1
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Guo D, Yu M, Guo H, Zeng M, Shao Y, Deng W, Qin Q, Li Y, Zhang S. Panax notoginseng saponins inhibits oxidative stress- induced human nucleus pulposus cell apoptosis and delays disc degeneration in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117166. [PMID: 37716491 DOI: 10.1016/j.jep.2023.117166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk) F. H. Chen has been a popular traditional Chinese medicine with a long history of treating low back pain. Its main active ingredient, Panax notoginseng saponins (PNS), can be found in several Chinese patent medicines that are frequently used to treat blood stasis type low back pain. Intervertebral disc degeneration (IDD) is the most common cause of back pain, and the injection of PNS has been used to relieve IDD-induced back pain in clinical practice. Despite its effectiveness, the exact mechanisms of action for PNS injections remain unclear. AIM OF THE STUDY IDD as a consequence of aging involves apoptosis of nucleus pulposus (NP) cells and imbalanced degradation of extracellular matrix (ECM) induced by several factors including oxidative stress. We hypothesized that PNS may have a therapeutic effect on IDD via inhibiting apoptosis of NP cells and degradation of ECM under oxidative stress. MATERIALS AND METHODS In this study, network pharmacology was initially employed to predict the targets of PNS against IDD. Subsequently, commercial PNS was analyzed by high-performance liquid chromatography to confirm the ingredients for in vitro and in vivo experiments. In vitro experiments were conducted on human nucleus pulposus (HNP) cells, including CCK-8, RT-PCR, Western blot, immunofluorescence staining, autophagic flux detection, and TUNEL assay. In vivo experiments were also performed on rats with IDD of tail discs induced by annular fibrosus needle puncture, which involved MRI, HE staining, and immunohistochemistry. RESULTS Our study demonstrated the theoretical targets of PNS against IDD, including Caspase 3, MMP13, Akt, and autophagy, based on network pharmacology. Subsequently, in vitro experiments revealed that PNS attenuated cellular apoptosis of NP by suppressing the expression of cleaved-caspase 3 and the ratio of Bax/Bcl-2 under H2O2 stimulation. Autophagy was also inhibited by PNS treatment, and the protective effect was abolished with rapamycin, an autophagy inducer, indicating that autophagy inhibition was involved in the protective effect of PNS on IDD. Furthermore, Akt/mTOR pathway activation was observed in HNP cells responding to H2O2 with PNS treatment, which played a role in autophagy downregulation. PNS was also shown to promote the expression of anabolic genes such as COL2A1 and ACAN while inhibiting the expression of catabolic gene MMP13 in HNP cells. In addition, the in vivo study revealed that PNS treatment could ameliorate IDD in a puncture-induced rat tail model. The development of IDD was significantly reduced, and there was decreased MMP13 expression, as well as increased COL2A1 protein expression in NP tissues. CONCLUSION Our study showed that PNS could protect HNP cells against apoptosis via autophagy inhibition and ameliorate disc degeneration in vivo, indicating its potential to be a therapeutic agent for IDD.
Collapse
Affiliation(s)
- Danqing Guo
- Institute of Orthopaedics and Traumatology, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
| | - Miao Yu
- Spinal Surgery Department, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Huizhi Guo
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Zeng
- Pathology Department, The 8th Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Yang Shao
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Deng
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qiuli Qin
- The 1st Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongxian Li
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuncong Zhang
- Spinal Surgery Department, The 1st Affiliation Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Hu X, Liu F, Yang H, Qi M, Ren Y, Zhu W, Dai C. Protective Effect and Related Mechanism of Modified Danggui Buxue Decoction on Retinal Oxidative Damage in Mice based on Network Pharmacology. Curr Pharm Des 2024; 30:1912-1926. [PMID: 38835123 DOI: 10.2174/0113816128293824240517113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is one of the common diseases that cause vision loss in the elderly, and oxidative stress has been considered a major pathogenic factor for AMD. Modified Danggui Buxue Decoction (RRP) has a good therapeutic effect on non-proliferatic diabetic retinopathy and can improve the clinical symptoms of patients. METHODS The key ingredients and core targets of RRP protecting retinal oxidative damage were obtained by Network pharmacology analysis. A mouse retinal oxidative damage model induced by tail vein injection of 1% NaIO3 solution (25 mg/kg) was treated with RRP for 4 weeks and used to verify the pharmacodynamics and related mechanism. AIM This study aimed to predict and verify the protective effect and mechanism of RRP on retinal oxidative damage in mice based on network pharmacology and animal experiments. RESULTS A total of 15 key active components included in RRP interacted with 57 core targets related to retinal oxidative damage (such as AKT1, NFE2L2, HMOX1), mainly involved in the AGE-RAGE signaling pathway in diabetic complications, PI3K-AKT signaling pathway and so on. Further studies in vivo found that RRP improved the retinal oxidative damage, increased the content of SOD and GSH, decreased the content of MDA in mouse serum, promoted the expression of p-PI3K, p-AKT, Nrf2, HO-1 and NQO1 proteins in the mouse retina, and inhibited the expression of Nrf2 in the cytoplasm. CONCLUSION This study revealed that RRP had a protective effect on oxidative damage of the retina in mice, and might exert anti-oxidative effect by activating the PI3K/Akt/Nrf2 signal pathway. This study provided scientific data for the further development of hospital preparations of RRP, and a good theoretical basis for the clinical application of RRP.
