1
|
Sharma R, Mehrotra N, Singh I, Pal K. Development and characterization of PLA nanocomposites reinforced with bio-ceramic particles for orthognathic implants: Enhanced mechanical and biological properties. Int J Biol Macromol 2024; 282:136751. [PMID: 39481714 DOI: 10.1016/j.ijbiomac.2024.136751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
The clinical application of osteofixation materials is crucial for maxillofacial reconstruction and orthognathic surgeries. To overcome the limitations of traditional metallic implants, bioabsorbable materials are gaining popularity due to their ability to avoid secondary removal surgeries and reduce stress shielding. This study investigates third-generation biomaterials, focusing on polylactic acid (PLA) for its biocompatibility and biodegradability, and hydroxyapatite (HAP) for its bioactive osteoconductive and bioresorbable properties. Eggshell nanoparticles (ES-NP), HAP, and bioinert alumina particles coated with titanium dioxide (TiO2@Al2O3) were prepared using ball milling, co-precipitation, and sol-gel methods, respectively. PLA-based nanocomposites PLA/ESNP/Al2O3 (PEA), PLA/HAP/Al2O3 (PHA), PLA/ESNP/TiO2@Al2O3 (PEAT), and PLA/HAP/TiO2@Al2O3 (PHAT) were fabricated via solvent casting. Characterization techniques including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), and Field-Emission Scanning Electron Microscopy (FE-SEM) were used to analyze the developed nanoparticles and composites. Results indicated PEAT and PHAT composites exhibited tensile strengths of 33.59 ± 0.38 MPa and 32.46 ± 0.46 MPa, tensile moduli of 1756.17 ± 95.43 MPa and 2367.21 ± 158.84 MPa, and shore d hardness values of 84.10 ± 1.45 SHN and 78.00 ± 2.25 SHN, respectively. Both composites achieved a wettability angle of ~65° and surface roughness below 2.19 μm, enhancing osteoblast adhesion. Additionally, MG63 cell viability was approximately 80 %, and hemolysis rates were below 2.17 %, demonstrating their potential for maxillofacial implant applications.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Neha Mehrotra
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Inderdeep Singh
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Kaushik Pal
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
2
|
Shee M, Lal Banerjee S, Dey A, Das Jana I, Basak P, Mandal M, Mondal A, Kumar Das A, Das NC. pH-induced fluorescent active sodium alginate-based ionically conjugated and REDOX responsive multi-functional microgels for the anticancer drug delivery. Int J Pharm 2024; 662:124490. [PMID: 39032873 DOI: 10.1016/j.ijpharm.2024.124490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
A sodium alginate (Alg) based REDOX (reduction and oxidation)-responsive and fluorescent active microgel was prepared via water in oil (w/o) mini-emulsion polymerization technique. Here, we initially synthesized sodium alginate-based disulfide cross linked microgels and after that those microgels were tagged with rhodamine amine derivative (RhB-NH2) by ionic interaction to get the pH-responsive fluorescent property. Functionalized microgels were characterized using 1H NMR, FTIR, DLS, HRTEM, FESEM, UV-vis, and fluorescence spectroscopy analyses. Presence of the REDOX-responsive disulfide-containing crosslinkers in the microgels enhances the release of doxorubicin (DOX), an anti-cancer drug in the reducing environment of the cancer-cells (simulated). Existence of the rhodamine-amine derivative in the microgels triggers the pH-dependent fluorescence property by showing fluorescence emission at 560-580 nm at pH 5.5 (cancer cell pH). The cytotoxicity of the biopolymer based microgel was assessed over both cancerous HeLa (IC50 100 µg/mL) and non-cancerous MDCK (IC50 200 µg/mL) cells by MTT assay which showed the synthesized microgel is non-toxic whereas DOX-loaded microgels showed significant toxicity. FACS and cell uptake (in vitro) analyses were conducted to understand the cell apoptosis cycle and behavior of the cancer cells in presence of the DOX-loaded microgels. This pH-responsive fluorescent active alginate-based biomaterial could be a promising material for the anti-cancer drug delivery and other medical fields.
