophagy but enhanced oxidative stress by elevating ROS generation in LECs exposed to high glucose. Conclusions: The changes in autophagy and oxidative stress were fluctuating in the mouse LECs under constant high glucose conditions. Autophagy might attenuate high glucose-induced oxidative injury to LECs.
Collapse
|
14
|
Cao Y, Li P, Zhang G, Kang L, Zhou T, Wu J, Wang Y, Wang Y, Chen X, Guan H. MicroRNA Let-7c-5p-Mediated Regulation of ERCC6 Disrupts Autophagic Flux in Age-Related Cataract via the Binding to VCP. Curr Eye Res 2021; 46:1353-1362. [PMID: 33703976 DOI: 10.1080/02713683.2021.1900273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose: DNA damage contributes to the pathogenesis of age-related cataract (ARC) and is repaired through the nucleotide excision repair (NER) pathway, which includes ERCC6. Evidence has demonstrated that defective autophagy leads to lens organelle degradation and cataract. This study aimed to investigate the effects of ERCC6 on autophagy and determine its mechanisms in ARC.Methods: The clinical case-control study comprised 30 patients with ARC and 30 age-matched controls who received transparent lens extraction. Transmission electron microscopy was used to assess the ultrastructure of autophagic vesicles in lens anterior capsule tissues and lens epithelial cell line (SRA01/04). Real-time polymerase chain reaction and western blot analyses were performed to measure relative gene expression levels. Gene expression levels and localization were assessed by immunofluorescence. A coimmunoprecipitation assay was used to investigate the relationship between CSB which encoded by ERCC6 and VCP. ERCC6-siRNA and let-7 c-5p mimic were used to alter the expression of ERCC6 and let-7 c-5p.Results: Autophagy induction occurred in lens anterior capsule tissues of patients with ARC and in UVB-induced SRA01/04 cells, where the number of LC3B puncta was increased. Consistent with this result, the expression of beclin1 (BECN1) and LC3B, in addition to that of p62, was increased. Additionally, ERCC6 expression decreased, and silencing ERCC6 induced increases in the expression of BECN1, LC3B and p62. Moreover, CSB interacted with VCP, and let-7 c-5p induced dysregulation of autophagy by targeting ERCC6.Conclusion: In ARC, Let-7 c-5p-mediated downregulation of ERCC6 might prevent the degradation of autophagic vacuoles. CSB binds to VCP, inducing autophagosomes to combine with lysosomes and be degraded.
Collapse
Affiliation(s)
- Yu Cao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Tianqiu Zhou
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ying Wang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
The Role of Autophagy in Eye Diseases. Life (Basel) 2021; 11:life11030189. [PMID: 33673657 PMCID: PMC7997177 DOI: 10.3390/life11030189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a catabolic process that ensures homeostasis in the cells of our organism. It plays a crucial role in protecting eye cells against oxidative damage and external stress factors. Ocular pathologies of high incidence, such as age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy are of multifactorial origin and are associated with genetic, environmental factors, age, and oxidative stress, among others; the latter factor is one of the most influential in ocular diseases, directly affecting the processes of autophagy activity. Alteration of the normal functioning of autophagy processes can interrupt organelle turnover, leading to the accumulation of cellular debris and causing physiological dysfunction of the eye. The aim of this study is to review research on the role of autophagy processes in the main ocular pathologies, which have a high incidence and result in high costs for the health system. Considering the role of autophagy processes in cell homeostasis and cell viability, the control and modulation of autophagy processes in ocular pathologies could constitute a new therapeutic approach.
Collapse
|
16
|
Let-7c-3p Regulates Autophagy under Oxidative Stress by Targeting ATG3 in Lens Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6069390. [PMID: 32258130 PMCID: PMC7102475 DOI: 10.1155/2020/6069390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Background Oxidative stress is an important factor during age-related cataract formation. Apoptosis and autophagy induced by oxidative stress have been reported as key factors in age-related cataract. In our research, we investigated the role of let-7c-3p in the regulation of autophagy and apoptosis during the formation of age-related cataract. Material and Methods. Real-time PCR and western blot were employed to detect the expression of let-7c-3p in the tissues of age-related cataract. Human lens epithelial cells (LECs) were treated with H2O2 as an age-related cataract model. The extent of apoptosis was measured by flow cytometry and western blot. To detect autophagy, immunofluorescence was used to analyze the spot number of LC3, and western blot was used to detect the expression of LC3-II/I and ATG3. The molecular mechanisms of let-7c-3p regulating autophagy via ATG3 under oxidative stress were performed by a luciferase report gene assay and rescue experiment. Results Downregulation of let-7c-3p was found in the age-related cataract group aged >65 years relative to the age-related cataract group aged ≤65 years. Consistently, the expression of let-7c-3p was also lower under oxidative stress. The activities of LEC apoptosis and autophagy induced by oxidative stress were inhibited by let-7c-3p. By the bioinformatics database and the luciferase reporter assay, ATG3 was found to be a direct target of let-7c-3p. Let-7c-3p reduced the ATG3-mediated autophagy level, which was induced by oxidative stress in LECs. Conclusion Let-7c-3p inhibits autophagy by targeting ATG3 in LECs in age-related cataract.