Collapse
Affiliation(s)
- Xiangka Hu
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - He Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Mushuang Qi
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ying Ren
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wanjun Zhu
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunmei Dai
- Institute of Materia Medica, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Tang Y, Chen YG, Huang HY, Li SF, Zuo HL, Chen JH, Li LP, Mao RB, Lin YCD, Huang HD. Panax notoginseng alleviates oxidative stress through miRNA regulations based on systems biology approach. Chin Med 2023; 18:74. [PMID: 37337262 DOI: 10.1186/s13020-023-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/14/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Herbal medicine Sanqi (SQ), the dried root or stem of Panax notoginseng (PNS), has been reported to have anti-diabetic and anti-obesity effects and is usually administered as a decoction for Chinese medicine. Alternative to utilizing PNS pure compound for treatment, we are motivated to propose an unconventional scheme to investigate the functions of PNS mixture. However, studies providing a detailed overview of the transcriptomics-based signaling network in response to PNS are seldom available. METHODS To explore the reasoning of PNS in treating metabolic disorders such as insulin resistance, we implemented a systems biology-based approach with RNA sequencing (RNA-seq) and miRNA sequencing data to elucidate key pathways, genes and miRNAs involved. RESULTS Functional enrichment analysis revealed PNS up-regulating oxidative stress-related pathways and down-regulating insulin and fatty acid metabolism. Superoxide dismutase 1 (SOD1), peroxiredoxin 1 (PRDX1), heme oxygenase-1 (Hmox1) and glutamate cysteine ligase (GCLc) mRNA and protein levels, as well as related miRNA levels, were measured in PNS treated rat pancreatic β cells (INS-1). PNS treatment up-regulated Hmox1, SOD1 and GCLc expression while down-regulating miR-24-3p and miR-139-5p to suppress oxidative stress. Furthermore, we verified the novel interactions between miR-139-5p and miR-24-3p with GCLc and SOD1. CONCLUSION This work has demonstrated the mechanism of how PNS regulates cellular molecules in metabolic disorders. Therefore, combining omics data with a systems biology strategy could be a practical means to explore the potential function and molecular mechanisms of Chinese herbal medicine in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yun Tang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yi-Gang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hsi-Yuan Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Shang-Fu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Hua-Li Zuo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Ji-Hang Chen
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Li-Ping Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Run-Bo Mao
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China
| | - Yang-Chi-Dung Lin
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| | - Hsien-Da Huang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
5
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
6
|
Wei RY, Jiang YY, Tang K, Wang Z, Tan NH. Simultaneous determination of Panax notoginseng total saponins in rabbit tears by UPLC-QqQ-MS/MS and its application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1218:123490. [PMID: 36854204 DOI: 10.1016/j.jchromb.2022.123490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Panax notoginseng total saponins (PNS), the main bioactive components of the radix and rhizome of Panax notoginseng (Burk.) F.H. Chen, could treat eye disorders. For the treatment of ocular diseases, eye drops are the first choice with the most common, economic and good compliance. So we proposed that PNS might be able to treat inflammatory ocular surface diseases by eye drops based on its anti-inflammatory and antioxidant activities. The short elimination half-life (t1/2) and rapid elimination of PNS after oral or intravenous administration may limit its application for eye disorders. Meanwhile, there is a lack of pharmacokinetic study on trace amount of tear samples with PNS eye drops. Therefore, a simple and sensitive ultra-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS) method by multiple reaction monitoring (MRM) in positive ion mode was firstly developed and applied in the pharmacokinetic study of PNS in rabbit tears. Tears samples were prepared by protein precipitation using methanol. The linearity, limit of detection, limit of quantification, specificity, precision, repeatability, stability, recovery, and matrix effect have been investigated and passed their validation criteria. Compared with prior methods, this method has the advantages of rapid analysis, high sensitivity, simple sample preparation and less sample demands. The pharmacokinetic results indicated that PNS eye drops had a slower elimination and a longer t1/2 by topical ocular administration, which is expected to improve the success rate of eye drops in the treatment of anterior segment diseases. The ocular pharmacokinetics of PNS provides an experimental guidance and feasibility basis for in vivo effect verification of PNS eye drops in the future investigation.
Collapse
Affiliation(s)
- Rong-Yun Wei
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye-Ying Jiang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Tang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ning-Hua Tan
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Liao Q, Gao X. Tribbles homolog 3 contributes to high glucose-induced injury in retinal pigment epithelial cells via binding to growth factor receptor-bound 2. Bioengineered 2022; 13:10386-10398. [PMID: 35465829 PMCID: PMC9161919 DOI: 10.1080/21655979.2022.2056315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Diabetic retinopathy (DR) is the most typical complication of diabetes, which severely threatens sight. Tribbles homolog 3 (TRB3), a kind of pseudokinase, is discovered to be highly expressed in diabetes and retinas after retinal detachment. TRB3 expression in human retinal pigment epithelial (hRPE) cells exposed to different concentrations of glucose was tested by RT-qPCR and western blot. Then, cells were induced with 30 mM high glucose (HG) to establish a DR cell model. Following TRB3 knockdown, cell viability estimation employed CCK-8 assay. The mRNA levels of inflammatory factors were detected by RT-qPCR. Reactive oxygen species (ROS) level was measured by DCFH-DA assay, and levels of oxidative stress markers were evaluated applying corresponding kits. Cell apoptosis was assayed by TUNEL assay and western blot. Following, the growth factor receptor-bound 2 (GRB2) expression was also examined by RT-qPCR and western blot. The interaction between TRB3 and GRB2 was verified by Co-IP assay. After GRB2 was overexpressed in HG-induced hRPE cells transfected with shRNA-TRB3, functional experiments were conducted again. The results manifested that TRB3 expression was elevated under HG conditions. Deficiency of TRB3 enhanced the viability while alleviated inflammation, oxidative stress, and apoptosis in HG-induced hRPE cells. GRB2 was also increased in HG-exposed hRPE cells. Moreover, GRB2 had a strong affinity with TRB3 and positively regulated by TRB3. After GRB2 overexpression, the effects of TRB3 knockdown on HG-stimulated hRPE cells were all reversed. Briefly, this study confirmed the promoting role of TRB3/GRB2 axis in the progression of DR.
Collapse
Affiliation(s)
- Qin Liao
- Department of Ophthalmology, Chengdu Second People’s Hospital, Chengdu, china
| | - Xuefeng Gao
- College of Management, Beijing Capital Normal University, Beijing
| |
Collapse
|
8
|
Yu M, Zhang L, Sun S, Zhang Z. Gliquidone improves retinal injury to relieve diabetic retinopathy via regulation of SIRT1/Notch1 pathway. BMC Ophthalmol 2021; 21:451. [PMID: 34961513 PMCID: PMC8711144 DOI: 10.1186/s12886-021-02215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.
Collapse
Affiliation(s)
- Mengdan Yu
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Lijun Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Shasha Sun
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Zhenhua Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China.
