1
|
Geerardyn A, Wils I, Putzeys T, Fierens G, Wouters J, Verhaert N. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation. Hear Res 2024; 450:109049. [PMID: 38850830 DOI: 10.1016/j.heares.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
The round window (RW) membrane plays an important role in normal inner ear mechanics. Occlusion or reinforcement of the RW has been described in the context of congenital anomalies or after cochlear implantation and is applied as a surgical treatment for hyperacusis. Multiple lumped and finite element models predict a low-frequency hearing loss with air conduction of up to 20 dB after RW reinforcement and limited to no effect on hearing with bone conduction stimulation. Experimental verification of these results, however, remains limited. Here, we present an experimental study measuring the impact of RW reinforcement on the middle and inner ear mechanics with air and bone conduction stimulation. In a within-specimen repeated measures design with human cadaveric specimens (n = 6), we compared the intracochlear pressures in scala vestibuli (PSV) and scala tympani (PST) before and after RW reinforcement with soft tissue, cartilage, and bone cement. The differential pressure (PDIFF) across the basilar membrane - known to be closely related to the hearing sensation - was calculated as the complex difference between PSV and PST. With air conduction stimulation, both PSV and PSTincreased on average up to 22 dB at frequencies below 1500 Hz with larger effect sizes for PST compared to PSV. The PDIFF, in contrast, decreased up to 11 dB at frequencies between 700 and 800 Hz after reinforcement with bone cement. With bone conduction, the average within-specimen effects were less than 5 dB for either PSV, PST, or PDIFF. The inter-specimen variability with bone conduction, however, was considerably larger than with air conduction. This experimental study shows that RW reinforcement impacts air conduction stimulation at low frequencies. Bone conduction stimulation seems to be largely unaffected. From a clinical point of view, these results support the hypothesis that delayed loss of air conduction hearing after cochlear implantation could be partially explained by the impact of RW reinforcement.
Collapse
Affiliation(s)
- Alexander Geerardyn
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Leuven Belgium
| | - Irina Wils
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Tristan Putzeys
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium; Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Guy Fierens
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium; Cochlear Technology Centre, Mechelen, Belgium
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Nicolas Verhaert
- ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, Leuven Belgium.
| |
Collapse
|
2
|
Wils I, Geerardyn A, Putzeys T, Denis K, Verhaert N. Lumped element models of sound conduction in the human ear: A systematic review. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1696-1709. [PMID: 37712750 DOI: 10.1121/10.0020841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Lumped element models facilitate investigating the fundamental mechanisms of human ear sound conduction. This systematic review aims to guide researchers to the optimal model for the investigated parameters. For this purpose, the literature was reviewed up to 12 July 2023, according to the PRISMA guidelines. Seven models are included via database searching, and another 19 via cross-referencing. The quality of the models is assessed by comparing the predicted middle ear transfer function, the tympanic membrane impedance, the energy reflectance, and the intracochlear pressures (ICPs) (scala vestibuli, scala tympani, and differential) with experimental data. Regarding air conduction (AC), the models characterize the pathway from the outer to the inner ear and accurately predict all six aforementioned parameters. This contrasts with the few existing bone conduction (BC) models that simulate only a part of the ear. In addition, these models excel at predicting one observable parameter, namely, ICP. Thus, a model that simulates BC from the coupling site to the inner ear is still lacking and would increase insights into the human ear sound conduction. Last, this review provides insights and recommendations to determine the appropriate model for AC and BC implants, which is highly relevant for future clinical applications.