Collapse
|
17
|
Autophagy and Age-Related Eye Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763658. [PMID: 31950044 PMCID: PMC6948295 DOI: 10.1155/2019/5763658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Background Autophagy is a catabolic process that depends on the lysosome. It is usually used to maintain cellular homeostasis, survival and development by degrading abnormal substances and dysfunctional organelles, especially when the cell is exposed to starvation or other stresses. Increasing studies have reported that autophagy is associated with various eye diseases, of which aging is one of the important factors. Objective To summarize the functional and regulatory role of autophagy in ocular diseases with aging, and discuss the possibility of autophagy-targeted therapy in age-related diseases. Methods PubMed searches were performed to identify relevant articles published mostly in the last 5 years. The key words were used to retrieve including “autophagy”, “aging”, “oxidative stress AND autophagy”, “dry eye AND autophagy”, “corneal disease AND autophagy”, “glaucoma AND autophagy”, “cataract AND autophagy”, “AMD AND autophagy”, “cardiovascular diseases AND autophagy”, “diabetes AND autophagy”. After being classified and assessed, the most relevant full texts in English were chosen. Results Apart from review articles, more than two research articles for each age-related eye diseases related to autophagy were retrieved. We only included the most relevant and recent studies for summary and discussion. Conclusion Autophagy has both protective and detrimental effects on the progress of age-related eye diseases. Different types of studies based on certain situations in vitro showed distinct results, which do not necessarily coincide with the actual situation in human bodies completely. It means the exact role and regulatory function of autophagy in ocular diseases remains largely unknown. Although autophagy as a potential therapeutic target has been proposed, many problems still need to be solved before it applies to clinical practice.
Collapse
|
18
|
Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 2019; 120:19635-19646. [PMID: 31338869 DOI: 10.1002/jcb.29270] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Age-related cataract is one of the prior causes of blindness and the incidence rates of cataract are even rising. Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, lens epithelial cell (LEC cell) apoptosis is activated, which might lead to the opacity of the lens and accelerate the progression of cataract development. Meanwhile, autophagy is also active to face oxidative stress. miRNAs have been reported to involve cataract. However, the underlying mechanism is not clear. The present study aimed to investigate the regulatory effect of miR23b-3p on apoptosis and autophagy in LEC cells under oxidative stress. The expression levels of miR-23b-3p were examined in age-related cataract tissues and LEC cells treated with hydrogen peroxide, showing that miR23b-3p expression levels were upregulated. Knockdown of miR23b-3p expression in LEC cells brought about apoptosis significantly decreased while autophagy significantly increased during hydrogen peroxide. We predicted microRNA miRNA-23b-3p might participate in regulating silent information regulator 1 (SIRT1) by bioinformatics database of TargetScan. Luciferase reporter assays confirmed that miRNA-23b-p could suppress SIRT1 expression by binding its 3'UTR. In addition, overexpression or knockdown of miR-23b-3p could decrease or increase SIRT1 expression, which indicated that Mir-23b-3p could suppress SIRT1 expression. In addition, enhanced SIRT1 could attenuate the regulation of cell apoptosis and autophagy induced by overexpression of miR-23b-3p. Taken together, our findings revealed that miR-23b-3p regulated apoptosis and autophagy via suppressing SIRT1 in LEC cell under oxidative stress, which could provide new ideas for clinical treatment of cataract.
Collapse
Affiliation(s)
- Wenkai Zhou
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunxia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong Shi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qichang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zou X, Kang L, Yang M, Wu J, Guan H. MicroRNA binding mediated Functional sequence variant in 3'-UTR of DNA repair Gene XPC in Age-related Cataract. Sci Rep 2018; 8:15198. [PMID: 30315181 PMCID: PMC6185952 DOI: 10.1038/s41598-018-33071-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
DNA oxidative damage repair is strongly involved in the pathogenesis of age-related cataract (ARC). The sequence variants of in coding region of DNA repair genes have been shown to be associated with ARC. It is known that single nucleotide polymorphisms (SNPs) in the 3′-terminal untranslated region (3′-UTR) can alter the gene expression by binding with microRNAs (miRNAs). We hypothesize that SNP(s) in miRNA binding site of certain DNA oxidative damage repair genes might associate with ARC risk. We examined 10 miRNA binding SNPs in 3′-UTR of 7 oxidative damage genes and revealed the XPC- rs2229090 C allele was associated with nuclear type of ARC (ARNC) risk in Chinese population. The individuals with the variant G allele (CG and GG) of XPC- rs2229090 had higher XPC mRNA expression compared to individuals carrying CC genotype. The in vitro assay showed that luciferase reporter gene expression can be down regulated by hsa-miR-589-5p in cells transfected with rs2229090 C allele compared to G allele. These results suggested that the C allele of XPC-2229090 increase the risk with ARNC. The mechanism underlying might be due to the stronger interation of the C allele with hsa-miR-589-5p, resulting in lower XPC expression and DNA repair capability than the individuals carring G allele in lens.