| |
Collapse
|
9
|
Curcumin suppresses oxidative stress via regulation of ROS/NF-κB signaling pathway to protect retinal vascular endothelial cell in diabetic retinopathy. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00144-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, Feng Y. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Am J Cancer Res 2020; 10:11302-11323. [PMID: 33042284 PMCID: PMC7532683 DOI: 10.7150/thno.47746] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Activation of the thermogenic program in white and brown adipocytes presents a promising avenue for increasing energy expenditure during the treatment of obesity. The endogenous mechanism for promoting thermogenesis in brown adipocytes or browning in white adipocytes has indicated that the gut microbiota is a crucial regulator of the host energy balance. However, whether the effects of the therapeutic intervention-induced modulation of the gut microbiota on adipocyte browning involved the regulation of leptin remains unclear. Method: The adipose features were analyzed by body composition analysis, infrared camera observations, transmission electron microscopy and H&E staining. The gene and protein expression in adipose tissue were detected by qRT-PCR, immunoblotting, immunohistochemistry and immunofluorescence staining. The gut microbiome signature was identified by 16S rRNA gene amplicon sequencing, and both mice with high-fat diet-induced obesity (DIO) and mice with antibiotics-induced microbiome depletion were subjected to fecal microbiota transplantation. Results: Treatment with Panax notoginseng saponins (PNS) shaped the murine gut microbiome by increasing the abundances of Akkermansia muciniphila and Parabacteroides distasonis, and as a result, DIO mice harbored a distal gut microbiota with a significantly increased capacity to reduce host adiposity. The PNS-induced modulation of the gut microbiota in DIO mice could increase brown adipose tissue (BAT) thermogenesis and beige adipocyte reconstruction by activating the leptin-AMPK/STAT3 signaling pathway, which results in the promotion of energy expenditure. Leptin has an essential influence on the anti-obesity effects of PNS. In cases of leptin deficiency, the PNS-induced modulation of the gut microbiota exerts negative effects on thermogenesis and browning in white adipose tissue (WAT), which indicates that PNS fail to reduce obesity in leptin gene-deficient mice. The PNS-induced modulation of the gut microbiota exerted a minimal effect on DIO mice with antibiotic-induced microbiome depletion, which confirmed the correlation between altered gut microbiota and the remodeling of adipose tissues in DIO mice. The direct influence of leptin on browning via the AMPKα/STAT3 signaling pathway in C3H101/2 cells supported our in vivo results that signalling through the leptin-AMPK/STAT3 pathway induced by the PNS-modulated gut microbiota was involved in beige adipocyte reconstruction. Conclusion: Our results revealed that leptin signaling is critical for alterations in microbiota-fat crosstalk and provide promising avenues for therapeutic intervention in the treatment of obesity.
Collapse
|
11
|
Piao C, Sun Z, Jin D, Wang H, Wu X, Zhang N, Lian F, Tong X. Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy. Comb Chem High Throughput Screen 2020; 23:334-344. [PMID: 32133960 PMCID: PMC7497535 DOI: 10.2174/1386207323666200305093709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/23/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: Panax notoginseng, a Chinese herbal medicine, has been widely used to treat vascular diseases. Diabetic retinopathy (DR) is one of the complications of diabetic
microangiopathy. According to recent studies, the application of Panax notoginseng extract and related Chinese patent medicine preparations can significantly improve DR. However, the
pharmacological mechanisms remain unclear. Therefore, the purpose of this study was to decipher the potential mechanism of Panax notoginseng treatment of DR using network pharmacology. Method: We evaluated and screened the active compounds of Panax notoginseng using the
Traditional Chinese Medicine Systems Pharmacology database and collected potential targets of
the compounds by target fishing. A multi-source database was also used to organize targets of DR.
The potential targets as the treatment of DR with Panax notoginseng were then obtained by
matching the compound targets with the DR targets. Using protein-protein interaction networks
and topological analysis, interactions between potential targets were identified. In addition, we also
performed gene ontology-biological process and pathway enrichment analysis for the potential
targets by using the Biological Information Annotation Database. Results: Eight active ingredients of Panax notoginseng and 31 potential targets for the treatment of
DR were identified. The screening and enrichment analysis revealed that the treatment of DR using
Panax notoginseng primarily involved 28 biological processes and 10 related pathways. Further
analyses indicated that angiogenesis, inflammatory reactions, and apoptosis may be the main
processes involved in the treatment of DR with Panax notoginseng. In addition, we determined that
the mechanism of intervention of Panax notoginseng in treating DR may involve five core targets,
VEGFA, MMP-9, MMP-2, FGF2, and COX-2. Conclusion: Panax notoginseng may treat diabetic retinopathy through the mechanism of network
pharmacological analysis. The underlying molecular mechanisms were closely related to the
intervention of angiogenesis, inflammation, and apoptosis with VEGFA, MMP-9, MMP-2, FGF2,
and COX-2 being possible targets.
Collapse
Affiliation(s)
- Chunli Piao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Zheyu Sun
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Han Wang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Xuemin Wu
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Naiwen Zhang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| |
Collapse
|
12
|
Ginseng for an eye: effects of ginseng on ocular diseases. J Ginseng Res 2020; 44:1-7. [PMID: 32095091 PMCID: PMC7033367 DOI: 10.1016/j.jgr.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/29/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023] Open
Abstract
The sense of vision is the primary means by which we gather information from our surroundings, and vision loss, therefore, severely compromises the life of the affected individuals, their families, and society. Loss of vision becomes more frequent with age, and diabetic retinopathy, age-related macular degeneration, cataracts, and glaucoma are the major causes of vision impairment. To find active pharmacological compounds that might prevent or ameliorate the vision-threatening eye diseases, numerous studies have been performed, and some botanical compounds, including those extracted from ginseng, have been shown to possess beneficial effects in the treatment or prevention of common ocular diseases. In this review, we summarize the recent reports investigating the therapeutic effects of ginseng and ginsenosides on diverse ocular diseases and discuss their therapeutic potential.
Collapse
|
13
|