Collapse
Affiliation(s)
- Irina Wils
- Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | | | - Tristan Putzeys
- Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium
| | - Kathleen Denis
- Department of Mechanical Engineering, KU Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|
3
|
Dobrev I, Pfiffner F, Röösli C. Intracochlear pressure and temporal bone motion interaction under bone conduction stimulation. Hear Res 2023; 435:108818. [PMID: 37267833 DOI: 10.1016/j.heares.2023.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Under bone conduction (BC) stimulation, the otic capsule, and surrounding temporal bone, undergoes a complex 3-dimentional (3D) motion that depends on the frequency, location and coupling of the stimulation. The correlation between the resultant intracochlear pressure difference across the cochlear partition and the 3D motion of the otic capsule is not yet known and is to be investigated. METHODS Experiments were conducted in 3 fresh frozen cadaver heads, individually on each temporal bone, resulting in a total of 6 samples. The skull bone was stimulated, via the actuator of a BC hearing aid (BCHA), in the frequency range of 0.1-20 kHz. Stimulation was applied at the ipsilateral mastoid and the classical BAHA location via a conventional transcutaneous (5-N steel headband) and percutaneous coupling, sequentially. Three-dimensional motions were measured across the lateral and medial (intracranial) surfaces of the skull, the ipsilateral temporal bone, the skull base, as well as the promontory and stapes. Each measurement consisted of 130-200 measurement points (∼5-10 mm pitch) across the measured skull surface. Additionally, intracochlear pressure in the scala tympani and scala vestibuli was measured via a custom-made intracochlear acoustic receiver. RESULTS While there were limited differences in the magnitude of the motion across the skull base, there were major differences in the deformation of different sections of the skull. Specifically, the bone near the otic capsule remained primarily rigid across all test frequency (above 10 kHz), in contrast to the skull base, which deformed above 1-2 kHz. Above 1 kHz, the ratio, between the differential intracochlear pressure and the promontory motion, was relatively independent of coupling and stimulation location. Similarly, the stimulation direction appears to have no influence on the cochlear response, above 1 kHz. CONCLUSIONS The area around the otic capsule appears rigid up to significantly higher frequencies than the rest of the skull surface, resulting in primarily inertial loading of the cochlear fluid. Further work should be focused at the investigation of the solid-fluid interaction between the bony walls of the otic capsule and the cochlear contents.
Collapse
Affiliation(s)
- Ivo Dobrev
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, Zurich CH-8091, Switzerland.
| | - Flurin Pfiffner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, Zurich CH-8091, Switzerland
| | - Christof Röösli
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 24, Zurich CH-8091, Switzerland
| |
Collapse
|
4
|
Felix TR, Waldmann B, Prenzler NK, Salcher RB, Timm ME, Lenarz T, Maier H. Estimating vibration artifacts in preclinical experimental assessment of actuator efficiency in bone-conduction hearing devices. Hear Res 2023; 433:108765. [PMID: 37094529 DOI: 10.1016/j.heares.2023.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVES Test feasibility of a means to distinguish artifact from relevant signal in an experimental method for pre-clinical assessment of bone conduction (BC) stimulation efficiency based on measurement of intracochlear pressure (ICP). METHODS Experiments were performed on fresh-frozen human temporal bones and cadaver heads. In a first step, fiber optic pressure sensors inserted into the cochlea through cochleostomies were intentionally vibrated to generate relative motion versus the stationary specimen, and the resulting ICP artifact recorded, before and after attaching the sensor fiber to the bone with glue. In a second step, BC stimulation was applied in the conventional location for a commercial bone anchored implant, as well as two alternative locations closer to the otic capsule. Again, ICP was recorded and compared with an estimated artifact, calculated from the previous measurements with intentional vibration of the fiber. RESULTS Intentional vibration of the sensor fiber creates relative motion between fiber and bone, as intended, and causes an ICP signal. The stimulus does not create substantial promontory vibration, indicating that the measured ICP is all artifact, i.e. would not occur if the sensor were not in place. Fixating the sensor fiber to the bone with glue reduces the ICP artifact by at least 20 dB. BC stimulation also creates relative motion between sensor fiber and bone, as expected, from which an estimated ICP artifact level can be calculated. The ICP signal measured during BC stimulation is well above the estimated artifact, at least in some specimens and at some frequencies, indicating "real" cochlear stimulation, which would result in an auditory percept in a live subject. Stimulation at the alternative locations closer to the otic capsule appear to result in higher ICP (no statistical analysis performed), indicating a trend towards more efficient stimulation than at the conventional location. CONCLUSIONS Intentional vibration of the fiber optic sensor for measurement of ICP can be used to derive an estimate of the artifact to be expected when measuring ICP during BC stimulation, and to characterize the effectiveness of glues or other means of reducing the artifact caused by relative motion of fiber and bone.