Collapse
Affiliation(s)
- Moumita Shee
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sovan Lal Banerjee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Amundson Hall, 421 Washington Ave SE #151, Minneapolis, MN 55455, USA
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Narayan Ch Das
- School of Nano Science and Technology (SNST), Indian Institute of Technology, Kharagpur, West Bengal 721302, India; Rubber Technology Center, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
3
|
Makri SP, Klonos PA, Marra G, Karathanasis AZ, Deligkiozi I, Valera MÁ, Mangas A, Nikolaidis N, Terzopoulou Z, Kyritsis A, Bikiaris DN. Structure-property relationships in renewable composites of poly(lactic acid) reinforced by low amounts of micro- and nano-kraft-lignin. SOFT MATTER 2024; 20:5014-5027. [PMID: 38885039 DOI: 10.1039/d4sm00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We investigate the direct and indirect effects of micro- and nano-kraft lignin, kL and NkL, respectively, at a quite low amount of 0.5 wt%, in poly(lactic acid) (PLA)-based composites. These renewable composites were prepared via two routes, either simple melt compounding or in situ reactive extrusion. The materials are selected and prepared using targeted methods in order to vary two variables, i.e., the size of kL and the synthetic method, while maintaining constant polymer chain lengths, L-/D-lactide isomer ratio and filler amounts. The direct/indirect effects were respectively investigated in the amorphous/semicrystalline state, as crystallinity plays in general a dominant role in polymers. The investigation involves structural, thermal and molecular mobility aspects. Non-extensive polymer-lignin interactions were recorded here, whereas the presence of the fillers led to both enhancements and suppressions of properties, e.g., glass transition, crystallization, melting temperatures, etc. The local and segmental molecular dynamics map of the said systems was constructed and is shown here for the first time, demonstrating both expected and unexpected trends. An interesting discrepancy between the trends in the calorimetric measurement against the dielectric Tg is revealed, providing indications for 'dynamical heterogeneities' in the composites as compared to neat PLA. The reactive extrusion as compared to compounding-based systems was found to exhibit stronger effects on crystallizability and mobility, most, probably due to the severe enhancement of the chains' diffusion. In general, the effects are more pronounced when employing nano-lignin compared to micro-lignin, which is the expected beneficial behaviour of nanocomposites vs. conventional composites. Interestingly, the variety of these effects can be easily manipulated by the proper selection of the preparation method and/or the thermal treatment under relatively mild conditions. The latter capability is actually desirable for processing and targeted applications and is proved here, once again, as an advantage of biobased polyesters such as PLA.
Collapse
Affiliation(s)
- Sofia P Makri
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
| | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | | | | | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Nikolaos Nikolaidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
4
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
5
|
Foster D, Cakley A, Larsen J. Optimizing enzyme-responsive polymersomes for protein-based therapies. Nanomedicine (Lond) 2024; 19:213-229. [PMID: 38271081 DOI: 10.2217/nnm-2023-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Aims: Stimuli-responsive polymersomes are promising tools for protein-based therapies, but require deeper understanding and optimization of their pathology-responsive behavior. Materials & methods: Hyaluronic acid (HA)-poly(b-lactic acid) (PLA) polymersomes self-assembled from block copolymers of varying molecular weights of HA were compared for their physical properties, degradation and intracellular behavior. Results: Major results showed increasing enzyme-responsivity associated with decreasing molecular weight. The major formulation differences were as follows: the HA(5 kDa)-PLA formulation exhibited the most pronounced release of encapsulated proteins, while the HA(7 kDa)-PLA formulation showed the most different release behavior from neutral. Conclusion: We have discovered design rules for HA-PLA polymersomes for protein delivery, with lower molecular weight leading to higher encapsulation efficiency, greater release and greater intracellular uptake.
