1
|
Römer A, Rawat D, Linn T, Petry SF. Preparation of fatty acid solutions exerts significant impact on experimental outcomes in cell culture models of lipotoxicity. Biol Methods Protoc 2022; 7:bpab023. [PMID: 35036572 PMCID: PMC8754478 DOI: 10.1093/biomethods/bpab023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Free fatty acids are essentially involved in the pathogenesis of chronic diseases such as diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular disease. They promote mitochondrial dysfunction, oxidative stress, respiratory chain uncoupling, and endoplasmic reticulum stress and modulate stress-sensitive pathways. These detrimental biological effects summarized as lipotoxicity mainly depend on fatty acid carbon chain length, degree of unsaturation, concentration, and treatment time. Preparation of fatty acid solutions involves dissolving and complexing. Solvent toxicity and concentration, amount of bovine serum albumin (BSA), and ratio of albumin to fatty acids can vary significantly between equal concentrations, mediating considerable harmful effects and/or interference with certain assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Herein, we studied the impact of commonly used solvents ethanol and dimethyl sulfoxide and varying concentrations of BSA directly and in solution with oleic acid on MTT to formazan conversion, adenosine triphosphate level, and insulin content and secretion of murine β-cell line MIN6 employing different treatment duration. Our data show that experimental outcomes and assay readouts can be significantly affected by mere preparation of fatty acid solutions and should thus be carefully considered and described in detail to ensure comparability and distinct evaluation of data.
Collapse
Affiliation(s)
- Axel Römer
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Divya Rawat
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sebastian F Petry
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. The Impact of Incretin-Based Medications on Lipid Metabolism. J Diabetes Res 2021; 2021:1815178. [PMID: 35005028 PMCID: PMC8731296 DOI: 10.1155/2021/1815178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pathophysiological pathways that are induced by chronic hyperglycemia negatively impact lipid metabolism. Thus, diabetes is commonly accompanied by varying degrees of dyslipidemia which is itself a major risk factor for further macro- and microvascular diabetes complications such as atherosclerosis and nephropathy. Therefore, normalizing lipid metabolism is an attractive goal for therapy in patients with diabetes. Incretin-based medications are a novel group of antidiabetic agents with potent hypoglycemic effects. While the impact of incretins on glucose metabolism is clear, recent evidence indicates their positive modulatory roles on various aspects of lipid metabolism. Therefore, incretins may offer additional beneficial effects beyond that of glucose normalization. In the current review, how these antidiabetic medications can regulate lipid homeostasis and the possible cellular pathways involved are discussed, incorporating related clinical evidence about incretin effects on lipid homeostasis.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zhang Y, Gao S, Liang K, Wu Z, Yan X, Liu W, Li J, Wu B, Du Y. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs. SCIENCE ADVANCES 2021; 7:eabi4379. [PMID: 34215590 PMCID: PMC11060038 DOI: 10.1126/sciadv.abi4379] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy to combat diabetic-associated metabolic disorders is hindered by impoverished cell survival and limited therapeutic effects under high glucose stress. Here, we genetically engineered MSCs with Exendin-4 (MSC-Ex-4), a glucagon-like peptide-1 (GLP-1) analog, and demonstrated their boosted cellular functions and antidiabetic efficacy in the type 2 diabetes mellitus (T2DM) mouse model. Mechanistically, MSC-Ex-4 achieved self-augmentation and improved survival under high glucose stress via autocrine activation of the GLP-1R-mediated AMPK signaling pathway. Meanwhile, MSC-Ex-4-secreted Exendin-4 suppressed senescence and apoptosis of pancreatic β cells through endocrine effects, while MSC-Ex-4-secreted bioactive factors (e.g., IGFBP2 and APOM) paracrinely augmented insulin sensitivity and decreased lipid accumulation in hepatocytes through PI3K-Akt activation. Furthermore, we encapsulated MSC-Ex-4 in 3D gelatin microscaffolds for single-dose administration to extend the therapeutic effect for 3 months. Together, our findings provide mechanistic insights into Exendin-4-mediated MSCs self-persistence and antidiabetic activity that offer more effective MSC-based therapy for T2DM.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojun Yan
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing 100195, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd., Beijing 100195, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bingjie Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
5
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
6
|
Shen X, Luo L, Yang M, Lin Y, Li J, Yang L. Exendin‑4 inhibits lipotoxicity‑induced oxidative stress in β‑cells by inhibiting the activation of TLR4/NF‑κB signaling pathway. Int J Mol Med 2020; 45:1237-1249. [PMID: 32124969 DOI: 10.3892/ijmm.2020.4490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/02/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the relationship between the protective effects of exendin‑4 (EX‑4) on lipotoxicity‑induced oxidative stress and meta‑inflammation in β‑cells and the toll‑like receptor 4 (TLR4)/NF‑κB signaling pathway. Lipotoxicity, hydrogen peroxide (H2O2)‑induced oxidative stress in β cells, obese Sprague Dawley rats and TLR4 truncation rats were utilized in the present study. The expression levels were detected by western blotting; cell apoptosis was detected by TUNEL assay; and the intracellular reactive oxygen species (ROS) levels were analyzed using a ROS assay kit. The findings of the present study showed that EX‑4 inhibited the expression of TLR4, NF‑κB p65 subunit and p47phox in a concentration‑dependent manner, and decreased the intracellular level of ROS. Additionally, silencing of TLR4 expression enhanced the protective effects of EX‑4, while overexpression of TLR4 attenuated these protective influences. Simultaneously, it was demonstrated that TLR4 was involved in the process of EX‑4 intervention to inhibit H2O2‑induced oxidative stress in islet β‑cells. Moreover, it was found that EX‑4 also inhibited TLR4‑ or NF‑κB agonist‑induced oxidative stress. These results were also confirmed in an animal model of obese rats, in which EX‑4 was able to improve the function of β‑cells, attenuate oxidative stress, and inhibit the expression levels of TLR4 and NF‑κB p65 subunit in the pancreas of the diet‑induced obese rats. Furthermore, truncation of the TLR4 gene in SD rats delayed the aforementioned damage. In summary, EX‑4 may inhibit lipotoxicity‑induced oxidative stress in β‑cells by inhibiting the activation of the TLR4/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ximei Shen