Collapse
Affiliation(s)
- Tiago Rocha Felix
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cochlear Deutschland GmbH & Co KG, Germany
| | | | - Nils Kristian Prenzler
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Rolf Benedikt Salcher
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Max Eike Timm
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany
| | - Hannes Maier
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany; Cluster of Excellence "Hearing4all", Hannover, Germany.
| |
Collapse
|
5
|
Yu YC, Wang TC, Shih TC. A comprehensive finite-element human ear model to estimate noise-induced hearing loss associated with occupational noise exposure. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107179. [PMID: 36306646 DOI: 10.1016/j.cmpb.2022.107179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Noise is a common occupational and environmental hazard; however, little is known about the use of computational tools to quantitively analyze data on basilar membrane (BM) damage in noise-induced hearing loss (NIHL). Here, we established a comprehensive three-dimensional finite-element human ear model to quantify the impact of noise exposure on BM and perilymph fluid. METHODS We used auditory risk units (ARUs) to evaluate the BM damage for subjects (3 men and 5 women; mean age, 32.75 ± 8.86 years; age range, 24-44 years). A 90-dB sound pressure level (SPL) was normally applied at the external auditory canal (EAC) entrance to simulate sound transmission from the EAC to the cochlea at frequencies of 0.2-10.0 kHz. RESULTS The pressure distribution of perilymph fluid is totally different on frequency responses under low and high sound-evoked (0.013-10.0 kHz). The highest ARUs were 18.479% at the distance of 1 mm from the base, and the second-highest to fourth-highest ARUs occurred at distances of 5-7 mm from the base, where their ARUs were 9.749%, 9.176%, and 11.231%. The total of the ARUs reached 81.956% at external frequencies' sounds of 3.2-5.0 kHz. Among these, the 3.8-kHz and 3.6-kHz frequencies yielded the highest and second-highest ARUs of 20.325% and 19.873%, respectively. CONCLUSIONS This study would inform our understanding of NIHL associated with occupational noise exposure. We present a FE modelling and describe how it might provide a unique way to unravel mechanisms that drive NIHL due to loud noises.
Collapse
Affiliation(s)
- You-Cheng Yu
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung 406040, Taiwan
| | - Tang-Chuan Wang
- School of Medicine, College of Medicine, China Medical University, Taichung 406040, Taiwan; Department of Public Health, College of Public Health, China Medical University, Taichung 406040, Taiwan; Department of Otolaryngology-Head and Neck Surgery, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County 302056, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung 406040, Taiwan; The PhD Program for Medical Engineering and Rehabilitation Science, College of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan.
| |
Collapse
|
6
|
Putzeys T, Borgers C, Fierens G, Walraevens J, Van Wieringen A, Verhaert N. Intracochlear pressure as an objective measure for perceived loudness with bone conduction implants. Hear Res 2022; 422:108550. [PMID: 35689853 DOI: 10.1016/j.heares.2022.108550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The generally accepted method to assess the functionality of novel bone conduction implants in a preclinical stage is to experimentally measure the vibratory response of the cochlear promontory. Yet, bone conduction of sound is a complex propagation phenomenon, depending on both frequency and amplitude, involving different conduction pathways. OBJECTIVES The aim of this study is to validate the use of intracochlear sound pressure (ICP) as an objective indicator for perceived loudness for bone conduction stimulation. It is investigated whether a correlation exists between intracochlear sound pressure measurements in cadaveric temporal bones and clinically obtained results using the outcome of a loudness balancing experiment. METHODS Ten normal hearing subjects were asked to balance the perceived loudness between air conducted (AC) sound and bone conducted (BC) sound by changing the AC stimulus. Mean balanced thresholds were calculated and used as stimulation levels in a cadaver trial (N = 4) where intracochlear sound pressure was measured during AC and BC stimulation to assess the correlation with the measured clinical data. The intracochlear pressure was measured at the relatively low stimulation amplitude of 80 dBHL using a lock-in amplification technique. RESULTS Applying AC and BC stimulation at equal perceived loudness on cadaveric heads yield a similar differential intracochlear pressure, with differences between AC and BC falling within the range of variability of normal hearing test subjects. CONCLUSION Comparing the perceived loudness at 80 dB HL for both AC and BC validates intracochlear pressure as an objective indicator of the cochlear drive. The measurement setup is more time-intensive than measuring the vibratory response of the cochlear promontory, yet it provides direct information on the level of the cochlear scalae.