Zeng Y, Cui Z, Liu J, Chen J, Tang S. MicroRNA-29b-3p Promotes Human Retinal Microvascular Endothelial Cell Apoptosis via Blocking SIRT1 in Diabetic Retinopathy. Front Physiol 2020; 10:1621. [PMID: 32063865 PMCID: PMC7000655 DOI: 10.3389/fphys.2019.01621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a main complication of diabetes mellitus (DM). Recent studies have implicated microRNAs in human retinal microvascular endothelial cell (HRMEC) dysfunction. In this study, we aim to investigate the apoptotic promotion of miR-29b-3p by blocking SIRT1 in HRMEC for DR situation. Method Blood samples were obtained from DR patients and controls. Dual-luciferase reporter assay using HEK-293T cells was performed to show the direct interaction of miR-29b-3p and the 3′UTR of SIRT1. HRMECs were exposed to 5.5 mmol/L of glucose (normal control), 5.5 mmol/L of glucose and 24.5 mmol/L of mannitol (osmotic pressure control), 30 mmol/L of glucose [hyperglycemia (HG)], 150 μmol/L of CoCl2 (hypoxia), and 30 mmol/L of glucose plus 150 μmol/L of CoCl2 (HG-CoCl2). To identify the regulating relationship between miR-29b-3p and SIRT1, HRMECs were transfected with miR-29b-3p mimics/inhibitors or their negative controls. SRT1720 was used as a SIRT1 agonist. Cell viability was assessed with the cell counting kit-8 (CCK-8) assay, and apoptotic cells were stained by one-step terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay kit. Gene and protein expression were assayed by quantitative real-time reverse transcriptase-PCR (RT-qPCR) and western blotting separately. Result MiR-29b-3p was upregulated to 3.2-fold, and SIRT1 protein was downregulated to 65% in DR patients. Dual-luciferase reporter assay showed the direct interaction of miR-29b-3p and SIRT1. HRMECs were identified as >95% positive for CD31 and von Willebrand factor (vWF). MiR-29b-3p and Bax/Bcl-2 ratio was upregulated, whereas SIRT1 was downregulated in HRMECs in the HG-CoCl2 condition. Decreased cell viability and upregulated apoptosis were also found in HRMECs of the HG-CoCl2 condition. Upregulated miR-29b-3p decreased the expression of SIRT1 and increased the ratio of Bax/Bcl-2, whereas downregulated miR-29b-3p increased the expression of SIRT1 protein and downregulated the ratio of Bax/Bcl-2. SRT1720 rescued miR-29b-3p-induced HRMEC apoptosis via upregulating the expression of SIRT1 protein. Conclusion The dysregulation of miR-29b-3p/SIRT1 is a potential mechanism of HRMEC apoptosis in DR. MiR-29b-3p/SIRT1 may be a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yong Zeng
- Aier School of Ophthalmology, Central South University, Changsha, China
| | | | - Jian Liu
- Aier Eye Institute, Changsha, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Xue R, Zhai R, Xie L, Zheng Z, Jian G, Chen T, Su J, Gao C, Wang N, Yang X, Xu Y, Gui D. Xuesaitong Protects Podocytes from Apoptosis in Diabetic Rats through Modulating PTEN-PDK1-Akt-mTOR Pathway. J Diabetes Res 2020; 2020:9309768. [PMID: 32051833 PMCID: PMC6995497 DOI: 10.1155/2020/9309768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and therapeutic strategies for delaying its progression are limited. Loss of podocytes by apoptosis characterizes the early stages of DKD. To identify novel therapeutic options, we investigated the effects of Xuesaitong (XST), consisting of total saponins from Panax notoginseng, on podocyte apoptosis in streptozotocin- (STZ-) induced diabetic rats. XST (5 mg/kg·d) or Losartan (10 mg/kg·d) was given to diabetic rats for 12 weeks. Albuminuria, renal function markers, and renal histopathology morphological changes were examined. Podocyte apoptosis was determined by triple immunofluorescence labelling including a TUNEL assay, WT1, and DAPI. Renal expression of Nox4, miRNA-214, PTEN, PDK1, phosphorylated Akt, mTOR, and mTORC1 was detected. In diabetic rats, severe hyperglycaemia and albuminuria developed, and apoptotic podocytes were markedly increased in diabetic kidneys. However, XST attenuated albuminuria, mesangial expansion, podocyte apoptosis, and morphological changes of podocytes in diabetic rats. Decreased expression of PTEN, as well as increased expression of Nox4, miRNA-214, PDK1, phosphorylated Akt, mTOR, and mTORC1, was detected. These abnormalities were partially restored by XST treatment. Thus, XST ameliorated podocyte apoptosis partly through modulating the PTEN-PDK1-Akt-mTOR pathway. These novel findings might point the way to a natural therapeutic strategy for treating DKD.
Collapse
Affiliation(s)
- Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Ruonan Zhai
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Ling Xie
- Shanghai Ocean University, Shanghai 201306, China
| | - Zening Zheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou 510405, China
| | - Guihua Jian
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Teng Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun Su
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Chongting Gao
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated to Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
15
|
Li Q, Liang X, Yang Y, Zeng X, Zhong X, Huang C. Panax notoginseng saponins ameliorate cisplatin-induced mitochondrial injury via the HIF-1α/mitochondria/ROS pathway. FEBS Open Bio 2019; 10:118-126. [PMID: 31715069 PMCID: PMC6943232 DOI: 10.1002/2211-5463.12760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 01/15/2023] Open
Abstract
Cisplatin is a major antineoplastic drug that is used to treat solid tumors, but its use is restricted by its nephrotoxicity. Such cisplatin‐induced nephrotoxicity (CIN) is believed to occur primarily through mitochondrial damage and reactive oxygen species (ROS) generation. Our previous studies have indicated that Panax notoginseng saponins (PNSs) mitigate CIN by enhancing hypoxia‐inducible factor 1α (HIF‐1α)‐induced mitochondrial autophagy. In this study, the role of the HIF‐1α/mitochondria/ROS pathway in PNSs protection against CIN was investigated using a rat model. A CIN model was generated by giving rats intraperitoneal injections with cisplatin (a single dose) and then treating them with or without 2‐methoxyestradiol (HIF‐1α inhibitor) and PNSs. We then measured ROS levels, superoxide dismutase, glutathione, catalase malondialdehyde and nitric oxide (to evaluate oxidative stress) and ATP, mitochondrial membrane potential and mitochondrial permeability transition pore opening (to evaluate mitochondrial function) in kidneys at different time points. We observed that PNSs remarkably reduced the levels of ROS, malondialdehyde and nitric oxide, as well as the opening of mitochondrial permeability transition pore, which is increased by cisplatin and further increased by HIF‐1α inhibition. In addition, PNSs increased the levels of superoxide dismutase, catalase and glutathione, as well as ATP and mitochondrial membrane potential in renal tissues; these are all reduced by cisplatin and further reduced by HIF‐1α inhibition. In conclusion, we demonstrate here that PNSs protects against mitochondrial damage induced by cisplatin through HIF‐1α/mitochondria/ROS.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xueyan Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobin Zhong
- Regenerative Medicine Research Center of Guangxi Medical University, Nanning, China
| | - Chun Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Xiao H, Liu Z. Effects of microRNA‑217 on high glucose‑induced inflammation and apoptosis of human retinal pigment epithelial cells (ARPE‑19) and its underlying mechanism. Mol Med Rep 2019; 20:5125-5133. [PMID: 31702814 PMCID: PMC6854520 DOI: 10.3892/mmr.2019.10778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 01/21/2023] Open
Abstract