Collapse
Affiliation(s)
- Dorian Foster
- Department of Chemical & Biomolecular Engineering, Center for Nanotherapeutic Strategies in the Central Nervous System, Clemson University, Clemson, SC 29631, USA
| | - Alaura Cakley
- Department of Chemical & Biomolecular Engineering, Center for Nanotherapeutic Strategies in the Central Nervous System, Clemson University, Clemson, SC 29631, USA
| | - Jessica Larsen
- Department of Chemical & Biomolecular Engineering, Center for Nanotherapeutic Strategies in the Central Nervous System, Clemson University, Clemson, SC 29631, USA
- Department of Bioengineering, Center for Nanotherapeutic Strategies in the Central Nervous System, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
6
|
Sikhosana ST, Gumede TP, Malebo NJ, Ogundeji AO, Motloung B. The influence of cellulose content on the morphology, thermal, and mechanical properties of poly(lactic acid)/
Eucomis autumnalis
cellulose biocomposites. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- S. T. Sikhosana
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - T. P. Gumede
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - N. J. Malebo
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
| | - A. O. Ogundeji
- Department of Microbiology and Biochemistry University of Free State Bloemfontein South Africa
| | - B. Motloung
- Department of Life Sciences Central University of Technology Bloemfontein South Africa
- Department of Chemistry and Polymer Science Stellenbosch University Matieland South Africa
| |
Collapse
|
7
|
Bikiaris ND, Koumentakou I, Samiotaki C, Meimaroglou D, Varytimidou D, Karatza A, Kalantzis Z, Roussou M, Bikiaris RD, Papageorgiou GZ. Recent Advances in the Investigation of Poly(lactic acid) (PLA) Nanocomposites: Incorporation of Various Nanofillers and their Properties and Applications. Polymers (Basel) 2023; 15:1196. [PMID: 36904437 PMCID: PMC10007491 DOI: 10.3390/polym15051196] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Meimaroglou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Despoina Varytimidou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Karatza
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Zisimos Kalantzis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Magdalini Roussou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Rizos D. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
| |
Collapse
|
8
|
Polyvinyl Alcohol, Chitosan Polymer Film Containing Chalcone, Metal Oxide Nanocomposite: Synthesis Characterization and Electrical Properties. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Ranakoti L, Gangil B, Bhandari P, Singh T, Sharma S, Singh J, Singh S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023; 28:485. [PMID: 36677545 PMCID: PMC9861437 DOI: 10.3390/molecules28020485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
In the present scenario, the research is now being focused on the naturally occurring polymers that can gradually replace the existing synthetic polymers for the development of bio composites having applications in medical surgeries and human implants. With promising mechanical properties and bio compatibility with human tissues, poly lactic acid (PLA) is now being viewed as a future bio material. In order to examine the applicability of PLA in human implants, the current article sheds light on the synthesis of PLA and its various copolymers used to alter its physical and mechanical properties. In the latter half, various processes used for the fabrication of biomaterials are discussed in detail. Finally, biomaterials that are currently in use in the field of biomedical (Scaffolding, drug delivery, tissue engineering, medical implants, derma, cosmetics, medical surgeries, and human implants) are represented with respective advantages in the sphere of biomaterials.
Collapse
Affiliation(s)
- Lalit Ranakoti
- Department of Mechanical Engineering, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Brijesh Gangil
- Mechanical Engineering Department, SOET, HNB Garhwal University, Srinagar 246174, Uttarakhand, India
| | - Prabhakar Bhandari
- Mechanical Engineering Department, SOET, K. R. Mangalam University, Gurgaon 122103, Haryana, India
| | - Tej Singh
- Savaria Institute of Technology, Eötvös Loránd University, 9700 Szombathely, Hungary
| | - Shubham Sharma
- Mechanical Engineering Department, University Center for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jujhar Singh
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
10
|
Klonos PA, Lazaridou M, Samiotaki C, Kyritsis A, Bikiaris DN. Dielectric and calorimetric study in renewable polymer blends based on poly(ethylene adipate) and poly(lactic acid) with microphase separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Masek A, Kosmalska A. Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol 2022; 10:912052. [PMID: 36061440 PMCID: PMC9429818 DOI: 10.3389/fbioe.2022.912052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many possible types of polymer composite materials, the most important are nanocomposites and biocomposites, which have received tremendous attention in recent years due to their unique properties. The fundamental benefits of using biocomposites as alternative materials to “petroleum-based” products are certainly shaping current development trends and setting directions for future research and applications of polymer composites. A dynamic growth of the production and sale of biocomposites is observed in the global market, which results not only from the growing interest and demand for this type of materials, but also due to the fact that for the developed and modified, thus improved materials, the area of their application is constantly expanding. Already today, polymer composites with plant raw materials are used in various sectors of the economy. In particular, this concerns the automotive and construction industries, as well as widely understood packaging. Bacterial cellulose, for example, also known as bionanocellulose, as a natural polymer with specific and unique properties, has been used extensively,primarily in numerous medical applications. Intensive research is also being carried out into composites with natural fibres composed mainly of organic compounds such as cellulose, hemicellulose and lignin. However, three aspects seem to be associated with the popularisation of biopolymers: performance, processing and cost. This article provides a brief overview of the topic under discussion. What can be the technological limitations considering the methods of obtaining polymer composites with the use of plant filler and the influence on their properties? What properties of cellulose constitute an important issue from the point of view of its applicability in polymers, in the context of compatibility with the polymer matrix and processability? What can be the ways of changing these properties through modifications, which may be crucial from the point of view of the development directions of biopolymers and bioplastics, whose further new applications will be related, among others, to the enhancement of properties? There still seems to be considerable potential to improve the cellulose material composites being produced, as well as to improve the efficiency of their manufacturing. Nevertheless, the material still needs to be well optimized before it can replace conventional materials at the industrial level in the near future. Typically, various studies discuss their comparison in terms of production, properties and highly demanding applications of plant or bacterial nanocellulose. Usually, aspects of each are described separately in the literature. In the present review, several important data are gathered in one place, providing a basis for comparing the types of cellulose described. On the one hand, this comparison aims to demonstrate the advantage of bacterial cellulose over plant cellulose, due to environmental protection and its unique properties. On the other hand, it aims to prepare a more comprehensive point of view that can objectively help in deciding which cellulosic raw material may be more suitable for a particular purpose, bacterial cellulose or plant cellulose.