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liufen Luo
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Meng Yang
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yuxi Lin
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Jing Li
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Liyong Yang
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
7
|
Chen X, Yan Y, Weng Z, Chen C, Lv M, Lin Q, Du Q, Shen X, Yang L. TAK-875 Mitigates β-Cell Lipotoxicity-Induced Metaflammation Damage through Inhibiting the TLR4-NF- κB Pathway. J Diabetes Res 2019; 2019:5487962. [PMID: 31934590 PMCID: PMC6942802 DOI: 10.1155/2019/5487962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 01/09/2023] Open
Abstract
Metabolic inflammatory damage, characterized by Toll-like receptor 4 (TLR4) signaling activation, is a major mechanism underlying lipotoxicity-induced β-cell damage. The present study is aimed at determining whether G protein-coupled receptor 4 (GPR40) agonist can improve β-cell lipotoxicity-induced damage by inhibiting the TLR4-NF-κB pathway. Lipotoxicity, inflammation-damaged β-cells, obese SD, and TLR4KO rat models were used in the study. In vitro, TAK-875 inhibited the lipotoxicity- and LPS-induced β-cell apoptosis in a concentration-dependent manner, improved the insulin secretion, and inhibited the expression of TLR4 and NF-κB subunit P65. Besides, silencing of TLR4 expression enhanced the protective effects of TAK-875, while TLR4 overexpression attenuated this protective effect. Activation of TLR4 or NF-κB attenuated the antagonism of TAK-875 on PA-induced damage. Moreover, the above process of TAK-875 was partially independent of GPR40 expression. TAK-875 reduced the body weight and inflammatory factors, rebalanced the number and distribution of α or β-cells, inhibited the apoptosis of islet cells, and inhibited the expression of TLR4 and NF-κB subunit P65 in obese rats. Further knockout of the rat TLR4 gene delayed the damage induced by the high-fat diet and synergy with the action of TAK-875. These data suggest that GPR40 agonists antagonized the lipotoxicity β-cell damage by inhibiting the TLR4-NF-κB pathway.
Collapse
Affiliation(s)
- Xide Chen
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Yuanli Yan
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Zhiyan Weng
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Chao Chen
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Miaoru Lv
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Qingwen Lin
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Qiuxia Du
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
| | - Ximei Shen
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
- Diabetes Research Institute of Fujian Province, Fuzhou, 350005 Fujian, China
| | - Liyong Yang
- Endocrinology Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005 Fujian, China
- Diabetes Research Institute of Fujian Province, Fuzhou, 350005 Fujian, China
| |
Collapse
|
8
|
Liu Y, Dong J, Ren B. MicroRNA-182-5p contributes to the protective effects of thrombospondin 1 against lipotoxicity in INS-1 cells. Exp Ther Med 2018; 16:5272-5279. [PMID: 30546417 DOI: 10.3892/etm.2018.6883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of beta cells serves an important role in the pathogenesis of type 2 diabetes mellitus (T2DM). An improved understanding of the molecular mechanisms underlying beta cell mass and failure will be useful for identifying novel approaches toward preventing and treating this disease. Recent studies have indicated that free fatty acids (FFAs) can cause beta cell dysfunction. In the present study, palmitate (Pal) was used as a FFA and its functions on cell viability and apoptosis were detected. MTT assay and flow cytometry were used and the results revealed that incubation of INS-1 cells with Pal significantly decreased cell viability and increased cell apoptosis. However, a co-incubation with thrombospondin 1 (THBS-1) protected the cells against Pal-induced toxicity. Numerous studies have demonstrated that microRNAs (miRs) are involved in fatty acid-induced beta cell dysfunction. Various studies have reported that miR-182-5p is associated with a number of diseases, including cancer, heart disease, and leukemia. However, to the best of our knowledge miR-182-5p has never been reported to be associated with diabetes. In the present study, miR-182-5p, which is predicted to target the 3'-untranslated region (UTR) of THBS-1, was detected using reverse transcription-quantitative polymerase chain reaction in INS-1 cells in response to Pal. miR-182-5p was significantly increased in Pal-treated cells compared with the control cells. Furthermore, miR-182-5p mimics significantly decreased cell viability and increased Pal-induced apoptosis in INS-1 cells. However, cell viability was increased and Pal-induced apoptosis was decreased in cells that were treated with miR-182-5p inhibitors. The present findings also revealed that overexpression of THBS-1 counteracted the effect of miR-182-5p on cell viability and apoptosis. These results suggested that miR-182-5p is involved in the mechanism of THBS 1 on the modulation of beta cell survival.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Laboratory of Birth Defects and Related Disease of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan 610041, P.R. China
| | - Jiayue Dong
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| | - Bo Ren
- Department of Traditional Chinese Medicine, College of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, P.R. China
| |
Collapse
|