Diabetic retinopathy is a major complication of diabetes. Increasing evidence has indicated that microRNAs (miRs) serves an important role in diabetic retinopathy. However, the expression and mechanism of miR-217 in high glucose-induced human retinal pigment epithelial cells ARPE-19 is still unclear. Therefore, the aim of this study was to investigate the role of miR-217 in high glucose-induced retinal epithelial cell damage, and further to explore the molecular mechanisms. In our study, we found that compared with control group, miR-217 was upregulated in high glucose-induced ARPE-19 cells. In addition, TargetScan and a dual-luciferase reporter gene assay showed that Sirtuin 1 (SIRT1) was a direct target of miR-217. Then, we performed reverse transcription-quantitative polymerase chain reaction assay and western blot assay to explore the expression of SIRT1 in high glucose-induced ARPE-19 cells. Our results demonstrated that SIRT1 was downregulated at the mRNA and protein levels in high glucose-induced ARPE-19 cells. Then, ARPE-19 cells were transfected with inhibitor control, miR-217 inhibitor or miR-217 inhibitor + SIRT1-small interfering RNA for 6 h, and then the cells were treated with 50 mM D-glucose for 24 h. We then investigated the effects of miR-217 inhibitor on ARPE-19 cell viability and apoptosis. An MTT assay revealed that miR-217 inhibitor significantly increased the viability and decreased the apoptosis of high glucose-induced ARPE-19 cells. ELISA indicated that miR-217 inhibitor significantly reduced the expression of inflammatory factors, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 in high glucose-treated ARPE-19 cells. Additionally, a western blot assay demonstrated that miR-217 inhibitor suppressed the expression of p-p65. The effects of miR-217 inhibitor on high glucose-treated ARPE-19 cells were significantly reversed by the silencing the SIRT1 gene. Therefore, our findings suggested that miR-217 inhibitor protected against retinal epithelial cell damage caused by high glucose via targeting SIRT1, thereby playing a protective role in diabetic retinopathy. Targeting miR-217 may have therapeutic potential in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Hongxia Xiao
- Department of Ophthalmology, Jing Men No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Zhen Liu
- Department of Ophthalmology, Chongqing Aier Eye Hospital, Chongqing 400020, P.R. China
| |
Collapse
|
17
|
Zeng L, Ma W, Shi L, Chen X, Wu R, Zhang Y, Chen H, Chen H. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. Int J Nanomedicine 2019; 14:6357-6369. [PMID: 31496691 PMCID: PMC6690602 DOI: 10.2147/ijn.s214727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a complication of diabetes that affects the eyes and vision. It is a leading cause of visual impairment and blindness in working-age people. Vascular endothelial growth factor-A (VEGF-A) is a primary initiator and potential mediator of DR. Matrix metalloproteinase-9 (MMP-9) plays a progressive role in the onset and severity of DR. Interleukin-12 (IL-12) is a cytokine of the chemokine family that could reduce the levels of MMP-9 and VEGF-A and suppress tumor angiogenesis. We hypothesize that IL-12 may also have superior therapeutic efficacy against DR. However, protein drugs are prone to degradation by various proteases after drug injection. Therefore, they have short half-lives and low blood concentrations. The objective of this study was to develop IL-12-loaded nanoparticles for long-term and sustained DR treatment. Methods IL-12-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IL-12-PNP) were developed by double emulsion. The characteristics, anti-DR activity, and mechanisms of IL-12-PNP were examined in vitro and in vivo. Results The nanoparticles had suitable particle size (~132.8 nm), drug encapsulation efficiency (~34.7%), and sustained drug release profile. Compared with IL-12 and blank nanoparticles, IL-12-PNP showed better inhibitory efficacy against VEGF-A and MMP-9 expression in rat endothelial cells and DR mouse retina. Intraocular IL-12-PNP administration significantly reduced retinal damage in DR mice as they presented with increased thickness and decreased neovascularization after treatment. Conclusion These data indicate that IL-12-PNP is an effective drug delivery platform for DR therapy. It restores the thickness and reduces neovascularization of the retinas of DR mice.
Collapse
Affiliation(s)
- Lina Zeng
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Lingyu Shi
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Xiaohong Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Rong Wu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| | - Yingying Zhang
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai 201507, People's Republic of China
| | - Huaiwen Chen
- Sunlipo Biotech Research Center for Nanomedicine, Shanghai 201507, People's Republic of China
| | - Hui Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China
| |
Collapse
|
18
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
19
|
Zhang W, Zhao T, Zhao Y, Gui D, Xu Y. Advanced Glycation End Products in Chinese Medicine Mediated Aging Diseases: A Review. Curr Vasc Pharmacol 2019; 18:322-333. [PMID: 31060489 DOI: 10.2174/1570161117666190507112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Aging has become a worldwide problem. During this process, the incidence of related diseases such as diabetes and atherosclerosis increases dramatically. Studies within the most recent two decades suggest a pivotal role of Advanced Glycation End Products (AGEs) in the aging process. This review aims to systemically summarize the effects and potential mechanism of Chinese Medicines on inhibiting AGEs-related aging diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| | - Yonghua Zhao
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China.,Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao SAR, China
| | - Dingkun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao SAR, China
| |
Collapse
|
20
|
Guo X, Sun W, Luo G, Wu L, Xu G, Hou D, Hou Y, Guo X, Mu X, Qin L, Liu T. Panax notoginseng saponins alleviate skeletal muscle insulin resistance by regulating the IRS1-PI3K-AKT signaling pathway and GLUT4 expression. FEBS Open Bio 2019; 9:1008-1019. [PMID: 30945455 PMCID: PMC6487711 DOI: 10.1002/2211-5463.12635] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
Panax notoginseng saponins (PNS) are a commonly used traditional medicine to treat diabetes in China. Recent studies have confirmed their anti-diabetic effects, but the underlying mechanisms have remained unclear. The present study was designed to explore whether PNS decrease hyperglycemia by improving insulin sensitivity in skeletal muscle and to elucidate the molecular mechanisms. The anti-diabetic effects of PNS were analyzed in a skeletal myoblast cell line, C2C12, and in high fat diet-induced diabetic KKAy mice. C2C12 cells were treated with PNS (50, 100, and 200 μg·L-1 ) and examined for glucose uptake, cell viability and expression of components of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. KKAy mice were intraperitoneally injected with PNS (200 mg·kg-1 ) for 6 weeks. Body weight, blood glucose, serum insulin, serum lipid, glucose and insulin tolerance were measured to evaluate the anti-diabetic effects of PNS. Pathological changes, apoptosis and the PI3K-AKT signaling pathway were analyzed in KKAy skeletal muscle. PNS significantly increased insulin-induced glucose uptake, but did not affect the cell viability of C2C12 cells. In addition, PNS reduced blood glucose and serum insulin levels and improved glucose tolerance and insulin tolerance of KKAy mice. Pathological changes and apoptosis of skeletal muscle were relieved by PNS treatment. Moreover, PNS treatment enhanced expression of mRNA encoding IRS1 and GLUT4, as well as the protein expression of phosphorylated (p) -insulin receptor substrate 1 (IRS1), p-PI3K, p-AKT and glucose transporter type 4 (GLUT4) in C2C12 and KKAy mouse muscle. Collectively, these data indicate that PNS reduces hyperglycemia and insulin resistance through up-regulating GLUT4 expression and the IRS1-PI3K-AKT signaling pathway. Furthermore, PNS alleviated diabetes skeletal muscle pathological damage. Thus, our data suggest that PNS may be promising anti-diabetic compounds.