Collapse
Affiliation(s)
- Tristan Putzeys
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Heverlee, Belgium.
| | - Charlotte Borgers
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium
| | - Guy Fierens
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; KU Leuven - University of Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Heverlee, Belgium; Cochlear Technology Centre, Mechelen, Belgium
| | | | - Astrid Van Wieringen
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium
| | - Nicolas Verhaert
- KU Leuven - University of Leuven, Department of Neurosciences, ExpORL, B-3000 Leuven, Belgium; University Hospitals Leuven, Department of Otorhinolaryngology, Head and Neck Surgery, Leuven, Belgium
| |
Collapse
|
7
|
The Impact of Location and Device Coupling on the Performance of the Osia System Actuator. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9079903. [PMID: 35411307 PMCID: PMC8994691 DOI: 10.1155/2022/9079903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022]
Abstract
Active transcutaneous bone conduction (BC) devices offer the benefit of improved power output compared to passive transcutaneous devices and remove the risk of skin infections that are more common in traditional percutaneous BC devices. Despite these advantages, more research is needed on implant location, device coupling, and their influence on device performance. This study is aimed at quantifying the extent to which certain parameters affect device output when using the Osia® system actuator. Parameters under study are (1) implant location, (2) comparison with the actuator of a state-of-the-art BC device, (3) bone undergrowth simulation, and (4) skull fixation. Five human cadaveric heads were implanted with the actuator at three different implant locations: (1) recommended, (2) posterior Osia® positions, and (3) standard Baha® position. At each location, the cochlear promontory velocity and the intracochlear pressure difference were measured. A percutaneous bone conduction actuator was used as a reference for the obtained measurements. Stimulation levels corresponded to a hearing level of 60 dB HL for frequencies between 250 and 6000 Hz. In addition, bone cement was used as a simulation for reactive bone growth. Results obtained in four heads indicate an improved power transmission of the transcutaneous actuator when implanted at the recommended position compared to the actuator of the percutaneous device on its respective recommended location when stimulating at an identical force level. A correlation was found between the promontory vibration and the actuator position, indicating that the same level of stimulation leads to higher promontory vibrations when the device is implanted closer to the ear canal. This is mainly reflected at frequencies higher than 1 kHz, where an increase was observed in both measurement modalities. At lower frequencies (<1 kHz), the power transmission is less influenced by the implant position and differences between the acquired responses are limited. In addition, when no rigid coupling to the skull is provided, power transfer losses of up to 30 dB can be expected.
Collapse
|
8
|
Dobrev I, Farahmandi T, Pfiffner F, Röösli C. Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation. Hear Res 2022; 421:108506. [DOI: 10.1016/j.heares.2022.108506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 01/20/2023]
|
9
|
Upadhyaya AM, Hasan MK, Abdel-Khalek S, Hassan R, Srivastava MC, Sharan P, Islam S, Saad AME, Vo N. A Comprehensive Review on the Optical Micro-Electromechanical Sensors for the Biomedical Application. Front Public Health 2021; 9:759032. [PMID: 34926383 PMCID: PMC8674308 DOI: 10.3389/fpubh.2021.759032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study presented an overview of current developments in optical micro-electromechanical systems in biomedical applications. Optical micro-electromechanical system (MEMS) is a particular class of MEMS technology. It combines micro-optics, mechanical elements, and electronics, called the micro-opto electromechanical system (MOEMS). Optical MEMS comprises sensing and influencing optical signals on micron-level by incorporating mechanical, electrical, and optical systems. Optical MEMS devices are widely used in inertial navigation, accelerometers, gyroscope application, and many industrial and biomedical applications. Due to its miniaturised size, insensitivity to electromagnetic interference, affordability, and lightweight characteristic, it can be easily integrated into the human body with a suitable design. This study presented a comprehensive review of 140 research articles published on photonic MEMS in biomedical applications that used the qualitative method to find the recent advancement, challenges, and issues. The paper also identified the critical success factors applied to design the optimum photonic MEMS devices in biomedical applications. With the systematic literature review approach, the results showed that the key design factors could significantly impact design, application, and future scope of work. The literature of this paper suggested that due to the flexibility, accuracy, design factors efficiency of the Fibre Bragg Grating (FBG) sensors, the demand has been increasing for various photonic devices. Except for FBG sensing devices, other sensing systems such as optical ring resonator, Mach-Zehnder interferometer (MZI), and photonic crystals are used, which still show experimental stages in the application of biosensing. Due to the requirement of sophisticated fabrication facilities and integrated systems, it is a tough choice to consider the other photonic system. Miniaturisation of complete FBG device for biomedical applications is the future scope of work. Even though there is a lot of experimental work considered with an FBG sensing system, commercialisation of the final FBG device for a specific application has not been seen noticeable progress in the past.
