1
|
Hu L, Liu L, Zhan C, Liu X, Liu C, Li Y, Bai Z, Yang Y. Creating NADP + -Specific Formate Dehydrogenases from Komagataella phaffii by Enzymatic Engineering. Chembiochem 2023; 24:e202300587. [PMID: 37783667 DOI: 10.1002/cbic.202300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Most natural formate dehydrogenases (FDHs) exhibit NAD+ specificity, making it imperative to explore the engineering of FDH cofactor specificity for NADPH regeneration systems. The endogenous FDH of Komagataella phaffii (K. phaffii), termed KphFDH, is a typical NAD+ -specific FDH. However, investigations into engineering the cofactor specificity of KphFDH have yet to be conducted. To develop an NADP+ -specific variant of KphFDH, we selected D195, Y196, and Q197 as mutation sites and generated twenty site-directed variants. Through kinetic characterization, KphFDH/V19 (D195Q/Y196R/Q197H) was identified as the variant with the highest specificity towards NADP+ , with a ratio of catalytic efficiency (kcat /KM )NADP+ /(kcat /KM )NAD+ of 129.226. Studies of enzymatic properties revealed that the optimal temperature and pH for the reduction reaction of NADP+ catalyzed by KphFDH/V19 were 45 °C and 7.5, respectively. The molecular dynamics (MD) simulation was performed to elucidate the mechanism of high catalytic activity of KphFDH/V19 towards NADP+ . Finally, KphFDH/V19 was applied to an in vitro NADPH regeneration system with Meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH/H227V). This study successfully created a KphFDH variant with high NADP+ specificity and demonstrated its practical applicability in an in vitro NADPH regeneration system.
Collapse
Affiliation(s)
- Liyuan Hu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Luyao Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunjun Zhan
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Ye Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
2
|
He Q, Jin J, Li P, Zhu H, Wang Z, Fan W, Yang JL. Involvement of SlSTOP1 regulated SlFDH expression in aluminum tolerance by reducing NAD + to NADH in the tomato root apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:387-401. [PMID: 36471650 DOI: 10.1111/tpj.16054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 μm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.
Collapse
Affiliation(s)
- Qiyu He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Jin
- Department of Horticulture, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Wei Fan
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Yang JI, Lee SH, Ryu JY, Lee HS, Kang SG. A Novel NADP-Dependent Formate Dehydrogenase From the Hyperthermophilic Archaeon Thermococcus onnurineus NA1. Front Microbiol 2022; 13:844735. [PMID: 35369452 PMCID: PMC8965080 DOI: 10.3389/fmicb.2022.844735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of the hyperthermophilic archaeon Thermococcus onnurineus NA1 contains three copies of the formate dehydrogenase (FDH) gene, fdh1, fdh2, and fdh3. Previously, we reported that fdh2, clustered with genes encoding the multimeric membrane-bound hydrogenase and cation/proton antiporter, was essential for formate-dependent growth with H2 production. However, the functionality of the other two FDH-coding genes has not yet been elucidated. Herein, we purified and characterized cytoplasmic Fdh3 to understand its functionality. The purified Fdh3 was identified to be composed of a tungsten-containing catalytic subunit (Fdh3A), an NAD(P)-binding protein (Fdh3B), and two Fe-S proteins (Fdh3G1 and Fdh3G2). Fdh3 oxidized formate with specific activities of 241.7 U/mg and 77.4 U/mg using methyl viologen and NADP+ as electron acceptors, respectively. While most FDHs exhibited NAD+-dependent formate oxidation activity, the Fdh3 of T. onnurineus NA1 showed a strong preference for NADP+ over NAD+ as a cofactor. The catalytic efficiency (k cat /K m) of Fdh3 for NADP+ was measured to be 5,281 mM-1 s-1, which is the highest among NADP-dependent FDHs known to date. Structural modeling suggested that Arg204 and Arg205 of Fdh3B may contribute to the stabilization of the 2'-phosphate of NADP(H). Fdh3 could also use ferredoxin as an electron acceptor to oxidize formate with a specific activity of 0.83 U/mg. Furthermore, Fdh3 showed CO2 reduction activity using reduced ferredoxin or NADPH as an electron donor with a specific activity of 0.73 U/mg and 1.0 U/mg, respectively. These results suggest a functional role of Fdh3 in disposing of reducing equivalents by mediating electron transfer between formate and NAD(P)H or ferredoxin.