Collapse
Affiliation(s)
- Xuan Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, China.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China
| | - Wen Sun
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China.,Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, China
| | - Guangbin Luo
- School of Life Sciences, Beijing University of Chinese Medicine, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China.,Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, China
| | - Guangyuan Xu
- Department of Traditional Chinese Medicine, Fu Xing Hospital of Capital Medical University, Beijing, China
| | - Dan Hou
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China
| | - Yi Hou
- Dongfang Hospital of Beijing University of Chinese Medicine, China.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China
| | - Xiangyu Guo
- Dongfang Hospital of Beijing University of Chinese Medicine, China
| | - Xiaohong Mu
- Department of Orthopaedics, Dongzhimen Hospital of Beijing University of Chinese Medicine, China
| | - Lingling Qin
- Science and Technology Department, Beijing University of Chinese Medicine, China
| | - Tonghua Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, China.,Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, China.,Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, China
| |
Collapse
|
21
|
Rossino MG, Casini G. Nutraceuticals for the Treatment of Diabetic Retinopathy. Nutrients 2019; 11:nu11040771. [PMID: 30987058 PMCID: PMC6520779 DOI: 10.3390/nu11040771] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.
Collapse
Affiliation(s)
| | - Giovanni Casini
- Department of Biology, University of Pisa, via San Zeno 31, 56127 Pisa, Italy.
- Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, 56124 Pisa, Italy.
| |
Collapse
|
22
|
Zhang C, Xu Y, Tan HY, Li S, Wang N, Zhang Y, Feng Y. Neuroprotective effect of He-Ying-Qing-Re formula on retinal ganglion cell in diabetic retinopathy. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:179-189. [PMID: 29253613 DOI: 10.1016/j.jep.2017.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE He-Ying-Qing-Re Formula (HF) was empirically modified from Si-Miao-Yong-An Decoction (SD), which was recorded in the literature of Divine Doctor's Secret Transmission, and has been utilized for centuries to treat vasculopathy through clearing heat and accelerating bloodstream. HF has been used as an effective holistic treatment of diabetic retinopathy (DR) for decades and experimentally reported to ameliorate retinal condition in diabetic mice. AIM OF THE STUDY Our study aims to investigate the effect of HF in preventing sustained hyperglycemia and hyperlipidemia-associated retinal ganglion cell (RGC) cell death and its possible mechanism. MATERIALS AND METHODS Chromatographic fingerprint of HF was obtained upon the UPLC-based analytic system; Diabetic retinopathy was established in streptozotocin (STZ) injection-induced hyperglycemic mice; Alterations of retinal structure was assayed by H&E staining. Expression of PSD-95 and CHOP in retinae was assessed by immunofluorescence; RGC cell line (mRGC) was used for in vitro study. Cell death was analyzed by flow cytometry; Intracellular reactive oxygen species (ROS) was measured by 2',7'-dichlorofluorescin diacetate (DCFDA); Apoptosis-related proteins and signaling were monitored with immunoblotting and colorimetric assay. RESULTS Chlorogenic acid, ferulic acid, and rutin were identified in HF. HF attenuates the loss of RGCs, thinning of inner retinal layers in diabetic mice. Furthermore, expressions of Brn3a and PSD-95 were restored while CHOP level was downregulated upon HF treatment. In vitro study, HF alleviates H2O2-induced apoptosis of mRGCs and loss of postsynaptic protein via scavenging ROS and suppressing ATF4/CHOP-mediated endoplasmic reticulum stress and mitochondria-related pro-apoptotic factors, probably as cleaved-caspase-3, and phospho-p38 mitogen-activated protein kinase (MARK). Meanwhile, both pro-survival protein levels like Bcl-2/Bcl-xL and postsynaptic protein of PSD-95 were upregulated upon HF treatment. CONCLUSION HF administration was a valid therapeutic approach for DR treatment, oriented at the blockade of endoplasmic reticulum- and mitochondria-dependent oxidative stress-induced retinal neurodegeneration including RGC apoptosis.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Southern Wanping Road, Shanghai 200032, China; School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yu Xu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Southern Wanping Road, Shanghai 200032, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
23
|
Antioxidant and Anti-Inflammatory Effects of Blueberry Anthocyanins on High Glucose-Induced Human Retinal Capillary Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1862462. [PMID: 29682153 PMCID: PMC5842687 DOI: 10.1155/2018/1862462] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/16/2017] [Accepted: 12/25/2017] [Indexed: 11/18/2022]
Abstract
Blueberries possess abundant anthocyanins, which benefit eye health. The purpose of this study was to explore the protective functional role of blueberry anthocyanin extract (BAE) and its predominant constituents, malvidin (Mv), malvidin-3-glucoside (Mv-3-glc), and malvidin-3-galactoside (Mv-3-gal), on high glucose- (HG-) induced injury in human retinal capillary endothelial cells (HRCECs). The results showed that BAE, Mv, Mv-3-glc, and Mv-3-gal enhanced cell viability (P < 0.05 versus the HG group at 24 h); decreased the reactive oxygen species (ROS, P < 0.01 versus the HG group both at 24 and 48 h); and increased the enzyme activity of catalase (CAT) and superoxide dismutase (SOD) (P < 0.05 versus the HG group both at 24 and 48 h). Mv could greatly inhibit HG-induced Nox4 expression both at 24 and 48 h (P < 0.05), while BAE and Mv-3-gal downregulated Nox4 only at 48 h (P < 0.05). Mv, Mv-3-glc, and Mv-3-gal also changed nitric oxide (NO) levels (P < 0.05). BAE and Mv-3-glc also influenced angiogenesis by decreasing the vascular endothelial cell growth factor (VEGF) level and inhibiting Akt pathway (P < 0.05). Moreover, Mv and Mv-3-glc inhibited HG-induced intercellular adhesion molecule-1 (ICAM-1, P < 0.001) and nuclear factor-kappa B (NF-κB) (P < 0.05). It indicated that blueberry anthocyanins protected HRCECs via antioxidant and anti-inflammatory mechanisms, which could be promising molecules for the development of nutraceuticals to prevent diabetic retinopathy.