Collapse
Affiliation(s)
- Anup M. Upadhyaya
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Mohammad Kamrul Hasan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - S. Abdel-Khalek
- Department of Mathematics and Statistics, College of Science, Taif University, Taif, Saudi Arabia
| | - Rosilah Hassan
- Network and Communication Technology Lab, Center for Cyber Security, Faculty of Information Science and Technology, The National University of Malaysia (UKM), Bangi, Malaysia
| | - Maneesh C. Srivastava
- Department of Mechanical Engineering, Amity School of Engineering and Technology (ASET), Amity University, Noida, Lucknow, India
- Department of Mechanical Engineering, The Oxford College of Engineering, Bangalore, India
| | - Preeta Sharan
- Department of Electronics and Communication Engineering, The Oxford College of Engineering, Bangalore, India
| | - Shayla Islam
- Institute of Computer Science and Digital Innovation, University College Sedaya International (UCSI) University, Kuala Lumpur, Malaysia
| | - Asma Mohammed Elbashir Saad
- Department of Physics College of Science and Humanities in AL-Kharj, Prince Sattam Bin Abdulaziz University, AL-Kharj, Saudi Arabia
| | - Nguyen Vo
- Department of Information Technology, Victorian Institute of Technology, Melbourne, VIC, Australia
| |
Collapse
|
10
|
A Miniature, Fiber-Optic Vibrometer for Measuring Unintended Acoustic Output of Active Hearing Implants during Magnetic Resonance Imaging. SENSORS 2021; 21:s21196589. [PMID: 34640909 PMCID: PMC8512570 DOI: 10.3390/s21196589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022]
Abstract
Making use of magnetic resonance imaging (MRI) for diagnostics on patients with implanted medical devices requires caution due to mutual interactions between the device and the electromagnetic fields used by the scanner that can cause a number of adverse events. The presented study offers a novel test method to quantify the risk of unintended output of acoustically stimulating hearing implants. The design and operating principle of an all-optical, MRI safe vibrometer is outlined, followed by an experimental verification of a prototype. Results obtained in an MRI environment indicate that the system can detect peak displacements down to 8 pm for audible frequencies. Feasibility testing was performed with an active middle ear implant that was exposed to several pulse sequences in a 1.5 Tesla MRI environment. Magnetic field induced actuator vibrations, measured during scanning, turned out to be equivalent to estimated sound pressure levels between 25 and 85 dB SPL, depending on the signal frequency. These sound pressure levels are situated well below ambient sound pressure levels generated by the MRI scanning process. The presented case study therefore indicates a limited risk of audible unintended output for the examined hearing implant during MRI.