Collapse
Affiliation(s)
- Xi Zou
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,The Third People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Lihua Kang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Wu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaijin Guan
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
20
|
The Function of Thioredoxin-Binding Protein-2 (TBP-2) in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4582130. [PMID: 29854083 PMCID: PMC5954861 DOI: 10.1155/2018/4582130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Thioredoxin-binding protein-2 (TBP-2) has an important role in the redox system, but it plays a different role in many different diseases (e.g., various cancers, diabetes mellitus (DM), cardiovascular disease, and cataracts) by influencing cell proliferation, differentiation, apoptosis, autophagy, and metabolism. Distinct transcription factors (TFs) stimulated by different factors combine with binding sites or proteins to upregulate or downregulate TBP-2 expression, in order to respond to the change in the internal environment. Most research disclosed that the main function of TBP-2 is associating with thioredoxin (Trx) to inhibit the antioxidant capacity of Trx. Furthermore, the TBP-2 located in tissues, whether normal or abnormal, has the ability to cause the dysfunctioning of cells and even death through different pathways, such as shortening the cell cycle and inducing apoptosis or autophagy. Through these studies, we found that TBP-2 promoted the development of diseases which are involved in inflammatory and oxidative damage. To a certain extent, we believe that there is some hidden connection between the biological functions which TBP-2 participates in and some distinct diseases. This review presents only a summary of the roles that TBP-2 plays in cancer, DM, cataracts, and so on, as well as its universal mechanisms. Further investigations are needed for the cell signaling pathways of the effects caused by TBP-2. A greater understanding of the mechanisms of TBP-2 could produce potential new targets for the treatment of diseases, including cancer and diabetes, cardiovascular disease, and cataracts.
Collapse
|
21
|
Li CJ, Liao WT, Wu MY, Chu PY. New Insights into the Role of Autophagy in Tumor Immune Microenvironment. Int J Mol Sci 2017; 18:ijms18071566. [PMID: 28753959 PMCID: PMC5536054 DOI: 10.3390/ijms18071566] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment is a complex system that is affected by various factors, including hypoxia, acidosis, and immune and inflammatory responses, which have significant effects on tumor adhesion, invasion, metastasis, angiogenesis, and autophagy. In this hostile tumor microenvironment, autophagy of tumor cells can promote tumor growth and metastasis. As autophagy is a double-edged sword in tumors, treatment of cancer via regulation of autophagy is extremely complicated. Therefore, understanding the relationship between tumor autophagy and the tumor microenvironment is extremely important. As the immune milieu plays an important role in tumor development, immunotherapy has become a promising form of cancer therapy. A multi-pronged treatment approach using immunotherapy and molecular targets may become the major direction for future cancer treatments. This article reviews existing knowledge regarding the immune factors in the tumor microenvironment and the status of tumor autophagy research.
Collapse
Affiliation(s)
- Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Wan-Ting Liao
- Chinese Medicine Department, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
22
|
Yang X, Huo F, Liu B, Liu J, Chen T, Li J, Zhu Z, Lv B. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci 2017; 61:581-589. [PMID: 28238066 DOI: 10.1007/s12031-017-0899-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/10/2017] [Indexed: 01/24/2023]
Abstract
Diabetic retinopathy (DR) is a serious microvascular complication of diabetes mellitus that is closely associated with the degeneration and loss of retinal ganglion cells (RGCs) caused by diabetic microangiopathy and subsequent oxidative stress and an inflammatory response. Microglial cells are classed as neurogliocytes and play a significant role in neurodegenerative diseases. Over-activated microglial cells may cause neurotoxicity and induce the death and apoptosis of RGCs. Crocin is one of the two most pharmacologically bioactive constituents in saffron. In the present study, we focused on the role of microglial cells in DR, suggesting that DR may cause the over-activation of microglial cells and induce oxidative stress and the release of pro-inflammatory factors. Microglial cells BV-2 and N9 were cultured, and high-glucose (HG) and free fatty acid (FFA) were used to simulate diabetes. The results showed that HG-FFA co-treatment caused the up-regulated expression of CD11b and Iba-1, indicating that BV-2 and N9 cells were over-activated. Moreover, oxidative stress markers and pro-inflammatory factors were significantly enhanced by HG-FFA treatment. We found that crocin prevented the oxidative stress and pro-inflammatory response induced by HG-FFA co-treatment. Moreover, using the PI3K/Akt inhibitor LY294002, we revealed that PI3K/Akt signaling plays a significant role in blocking oxidative stress, suppressing the pro-inflammatory response, and maintaining the neuroprotective effects of crocin. In total, these results provide a new insight into DR and DR-induced oxidative stress and the inflammatory response, which provide a potential therapeutic target for neuronal damage, vision loss, and other DR-induced complications.
Collapse
Affiliation(s)
- Xinguang Yang
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bei Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Jing Liu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Junping Li
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Zhongqiao Zhu
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| | - Bochang Lv
- Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Guangren Hospital Affiliated to School of Medicine of Xi'an Jiaotong University, No. 21 Jiefang Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|