Collapse
|
24
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
25
|
Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:971-996. [DOI: 10.1142/s0192415x18500519] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Panax notoginseng (P. notoginseng) is a well-known and commonly used Chinese herbal medicine in Asian countries. As one of the major species in the Panax genus, it has a distinct chemical composition and medical application compared with other species. P. notoginseng attracts attention and interest due to its potential therapeutic effects not only on blood diseases, but also other kinds of human chronic disorders. This paper critically reviewed the latest advance of knowledge on the pharmacological effects of P. notoginseng on a variety of chronic diseases including inflammatory bowel disease, arthritis, ischemia, atherosclerosis, Alzheimer disease and trauma, as well as hyperlipidemia, diabetes, and so on. As inflammation is considered the fundamental factor involved in the pathogenesis of chronic diseases, our review therefore focuses on understanding the involvement of classical inflammatory pathways underlying the mechanism of action of P. notoginseng. Potential clinical application was also discussed. Furthermore, by combining with network pharmacology, we introduced the major bioactive components of P. notoginseng, analyzed their cellular targets and associated signaling pathways. In conclusion, this review identified inflammatory pathway as the key signaling for determining the efficacy of P. notoginseng on chronic diseases. It is speculated that P. notoginseng is a multi-targeted agent with an anti-inflammatory property in the adjuvant and alternative treatment of human chronic diseases.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
26
|
Fan C, Qiao Y, Tang M. Notoginsenoside R1 attenuates high glucose-induced endothelial damage in rat retinal capillary endothelial cells by modulating the intracellular redox state. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3343-3354. [PMID: 29200830 PMCID: PMC5703151 DOI: 10.2147/dddt.s149700] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to examine whether Notoginsenoside R1 (NR1) attenuates high glucose-induced cell damage in rat retinal capillary endothelial cells (RCECs) and to explore the mechanisms involved. The exposure of rat RCECs to high concentration of glucose (30 mM) for 72 h led to significant cytotoxicity, including decreased cell viability, reduced mitochondrial DNA copy number, increased lactate dehydrogenase release and elevated apoptosis. NR1, when present in the culture medium, markedly attenuated the high glucose-induced cytotoxicity in rat RCECs. Moreover, high glucose also induced a significant increase in intracellular reactive oxygen species and subsequently increased the activity of NADPH oxidase and poly-ADP (ribose) polymerase, whereas the activity of catalase decreased. The addition of NR1 to the medium significantly reduced the generation of reactive oxygen species, inhibited NADPH oxidase and poly-ADP (ribose) polymerase activities and increased catalase activity in RCECs, accompanied by a reduced cellular nitrotyrosine level. To explore the underlying mechanisms involved, the cellular redox status was monitored. Both the cellular NAD+ and NADPH levels decreased significantly in high glucose medium, which resulted in a marked decrease in the NAD+/NADH and NADPH/NADP+ ratios. High glucose stimulation also enhanced the accumulation of GSSG, maintaining the GSH/GSSG ratio lower than that in the control group with 5.5 mM glucose. When treated with NR1, the cellular NAD+, NADPH and GSH concentrations increased, and the ratios of NAD+/NADH, NADPH/NADP+ and GSH/GSSG increased, similar to the control group. These results demonstrate that NR1 attenuates high glucose-induced cell damage in RCECs. Therefore, NR1 may exert its protective effects via mechanisms that involve changes in the cellular redox state.
Collapse
Affiliation(s)
- Chunlan Fan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuan Qiao
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Minke Tang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
27
|
The aldehyde group of gossypol induces mitochondrial apoptosis via ROS-SIRT1-p53-PUMA pathway in male germline stem cell. Oncotarget 2017; 8:100128-100140. [PMID: 29245965 PMCID: PMC5725007 DOI: 10.18632/oncotarget.22044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 01/14/2023] Open
Abstract
As a widely grown economic crop, cotton is the major oil and protein resource for human and livestock. But the highly toxic of gossypol in cottonseed severely restricts its effective utilization, consequently creating huge resource waste. Previous studies have shown the male germline stem cells were the most vulnerable cells in gossypol damages, but the mechanism was still unclear. We found gossypol induced cell viability decline resulted from apoptosis. And the increase of Caspase-9 activity in gossypol treatment hinted the mitochondrial apoptosis. So the mitochondrial dysfunction was confirmed by the decreased mitochondrial membrane potential and ATP concentration. We found the higher intracellular H2O2 level did not accompany with the O2·- associated increase in gossypol-treated, which indicated that gossypol obstructed the intracellular reactive oxygen species (ROS) elimination. Manipulated gossypol-induced H2O2 level by H2O2 and α-lipoic acid, we demonstrated that the mitochondrial dysfunction resulted from the excessive intracellular H2O2. Treated with Apogossypolone (ApoG2), an aldehyde group removed derivative of gossypol, the GSH/GSSG ratio and H2O2 did not decrease. ApoG2 also did not cause the mitochondrial apoptosis. So the aldehyde group is key factor in gossypol cytotoxicity. We respectively detected the NAD+/NADH ratio, SIRT1 activity, the relative protein level and apoptosis. Comparing with the specific inhibitors groups, the data illustrated that gossypol induced apoptosis through SIRT1-P53-PUMA pathway. This study helped to overcome barriers of gossypol cytotoxicity, which is crucial in feed and food use of cottonseed. This also provides a reference for the gossypol derivatives using in male contraception and anticancer.
Collapse
|
28
|
Yang X, Yang S, Hong C, Yu W, Guonian W. Panax Notoginseng Saponins attenuates sevoflurane‑induced nerve cell injury by modulating AKT signaling pathway. Mol Med Rep 2017; 16:7829-7834. [PMID: 28944861 DOI: 10.3892/mmr.2017.7519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
General anesthesia in patients with or at risk for neuronal injury remains challenging due to the neurotoxic effects of volatile anesthetics. One inhalation anesthetic, sevoflurane, induces neuronal damage, including neuroapoptosis, and learning and memory impairment. Panax Notoginseng Saponins (PNS) is the active ingredient of Sanqui and has been reported to exert neuroprotective effects. In the current study, the protective effect of PNS on sevoflurane‑induced nerve cell injury was explored. Cell proliferation was significantly reduced in a dose‑dependent manner following stimulation with sevoflurane. Furthermore, cell apoptosis and the protein expression of caspase‑3, caspase‑9 and Bax were significantly increased, while the expression of Bcl‑2 was decreased in the sevoflurane group compared with normal control. Furthermore, the protein level of Bace‑1, APP and Aβ were elevated in the sevoflurane group compared with the control group. By contrast, PNS treatment significantly reduced the neurotoxicity induced by sevoflurane. Additionally, sevoflurane reduced activation of the AKT signaling pathway, which was activated by PNS treatment. In conclusion, the results suggested that PNS attenuates sevoflurane‑induced neurotoxicity through by stimulating cell proliferation and inhibiting cell apoptosis. These effects were mediated, at least in part, by activating the AKT signaling pathway.
Collapse
Affiliation(s)
- Xu Yang
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Sun Yang
- Department of Anesthesiology, Heilongjiang Province Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Chen Hong
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wang Yu
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wang Guonian
- Department of Anesthesiology, Cancer Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
29
|
Song H, Wang P, Liu J, Wang C. Panax notoginsengPreparations for Unstable Angina Pectoris: A Systematic Review and Meta-Analysis. Phytother Res 2017. [PMID: 28634988 DOI: 10.1002/ptr.5848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haiying Song
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Peili Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Department of Cardiology, Xiyuan Hospital; China Academy of Chinese Medical Sciences; Beijing 100091 China
| |
Collapse
|
30
|
Danhong Huayu Koufuye Prevents Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats via Antioxidation and Anti-Inflammation. Mediators Inflamm 2017. [PMID: 28638179 PMCID: PMC5468776 DOI: 10.1155/2017/3059763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Danhong Huayu Koufuye (DHK), a traditional Chinese prescription, is used to treat central retinal vein occlusion clinically. We previously reported that DHK prevented diabetic retinopathy (DR) in rats. Moreover, we found that it protected endothelial cells from hyperglycemia-induced apoptosis through antioxidation and anti-inflammation. Here, we investigated whether antioxidative and anti-inflammatory activities of DHK contributed to its therapeutic effect on DR in streptozotocin- (STZ-) induced diabetic rats. DHK significantly blocked the breakdown of the blood-retinal barrier (BRB) and increased the thickness of the inner nuclear layer (INL), as well as suppressed the swelling of the ganglion cell layer (GCL) in diabetic retinas. DHK remarkably increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in plasma, and decreased serum level of nitric oxide (NO). Moreover, DHK markedly reduced the serum levels of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule-1 (ICAM-1). Furthermore, DHK significantly downregulated protein expressions of VEGF and inducible NO synthase (iNOS) and mRNA expression of ICAM-1 in retinas. These results suggest that the antioxidative and anti-inflammatory activities of DHK may be important mechanisms involved in the protective effect of DHK on DR in STZ-induced diabetic rats.