Collapse
|
12
|
Levent Paralı, Koç M, Yıldız Z. 2D/3D Direct Writing of Thermoplastics through Electrohydrodynamic Printing. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Mohamed Haneef INH, Mohd Shaffiar N, Buys YF, Syed Shaharuddin SI, Abdul Hamid AM, Widiyati K. Recent advancement in polymer/halloysite nanotube nanocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 2022; 110:2574-2588. [PMID: 35661579 DOI: 10.1002/jbm.b.35105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022]
Abstract
Halloysite nanotubes (HNTs) have recently been the subject of extensive research as a reinforcing filler. HNT is a natural nanoclay, non-toxic and biocompatible, hence, applicable in biomedical fields. This review focuses on the mechanical, thermal, and functional properties of polymer nanocomposites with HNT as a reinforcing agent from an experimental and theoretical perspective. In addition, this review also highlights the recent applications of polymer/HNT nanocomposites in the biomedical fields.
Collapse
Affiliation(s)
| | - Norhashimah Mohd Shaffiar
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yose Fachmi Buys
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| | | | - Abdul Malek Abdul Hamid
- Department of Manufacturing and Materials Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Khusnun Widiyati
- Department of Mechanical Engineering, Faculty of Industrial Technology, Universitas Pertamina, Jakarta, Indonesia
| |
Collapse
|
14
|
Klonos PA, Terzopoulou Z, Zamboulis A, Valera MÁ, Mangas A, Kyritsis A, Pissis P, Bikiaris DN. Direct and indirect effects on molecular mobility in renewable polylactide-poly(propylene adipate) block copolymers as studied via dielectric spectroscopy and calorimetry. SOFT MATTER 2022; 18:3725-3737. [PMID: 35503564 DOI: 10.1039/d2sm00261b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we study a series of sustainable block copolymers based on polylactide, PLA, and poly(propylene adipate), PPAd, both polymers being prepared from renewable resources. Envisaging a wide range of future applications in the frame of a green and circular economy, e.g., packaging materials replacing conventional petrochemicals, the employment of PPAd aims at lowering the glass transition and melting temperatures of PLA and, finally, facilitation of the enzymatic degradation and compostability. The copolymers have been synthesized via ring opening polymerization of lactides in the presence of propylene adipate oligomers (5, 15 and 25%). The direct effects on the molecular mobility by the structure/composition are assessed in the amorphous state employing broadband dielectric spectroscopy (BDS) and calorimetry. BDS allowed the recording of local PLA and PPAd dynamics in all cases. The effects on local relaxations suggest favoring of interchain interactions, both PLA-PPAd and PPAd-PPAd. Regarding the more important segmental dynamics, the presence of PPAd leads to faster polymer chain diffusion, as monitored by the significant lowering of the dielectric and calorimetric glass transition temperature, Tg. This suggests the plasticizing role of PPAd on PLA (majority) in combination with the lowering of the average molar mass, Mn, in the copolymers from ∼75 to ∼30 kg mol-1, which is the actual scope for the synthesis of these materials. Interestingly, a strong suppression in fragility (chain cooperativity) is additionally recorded. In contrast to calorimetry and due to the high resolving power of BDS, for the higher PPAd fraction, the weak segmental relaxation of PPAd was additionally recorded. Overall, the recordings suggest a strong increase in free volume and two individual dynamic states, one for 0 and 5% PPAd and another for 15 and 25% PPAd. Within the latter, we gained indications for partial phase nano-separation of PPAd. Regarding indirect effects, these were followed via crystallization. Independent of the method of crystallization, namely, melt or cold, the presence of PPAd led to the systematic lowering of crystallization and melting temperatures and enthalpies. The effects reflect the decrease of crystalline nuclei, which is confirmed by optical microscopy as in the copolymers fewer although larger crystals are formed.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
15
|
Demchenko V, Rybalchenko N, Zahorodnia S, Naumenko K, Riabov S, Kobylinskyi S, Vashchuk A, Mamunya Y, Iurzhenko M, Demchenko O, Adamus G, Kowalczuk M. Preparation, Characterization, and Antimicrobial and Antiviral Properties of Silver-Containing Nanocomposites Based on Polylactic Acid-Chitosan. ACS APPLIED BIO MATERIALS 2022; 5:2576-2585. [PMID: 35532757 DOI: 10.1021/acsabm.2c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antimicrobial and antiviral nanocomposites based on polylactic acid (PLA) and chitosan were synthesized by a thermochemical reduction method of Ag+ ions in the PLA-Ag+-chitosan polymer films. Features of the structural, morphological, thermophysical, antimicrobial, antiviral, and cytotoxic properties of PLA-Ag-chitosan nanocomposites were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and antiviral, antimicrobial, and