Collapse
|
11
|
Lim J, Dobrev I, Röösli C, Stenfelt S, Kim N. Development of a finite element model of a human head including auditory periphery for understanding of bone-conducted hearing. Hear Res 2021; 421:108337. [PMID: 34470714 DOI: 10.1016/j.heares.2021.108337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
A three-dimensional finite-element (FE) model of a human head including the auditory periphery was developed to obtain a better understanding of bone-conducted (BC) hearing. The model was validated by comparison of cochlear and head responses in both air-conducted (AC) and BC hearing with experimental data. Specifically, the FE model provided the cochlear responses such as basilar membrane velocity and intracochlear pressure corresponding to BC stimulations applied to the mastoid or the conventional bone-anchored-hearing-aid (BAHA) positions. This is a strength of the model because it is difficult to obtain the cochlear responses from experiments corresponding to the BC stimulation applied at a specific position on the head surface. In addition, there have been few studies based on an FE model that can calculate the head and cochlear responses simultaneously from a BC stimulation. Moreover, in this study, the intracochlear sound pressure at multi-positions along the BM length was calculated and used to clarify the effect of stimulating force direction on the cochlear and promontory velocities in BC hearing. Also, the relationship between BC and AC stimulation and the basilar membrane velocity in the FE model was used to calculate the stimulation level at hearing thresholds which has been investigated only by psychoacoustical methods.
Collapse
Affiliation(s)
- Jongwoo Lim
- Department of Mechanical Engineering, Incheon National University, Republic of Korea
| | - Ivo Dobrev
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zürich, Zürich, Switzerland; University of Zürich, Zürich, Switzerland
| | - Christof Röösli
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zürich, Zürich, Switzerland; University of Zürich, Zürich, Switzerland
| | - Stefan Stenfelt
- Department of Biomedical and Clinical Sciences, Linköping University, Sweden
| | - Namkeun Kim
- Department of Mechanical Engineering, Incheon National University, Republic of Korea.
| |
Collapse
|
12
|
Performance Evaluation of Coupling Variants for an Active Middle Ear Implant Actuator: Output, Conductive Losses, and Stability of Coupling With Ambient Pressure Changes. Otol Neurotol 2021; 42:e690-e697. [PMID: 34111049 DOI: 10.1097/mao.0000000000003097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION This study aims to investigate the performance of an active middle ear implant actuator for various coupling configurations. Actuator output and conductive losses were measured, and the stability of coupling was evaluated by challenging the link between actuator and ossicles through pressure events in magnitudes that occur in daily life. METHODS Actuator coupling efficiency and the occurrence of conductive losses were measured in 10 temporal bones through laser Doppler vibrometry on the stapes footplate for various coupling types (incus short process with and without laser hole, incus long process, stapes head). To test the stability of coupling, actuator output was measured before and after daily-life pressure events that were simulated; Valsalva maneuvers (500 cycles of -40 to +60 hPa) and jumping into a swimming pool and diving 3 m deep (a step change of 300 hPa). RESULTS Actuator output was similarly high for all types of coupling to the incus (short process and long process) and most efficient for coupling to the stapes head. Conductive losses occurred in two temporal bones (TBs) for short process coupling but for seven TBs for coupling to the incus long process. All coupling types were stable and did not lose efficiency after pressure events in the low-frequency range (<1 kHz). Losses in output of 13 to 24 dB were observed in one TB at frequencies from 3 to 6 kHz. CONCLUSION Actuator output was similarly high for all types of coupling to the incus but coupling to the incus long process led to a higher occurrence of conductive losses. All three coupling configurations connected the actuator securely to the ossicular chain, under variations of barometric pressure that can be expected in daily life.
Collapse
|
13
|
Raufer S, Gamm UA, Grossöhmichen M, Lenarz T, Maier H. Middle Ear Actuator Performance Determined From Intracochlear Pressure Measurements in a Single Cochlear Scala. Otol Neurotol 2020; 42:e86-e93. [PMID: 33044336 DOI: 10.1097/mao.0000000000002836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Intracochlear pressure measurements in one cochlear scala are sufficient as reference to determine the output of an active middle ear implant (AMEI) in terms of "equivalent sound pressure level" (eqSPL). BACKGROUND The performance of AMEIs is commonly calculated from stapes velocities or intracochlear pressure differences (PDiff). However, there are scenarios where measuring stapes velocities or PDiff may not be feasible, for example when access to the stapes or one of the scalae is impractical. METHODS We reanalyzed data from a previous study of our group that investigated the performance of an AMEI coupled to the incus in 10 human temporal bones. We calculated eqSPL based on stapes velocities according to the ASTM standard F2504-05 and based on intracochlear pressures in scala vestibuli, scala tympani, and PDiff. RESULTS The AMEI produced eqSPL of ∼100 to 120 dB at 1 Vrms. No significant differences were found between using intracochlear pressures in scala vestibuli, scala tympani, or PDiff as a reference. The actuator performance calculated from stapes displacements predicted slightly higher eqSPLs at frequencies above 1000 Hz, but these differences were not statistically significant. CONCLUSION Our findings show that pressure measurements in one scala can be sufficient to evaluate the performance of an AMEI coupled to the incus. The method may be extended to other stimulation modalities of the middle ear or cochlea when access to the stapes or one of the scalae is not possible.