Collapse
|
31
|
Jiang S, Chen X. HMGB1 siRNA can reduce damage to retinal cells induced by high glucose in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:783-795. [PMID: 28352154 PMCID: PMC5359008 DOI: 10.2147/dddt.s129913] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR), one of the most common complications of late-phase diabetes, is associated with many risk factors, among which continuous low-grade inflammation is one of the principal ones. As such, lowering inflammation levels and maintain the viability of human retinal endothelial cells (HRECs) are critical for DR therapy. HMGB1 is a well-known proinflammatory cytokine. However, whether HMGB1 small interfering RNA (siRNA) can protect retina cells under a high-glucose environment from morphological changes and functional abnormalities remain undetermined. We aimed to investigate the effect of HMGB1 siRNA on retinal cells in DR. MATERIALS AND METHODS A total of 80 adult Wistar rats were randomly divided into four groups (n=20 each): normal control, diabetes mellitus (DM), scrambled (Scr) siRNA, and HMGB1 siRNA. Rats in the DM, Scr siRNA, and siRNA groups were established by intraperitoneal injection of streptozotocin. At 16 weeks after injection, rats in the siRNA and Scr-siRNA groups were intravitreally injected with 2 μL HMGB1 siRNA and 2 μL Scr-siRNA, while rats in the control and DM groups were intravitreally injected with the same dose of sterile saline. At 1 week after injections, we performed the following experiments. Immunohistochemical staining and real-time quantitative polymerase chain reaction were performed to test HMGB1 protein and messenger RNA expression in retinas. We performed TUNEL assays to detect retinal cell apoptosis and electroretinography to detect retinal function. In HRECs treated with high glucose, proliferation, morphology, apoptosis, super-oxide dismutase (SOD), and reactive oxygen species production were detected. Western blot was applied to determine the expressions of HMGB1 and its related protein and apoptosis protein. RESULTS Intravitreal injection of HMGB1 siRNA reduced protein and messenger RNA expression of HMGB1 (both P<0.05). Intravitreal injection of HMGB1 siRNA reduced apoptosis of retinal cells (P<0.05), protected morphological changes in the retina, and improved the function of the retina (P<0.05). In HRECs treated with high glucose, HMGB1 siRNA pretreatment increased cell viability, reduced cell apoptosis, and reduced oxidative damage to cells (all P<0.05). Western blot detection found that HMGB1 siRNA pretreatment can inhibit the expression of cleaved caspase 3 and improve the expression of BCL2 (P<0.05). HMGB1 and NFκB expression increased in a time-dependent manner in the high-glucose environment and IKKβ and NFκB protein expression decreased significantly after HMGB1 silencing. CONCLUSION As a therapeutic target, HMGB1 siRNA can reduce retinal cell damage induced by high glucose in vitro and in vivo and delay DR progress through the HMGB1-IKKβ-NFκB signaling pathway.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolong Chen
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Zhang N, Li Z, Xu K, Wang Y, Wang Z. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1. Biol Pharm Bull 2017; 39:1448-54. [PMID: 27582325 DOI: 10.1248/bpb.b16-00085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related renal diseases have been a worldwide issue. Effective strategy that prevents high fat-diet induced renal damage is of great significance. Resveratrol, a natural plant polyphenol, is famous for its antioxidant activity, cardioprotective effects and anticancer properties. However whether resveratrol can play a role in the treatment of renal diseases is unknown. In this study, we added resveratrol in normal glucose or high glucose medium and provide evidences that resveratrol protects against high-glucose triggered oxidative stress and cell senescence. Moreover, mice were fed with standard diet, standard diet plus resveratrol, high-fat diet or high-fat diet plus resveratrol for 3 months, and results show that resveratrol treatment prevents high-fat diet induced renal pathological damage by activating SIRT1, a key member in the mammalian sirtuin family that response to calorie restriction life-extension method. This research confirms the potential role of resveratrol in the treatment of renal diseases and may provide an effective and convenient method to mimic the beneficial effects of calorie restriction.
Collapse
Affiliation(s)
- Nannan Zhang
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University
| | | | | | | | | |
Collapse
|
33
|
He L, Wang H, Gu C, He X, Zhao L, Tong X. Administration of Traditional Chinese Blood Circulation Activating Drugs for Microvascular Complications in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2016; 2016:1081657. [PMID: 27830156 PMCID: PMC5088336 DOI: 10.1155/2016/1081657] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 01/13/2023] Open
Abstract
Traditional Chinese medicine (TCM) is an important complementary strategy for treating diabetes mellitus (DM) in China. Traditional Chinese blood circulation activating drugs are intended to guide an overall approach to the prevention and treatment of microvascular complications of DM. The core mechanism is related to the protection of the vascular endothelium and the basement membrane. Here, we reviewed the scientific evidence underpinning the use of blood circulation activating drugs to prevent and treat DM-induced microvascular complications, including diabetic nephropathy (DN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR). Furthermore, we summarized the effects and mechanism of TCM on improving blood rheology, inhibiting aggregation of platelet, forming advanced glycation end products (AGEs), regulating oxidative stress, reducing blood fat, and improving lipid metabolism. The paper provides a new theoretical basis for the clinical practice of TCM in the prevention and treatment of DM and its microvascular complications.
Collapse
Affiliation(s)
- Lisha He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Han Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chengjuan Gu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinhui He
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linhua Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
34
|
Chen J, Guo X, Song Y, Zhao M, Tu P, Jiang Y. MRM-based strategy for the homolog-focused detection of minor ginsenosides from notoginseng total saponins by ultra-performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c6ra18459f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A validated MRM-based strategy was established for targeted detection of minor ginsenosides from NGTS by using a LC-Q-Trap/MS.
Collapse
Affiliation(s)
- Jinfeng Chen
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Mingbo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs
- School of Pharmaceutical Sciences
- Peking University
- Beijing 100191
- China
| |
Collapse
|