cytotoxic studies. The effects of temperature and the duration of reduction of Ag+ ions on the structure of PLA-Ag-chitosan nanocomposites were established. During the thermochemical reduction (T = 160 °C, t = 5 min) of silver palmitate ions in PLA-Ag+-chitosan polymer films, Ag nanoparticles with an average size of 4.2 nm were formed. PLA-Ag-chitosan polymer nanocomposites have strong antimicrobial activity against S. aureus and E. coli strains. In particular, for PLA-chitosan samples containing 4% Ag, the diameters of the S. aureus and E. coli growth inhibition zones were 25.8 and 25.0 mm, respectively. The antiviral activity of the nanocomposites against influenza A virus, herpes simplex virus type 1, and adenovirus serotype 2 was also revealed. The PLA-4%Ag-chitosan nanocomposites completely inhibited the cytopathic effect (CPE) of herpes virus type 1 by 5.12 log10TCID50/mL (high antiviral activity) and the development of the CPE of influenza virus and adenovirus by 0.60 and 1.07 log10TCID50/mL (relative antiviral activity). The obtained nanocomposites were not cytotoxic; they did not inhibit the viability of MDCK, BHK-21, and Hep-2 cell cultures.
Collapse
Affiliation(s)
- Valeriy Demchenko
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Nataliya Rybalchenko
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Svetlana Zahorodnia
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Krystyna Naumenko
- Zabolotny Institute of Microbiology and Virology, The National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Sergii Riabov
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine
| | - Serhii Kobylinskyi
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine
| | - Alina Vashchuk
- E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Yevgen Mamunya
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Maksym Iurzhenko
- Institute of Macromolecular Chemistry, The National Academy of Sciences of Ukraine, Kyiv 02160, Ukraine.,E.O. Paton Electric Welding Institute, The National Academy of Sciences of Ukraine, Kyiv 03680, Ukraine.,International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland
| | - Olena Demchenko
- National Research Center for Radiation Medicine, The National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Grazyna Adamus
- International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland.,Centre of Polymer and Carbon Materials, The Polish Academy of Sciences, Zabrze 41-819, Poland
| | - Marek Kowalczuk
- International Polish-Ukrainian Research Laboratory ADPOLCOM, Zabrze 41-819, Poland.,Centre of Polymer and Carbon Materials, The Polish Academy of Sciences, Zabrze 41-819, Poland
| |
Collapse
|
16
|
Črešnar KP, Zamboulis A, Bikiaris DN, Aulova A, Zemljič LF. Kraft Lignin/Tannin as a Potential Accelerator of Antioxidant and Antibacterial Properties in an Active Thermoplastic Polyester-Based Multifunctional Material. Polymers (Basel) 2022; 14:polym14081532. [PMID: 35458280 PMCID: PMC9029832 DOI: 10.3390/polym14081532] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
This research focuses on key priorities in the field of sustainable plastic composites that will lead to a reduction in CO2 pollution and support the EU’s goal of becoming carbon neutral by 2050. The main challenge is to develop high-performance polyphenol-reinforced thermoplastic composites, where the use of natural fillers replaces the usual chemical additives with non-toxic ones, not only to improve the final performance but also to increase the desired multifunctionalities (structural, antioxidant, and antibacterial). Therefore, poly (lactic acid) (PLA) composites based on Kraft lignin (KL) and tannin (TANN) were investigated. Two series of PLA composites, PLA-KL and PLA-TANN, which contained natural fillers (0.5%, 1.0%, and 2.5% (w/w)) were prepared by hot melt extrusion. The effects of KL and TANN on the PLA matrices were investigated, especially the surface physicochemical properties, mechanical properties, and antioxidant/antimicrobial activity. The surface physicochemical properties were evaluated by measuring the contact angle (CA), roughness, zeta potential, and nanoindentation. The results of the water contact angle showed that neither KL nor TANN caused a significant change in the wettability, but only a slight increase in the hydrophilicity of the PLA composites. The filler loading, the size of the particles with their available functional groups on the surfaces of the PLA composites, and the interaction between the filler and the PLA polymer depend on the roughness and zeta potential behavior of the PLA-KL and PLA-TANN composites and ultimately improve the surface mechanical properties. The antioxidant properties of the PLA-KL and PLA-TANN composites were determined using the DPPH (2,2′-diphenyl-1-picrylhydrazyl) test. The results show an efficient antioxidant behavior of all PLA-KL and PLA-TANN composites, which increases with the filler content. Finally, the KL- and PLA-based TANN have shown resistance to the Gram-negative bacteria, E. coli, but without a correlation trend between polyphenol filler content and structure.