Collapse
Affiliation(s)
- Stefan Raufer
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Ute A Gamm
- Cochlear Deutschland GmbH & Co. KG, Hannover, Germany
| | - Martin Grossöhmichen
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Thomas Lenarz
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| | - Hannes Maier
- Department of Otolaryngology and Institute of Audioneurotechnology (VIANNA), Hannover Medical School, Hannover.,DFG Cluster of Excellence, Hearing4all
| |
Collapse
|
14
|
Packaging Technology for an Implantable Inner Ear MEMS Microphone. SENSORS 2019; 19:s19204487. [PMID: 31623215 PMCID: PMC6832568 DOI: 10.3390/s19204487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/29/2022]
Abstract
Current cochlear implant (CI) systems provide substantial benefits for patients with severe hearing loss. However, they do not allow for 24/7 hearing, mainly due to the external parts that cannot be worn in all everyday situations. One of the key missing parts for a totally implantable CI (TICI) is the microphone, which thus far has not been implantable. The goal of the current project was to develop a concept for a packaging technology for state-of-the-art microelectromechanical systems (MEMS) microphones that record the liquid-borne sound inside the inner ear (cochlea) as a microphone signal input for a TICI. The packaging concept incorporates requirements, such as biocompatibility, long-term hermeticity, a high sensing performance and a form factor that allows sensing inside the human cochlea and full integration into the existing CI electrode array. The present paper (1) describes the sensor packaging concept and the corresponding numerical and experimental design verification process and (2) gives insight into new engineering solutions for sensor packaging. Overall, a packaging concept was developed that enables MEMS microphone technology to be used for a TICI system.
Collapse
|
15
|
Reducing Artifacts in Intracochlear Pressure Measurements to Study Sound Transmission by Bone Conduction Stimulation in Humans. Otol Neurotol 2019; 40:e858-e867. [DOI: 10.1097/mao.0000000000002394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Morse RP, Mitchell-Innes A, Prokopiou AN, Irving RM, Begg PA. Inappropriate Use of the "Rosowski Criteria" and "Modified Rosowski Criteria" for Assessing the Normal Function of Human Temporal Bones. Audiol Neurootol 2019; 24:20-24. [PMID: 30870837 DOI: 10.1159/000495131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/31/2018] [Indexed: 02/02/2023] Open
Abstract
Important research by Rosowski et al. [Twenty-Seventh Meeting of the Association for Research in Otolaryngology, 2004, p. 275] has led to a standard practice by the American Society for Testing Materials [West Conshohocken: ASTM International; 2014] to assess normal function of temporal bones used in the development of novel middle ear actuators and sensors. Rosowki et al. [Audiol Neurotol. 2007; 12(4): 265-76] have since suggested that the original criteria are too restrictive and have proposed modified criteria. We show that both the original and modified criteria are inappropriate for assessing individual temporal bones. Moreover, we suggest that both the original and modified Rosowski criteria should be applied with caution when assessing whether mean data from a study are within physiological norms because the multiple comparisons resulting from verification at each frequency will lead to very liberal rejection. The standard practice, however, has led to the collection of more extensive and consistent data. We suggest that it is now opportune to use these data to further modify the Rosowski criteria.