Collapse
Affiliation(s)
- Ji-In Yang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Seong Hyuk Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Ji-Young Ryu
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Centre, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, KIOST School, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
5
|
Effect of Met/Leu substitutions on the stability of NAD+-dependent formate dehydrogenases from Gossypium hirsutum. Appl Microbiol Biotechnol 2021; 105:2787-2798. [PMID: 33754169 DOI: 10.1007/s00253-021-11232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
NAD+-dependent formate dehydrogenases (FDHs) are extensively used in the regeneration of NAD(P)H and the reduction of CO2 to formate. In addition to their industrial importance, FDHs also play a crucial role in the maintenance of a reducing environment to combat oxidative stress in plants. Therefore, it is important to investigate the response of NAD+-dependent FDH against both temperature and H2O2, to understand the defense mechanisms, and to increase its stability under oxidative stress conditions. In the present study, we characterized the oxidative and thermal stability of NAD+-dependent FDH isolated from cotton, Gossypium hirsutum (GhFDH), by investigating the effect of Met/Leu substitutions in the positions of 225, 234, and 243. Results showed that the single mutant, M234L (0.72 s-1 mM-1), and the triple mutant, M225L/M234L/M243L (0.55 s-1 mM-1), have higher catalytic efficiency than the native enzyme. Substitution of methionine by leucine on the position of 243 increased the free energy gain by 670 J mol-1. The most remarkable results in chemical stability were seen for double and triple mutants, cumulatively. Double and triple substitution of Met to Leu (M225L/M243L and M225L/M243L/M234L) reduce the kefin by a factor of 2 (12.3×10-5 and 12.8×10-5 s-1, respectively.Key points• The closer the residue to NAD+, in which we substituted methionine to leucine, the lower the stability against H2O2 we observed.• The significant gain in the Tm value for the M243L mutant was observed as +5°C.• Residue 234 occupies a critical position for oxidation defense mechanisms. Graphical abstract (a) Methionine amino acids on the protein surface are susceptible to oxidative stress and can be converted to methionine sulfoxide by reactive oxygen derivatives (such as hydrogen peroxide). Therefore, they are critical regions in the change of protein conformation and loss of activity. (b) Replacing the amino acid methionine, which is susceptible to oxidation due to the sulfur group, with the oxidation-resistant leucine amino acid is an important strategy in increasing oxidative stability.
Collapse
|
6
|
Alpdagtas S, Binay B. Nadp+-dependent formate dehydrogenase: a review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1865933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saadet Alpdagtas
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Tusba, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
7
|
Robescu MS, Rubini R, Beneventi E, Tavanti M, Lonigro C, Zito F, Filippini F, Cendron L, Bergantino E. From the Amelioration of a NADP
+
‐dependent Formate Dehydrogenase to the Discovery of a New Enzyme: Round Trip from Theory to Practice. ChemCatChem 2020. [DOI: 10.1002/cctc.201902089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marina Simona Robescu
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Rudy Rubini
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Elisa Beneventi
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Michele Tavanti
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Chiara Lonigro
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires UMR7099, CNRS, IBPC, Université Paris Diderot Sorbonne Paris Cité 13 rue Pierre et Marie Curie 75005 Paris France
| | - Francesca Zito
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires UMR7099, CNRS, IBPC, Université Paris Diderot Sorbonne Paris Cité 13 rue Pierre et Marie Curie 75005 Paris France
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Laura Cendron
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit Department of Biology University of Padova via U. Bassi 58B/viale G. Colombo 3 I-35131 Padova Italy
| |
Collapse
|
8
|
|
9
|
Kurt-Gür G, Demirci H, Sunulu A, Ordu E. Stress response of NAD +-dependent formate dehydrogenase in Gossypium hirsutum L. grown under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31679-31690. [PMID: 30209765 DOI: 10.1007/s11356-018-3145-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cotton (Gossypium hirsutum L.), which is not directly involved in the food chain, appears to be a suitable candidate to remove heavy metals from the food chain and to be a commercial plant which could be planted in contaminated soils. The key point of this approach is selection of the right genotype, which has heavy metal resistance or hyperaccumulation properties. Therefore, in the present study, two G. hirsutum genotypes, Erşan-92 and N-84S, were grown under copper stress and investigated to obtain further insights about the heavy metal tolerance mechanisms of plants by focusing on the expression of NAD+-dependent formate dehydrogenase (FDH). In accordance with the results, which were obtained from RT-PCR analysis and activity measurements, in the Erşan-92 root tissue, FDH activity increased significantly with increasing metal concentrations and a 6.35-fold higher FDH activity was observed in the presence of 100-μM Cu. As opposed to Erşan-92, the maximum FDH activity in the roots of N-84S, which were untreated with copper as the control plants, was measured as 0.0141-U mg-1 g-1 FW, and the activity decreased significantly with the increasing metal concentrations. The metallothionein (GhMT3a) transcript level of the plants grown in a medium containing different Cu concentrations showed nearly the same pattern as that of the FDH gene transcription. It was observed that while the tolerance of N-84S in the lower Cu concentration reduces remarkably, Erşan-92 continues to struggle up to 100-μM Cu. The results of the SOD analysis also confirm this activity of Erşan-92 against the Cu stress.
Collapse
Affiliation(s)
- Günseli Kurt-Gür
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Hasan Demirci
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Akın Sunulu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Emel Ordu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|