Collapse
Affiliation(s)
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
- Correspondence: (D.N.B.); (L.F.Z.)
| | - Alexandra Aulova
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia;
- Department of Industrial and Material Science, Chalmers Technical University, SE-41296 Gothenburg, Sweden
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
- Correspondence: (D.N.B.); (L.F.Z.)
| |
Collapse
|
17
|
|
18
|
Demchenko V, Kobylinskyi S, Iurzhenko M, Riabov S, Vashchuk A, Rybalchenko N, Zahorodnia S, Naumenko K, Demchenko O, Adamus G, Kowalczuk M. Nanocomposites based on polylactide and silver nanoparticles and their antimicrobial and antiviral applications. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Raghav PK, Mann Z, Ahlawat S, Mohanty S. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. Eur J Pharmacol 2021; 918:174657. [PMID: 34871557 DOI: 10.1016/j.ejphar.2021.174657] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells owing to their regenerative potential and multilineage potency. MSCs have wide-scale applications either in their native cellular form or in conjugation with specific biomaterials as nanocomposites. Majorly, these natural or synthetic biomaterials are being used in the form of metallic and non-metallic nanoparticles (NPs) to encapsulate MSCs within hydrogels like alginate or chitosan or drug cargo loading into MSCs. In contrast, nanofibers of polymer scaffolds such as polycaprolactone (PCL), poly-lactic-co-glycolic acid (PLGA), poly-L-lactic acid (PLLA), silk fibroin, collagen, chitosan, alginate, hyaluronic acid (HA), and cellulose are used to support or grow MSCs directly on it. These MSCs based nanotherapies have application in multiple domains of biomedicine including wound healing, bone and cartilage engineering, cardiac disorders, and neurological disorders. This study focused on current approaches of MSCs-based therapies and has been divided into two major sections. The first section elaborates on MSC-based nano-therapies and their plausible applications including exosome engineering and NPs encapsulation. The following section focuses on the various MSC-based scaffold approaches in tissue engineering. Conclusively, this review mainly focused on MSC-based nanocomposite's current approaches and compared their advantages and limitations for building effective regenerative medicines.
Collapse
Affiliation(s)
- Pawan Kumar Raghav
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Zoya Mann
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Swati Ahlawat
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
20
|
Karthik V, Poornima S, Vigneshwaran A, Raj DPRDD, Subbaiya R, Manikandan S, Saravanan M. Nanoarchitectonics is an emerging drug/gene delivery and targeting strategy -a critical review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Sakr MA, Sakthivel K, Hossain T, Shin SR, Siddiqua S, Kim J, Kim K. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering. J Biomed Mater Res A 2021; 110:708-724. [PMID: 34558808 DOI: 10.1002/jbm.a.37310] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
Gelatin methacryloyl (GelMA), a photocrosslinkable gelatin-based hydrogel, has been immensely used for diverse applications in tissue engineering and drug delivery. Apart from its excellent functionality and versatile mechanical properties, it is also suitable for a wide range of fabrication methodologies to generate tissue constructs of desired shapes and sizes. Despite its exceptional characteristics, it is predominantly limited by its weak mechanical strength, as some tissue types naturally possess high mechanical stiffness. The use of high GelMA concentrations yields high mechanical strength, but not without the compromise in its porosity, degradability, and three-dimensional (3D) cell attachment. Recently, GelMA has been blended with various natural and synthetic biomaterials to reinforce its physical properties to match with the tissue to be engineered. Among these, nanomaterials have been extensively used to form a composite with GelMA, as they increase its biological and physicochemical properties without affecting the unique characteristics of GelMA and also introduce electrical and magnetic properties. This review article presents the recent advances in the formation of hybrid GelMA nanocomposites using a variety of nanomaterials (carbon, metal, polymer, and mineral-based). We give an overview of each nanomaterial's characteristics followed by a discussion of the enhancement in GelMA's physical properties after its incorporation. Finally, we also highlight the use of each GelMA nanocomposite for different applications, such as cardiac, bone, and neural regeneration.