Collapse
Affiliation(s)
| | | | | | - Richard M Irving
- ENT Department, University Hospital Birmingham, Birmingham, United Kingdom.,Institute of Translational Medicine, Birmingham, United Kingdom
| | - Philip A Begg
- Institute of Translational Medicine, Birmingham, United Kingdom
| |
Collapse
|
17
|
Pfiffner F, Prochazka L, Dobrev I, Klein K, Sulser P, Péus D, Sim JH, Dalbert A, Röösli C, Obrist D, Huber A. Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments. SENSORS 2018; 18:s18103565. [PMID: 30347862 PMCID: PMC6210337 DOI: 10.3390/s18103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022]
Abstract
(1) Background: The measurement of intracochlear sound pressure (ICSP) is relevant to obtain better understanding of the biomechanics of hearing. The goal of this work was a proof of concept of a partially implantable intracochlear acoustic receiver (ICAR) fulfilling all requirements for acute ICSP measurements in a large animal. The ICAR was designed not only to be used in chronic animal experiments but also as a microphone for totally implantable cochlear implants (TICI). (2) Methods: The ICAR concept was based on a commercial MEMS condenser microphone customized with a protective diaphragm that provided a seal and optimized geometry for accessing the cochlea. The ICAR was validated under laboratory conditions and using in-vivo experiments in sheep. (3) Results: For the first time acute ICSP measurements were successfully performed in a live specimen that is representative of the anatomy and physiology of the human. Data obtained are in agreement with published data from cadavers. The surgeons reported high levels of ease of use and satisfaction with the system design. (4) Conclusions: Our results confirm that the developed ICAR can be used to measure ICSP in acute experiments. The next generation of the ICAR will be used in chronic sheep experiments and in TICI.
Collapse
Affiliation(s)
- Flurin Pfiffner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Lukas Prochazka
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Ivo Dobrev
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Karina Klein
- Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Patrizia Sulser
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Dominik Péus
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Jae Hoon Sim
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Adrian Dalbert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Christof Röösli
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| | - Dominik Obrist
- ARTORG Center, University of Bern, 3010 Bern, Switzerland.
| | - Alexander Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
18
|
Validation of methods for prediction of clinical output levels of active middle ear implants from measurements in human cadaveric ears. Sci Rep 2017; 7:15877. [PMID: 29158536 PMCID: PMC5696479 DOI: 10.1038/s41598-017-16107-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/07/2017] [Indexed: 11/08/2022] Open
Abstract
Today, the standard method to predict output levels of active middle ear implants (AMEIs) before clinical data are available is stapes vibration measurement in human cadaveric ears, according to ASTM standard F2504-05. Although this procedure is well established, the validity of the predicted output levels has never been demonstrated clinically. Furthermore, this procedure requires a mobile and visually accessible stapes and an AMEI stimulating the ossicular chain. Thus, an alternative method is needed to quantify the output level of AMEIs in all other stimulation modes, e.g. reverse stimulation of the round window. Intracochlear pressure difference (ICPD) is a good candidate for such a method as it correlates with evoked potentials in animals and it is measurable in cadaveric ears. To validate this method we correlated AMEI output levels calculated from ICPD and from stapes vibration in cadaveric ears with outputs levels determined from clinical data. Output levels calculated from ICPD were similar to output levels calculated from stapes vibration and almost identical to clinical data. Our results demonstrate that both ICPD and stapes vibration can be used as a measure to predict AMEI clinical output levels in cadaveric ears and that ICPD as reference provided even more accurate results.
Collapse
|
19
|
Greene NT, Mattingly JK, Banakis Hartl RM, Tollin DJ, Cass SP. Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion. Otol Neurotol 2016; 37:1541-1548. [PMID: 27753703 PMCID: PMC5104176 DOI: 10.1097/mao.0000000000001232] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high-intensity sound transients. BACKGROUND Many patients receiving a CI have some remaining functional hearing at low frequencies; thus, devices and surgical techniques have been developed to use this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low-frequency hearing is lost after CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. METHODS Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli and tympani were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows, whereas CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. RESULTS Pressures in the scala tympani tended to be larger in magnitude than pressures in the scala vestibuli, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170 dB sound pressure level. Instances of pressure transients varied with electrode styles. CONCLUSION Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high-level sounds and thus could cause damage to the basilar membrane and/or hair cells.
Collapse
Affiliation(s)
- Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO
| | - Jameson K. Mattingly
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| | | | - Daniel J. Tollin
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO
| | - Stephen P. Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|