Collapse
Affiliation(s)
- Mahmoud A Sakr
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Kabilan Sakthivel
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Towsif Hossain
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham Women's Hospital, Cambridge, Massachusetts, USA
| | - Sumi Siddiqua
- School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jaehwan Kim
- Advanced Geo-materials Research Department, Korea Institute of Geosciece and Mineral Resources, Pohang-si, South Korea
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Ainali NM, Tarani E, Zamboulis A, Črešnar KP, Zemljič LF, Chrissafis K, Lambropoulou DA, Bikiaris DN. Thermal Stability and Decomposition Mechanism of PLA Nanocomposites with Kraft Lignin and Tannin. Polymers (Basel) 2021; 13:polym13162818. [PMID: 34451355 PMCID: PMC8398207 DOI: 10.3390/polym13162818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Packaging applications cover approximately 40% of the total plastics production, whereas food packaging possesses a high proportion within this context. Due to several environmental concerns, petroleum-based polymers have been shifted to their biobased counterparts. Poly(lactic acid) (PLA) has been proved the most dynamic biobased candidate as a substitute of the conventional polymers. Despite its numerous merits, PLA exhibits some limitations, and thus reinforcing agents are commonly investigated as fillers to ameliorate several characteristics. In the present study, two series of PLA-based nanocomposites filled with biobased kraft-lignin (KL) and tannin (T) in different contents were prepared. A melt–extrusion method was pursued for nanocomposites preparation. The thermal stability of the prepared nanocomposites was examined by Thermogravimetric Analysis, while thermal degradation kinetics was applied to deepen this process. Pyrolysis–Gas Chromatography/Mass Spectrometry was employed to provide more details of the degradation process of PLA filled with the two polyphenolic fillers. It was found that the PLA/lignin nanocomposites show better thermostability than neat PLA, while tannin filler has a small catalytic effect that can reduce the thermal stability of PLA. The calculated Eα value of PLA-T nanocomposite was lower than that of PLA-KL resulting in a substantially higher decomposition rate constant, which accelerate the thermal degradation.
Collapse
Affiliation(s)
- Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece;
| | - Evangelia Tarani
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (E.T.); (K.C.)
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
| | - Klementina Pušnik Črešnar
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (K.P.Č.); (L.F.Z.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia; (K.P.Č.); (L.F.Z.)
| | - Konstantinos Chrissafis
- Department of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (E.T.); (K.C.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (N.M.A.); (A.Z.)
- Correspondence:
| |
Collapse
|
23
|
Anita Lett J, Sagadevan S, Léonard E, Fatimah I, Motalib Hossain MA, Mohammad F, Al-Lohedan HA, Paiman S, Alshahateet SF, Abd Razak SI, Johan MR. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite@polylactic acid composite scaffolds. Artif Organs 2021; 45:1501-1512. [PMID: 34309044 DOI: 10.1111/aor.14045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022]
Abstract
The primary role of bone tissue engineering is to reconcile the damaged bones and facilitate the speedy recovery of the injured bones. However, some of the investigated metallic implants suffer from stress-shielding, palpability, biocompatibility, etc. Consequently, the biodegradable scaffolds fabricated from polymers have gathered much attention from researchers and thus helped the tissue engineering sector by providing many alternative materials whose functionality is similar to that of natural bones. Herein, we present the fabrication and testing of a novel composite, magnesium (Mg)-doped hydroxyapatite (HAp) glazed onto polylactic acid (PLA) scaffolds where polyvinyl alcohol (PVA) used as a binder. For the composite formation, Creality Ender-3 pro High Precision 3D Printer with Shape tool 3D Technology on an FSD machine operated by Catia design software was employed. The composite has been characterized for the crystallinity (XRD), surface functionality (FTIR), morphology (FESEM), biocompatibility (hemolytic and protein absorption), and mechanical properties (stress-strain and maximum compressive strength). The powder XRD analysis confirmed the semicrystalline nature and intact structure of HAp even after doping with Mg, while FTIR studies for the successful formation of Mg-HAp/PVA@PLA composite. The FESEM provided analysis indicated for the 3D porous architecture and well-defined morphology to efficiently transport the nutrients, and the biocompatibility studies are supporting that the composite for blood compatible with the surface being suitable enough for the protein absorption. Finally, the composite's antibacterial activity (against Staphylococcus aureus and Escherichia coli) and the test of mechanical properties supported for the enhanced inhibition of active growth of microorganisms and maximum compressive strength, respectively. Based on the research outcomes of biocompatibility, antibacterial activity, and mechanical resistance, the fabricated Mg-HAp/PVA@PLA composite suits well as a promising biomaterial platform for orthopedic applications by functioning towards the open reduction internal fixation of bone fractures and internal repairs.
Collapse
Affiliation(s)
- Jayasingh Anita Lett
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai, India
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Estelle Léonard
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, Compiègne, France
| | - Is Fatimah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Kampus Terpadu UII, Sleman, Indonesia
| | - M A Motalib Hossain
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Suriati Paiman
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Saiful Izwan Abd Razak
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Malaysia.,Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Alemán Espinosa E, Escobar‐Barrios V, Palestino Escobedo G, Waldo Mendoza MA. Thermal and mechanical properties of
UHMWPE
/
HDPE
/
PCL
and bioglass filler: Effect of polycaprolactone. J Appl Polym Sci 2021. [DOI: 10.1002/app.50374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elzy Alemán Espinosa
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | - Vladimir Escobar‐Barrios
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica San Luis Potosí Mexico
| | | | - Miguel A. Waldo Mendoza
- Tecnología Sustentable Greennova S. A. de C. V. Parque de Innovación y Emprendimiento del ITESM San Luis Potosí Mexico
| |
Collapse
|
25
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
26
|
Mulla MZ, Rahman MRT, Marcos B, Tiwari B, Pathania S. Poly Lactic Acid (PLA) Nanocomposites: Effect of Inorganic Nanoparticles Reinforcement on Its Performance and Food Packaging Applications. Molecules 2021; 26:1967. [PMID: 33807351 PMCID: PMC8036597 DOI: 10.3390/molecules26071967] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Poly lactic acid (PLA) is a compostable, as well as recyclable, sustainable, versatile and environmentally friendly alternative, because the monomer of PLA-lactide (LA) is extracted from natural sources. PLA's techno-functional properties are fairly similar to fossil-based polymers; however, in pristine state, its brittleness and delicacy during processing pose challenges to its potential exploitation in diverse food packaging applications. PLA is, therefore, re-engineered to improve its thermal, rheological, barrier and mechanical properties through nanoparticle (NP) reinforcement. This review summarises the studies on PLA-based nanocomposites (PLA NCs) developed by reinforcing inorganic metal/metallic oxide, graphite and silica-based nanoparticles (NPs) that exhibit remarkable improvement in terms of storage modulus, tensile strength, crystallinity, glass transition temperature (Tg) value, antimicrobial property and a decrease in water vapour and oxygen permeability when compared with the pristine PLA films. This review has also discussed the regulations around the use of metal oxide-based NPs in food packaging, PLA NC biodegradability and their applications in food systems. The industrial acceptance of NCs shows highly promising perspectives for the replacement of traditional petrochemical-based polymers currently being used for food packaging.
Collapse
Affiliation(s)
- Mehrajfatema Zafar Mulla
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait;
| | - Md Ramim Tanver Rahman
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC G1V 0A6, Canada;
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Begonya Marcos
- IRTA, Food Quality and Technology, Finca Camps i Armet s/n, 17121 Monells, Spain;
| | - Brijesh Tiwari
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Ashtown, D15 KN3K Dublin, Ireland
| | - Shivani Pathania
- Teagasc Food Research Centre, Food Industry Development Department, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
27
|
Papadopoulos L, Klonos PA, Terzopoulou Z, Psochia E, Sanusi OM, Hocine NA, Benelfellah A, Giliopoulos D, Triantafyllidis K, Kyritsis A, Bikiaris DN. Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Shazleen SS, Yasim-Anuar TAT, Ibrahim NA, Hassan MA, Ariffin H. Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers (Basel) 2021; 13:polym13030389. [PMID: 33513688 PMCID: PMC7866102 DOI: 10.3390/polym13030389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Polylactic acid (PLA), a potential alternative material for single use plastics, generally portrays a slow crystallization rate during melt-processing. The use of a nanomaterial such as cellulose nanofibers (CNF) may affect the crystallization rate by acting as a nucleating agent. CNF at a certain wt.% has been evidenced as a good reinforcement material for PLA; nevertheless, there is a lack of information on the correlation between the amount of CNF in PLA that promotes its functionality as reinforcement material, and its effect on PLA nucleation for improving the crystallization rate. This work investigated the nucleation effect of PLA incorporated with CNF at different fiber loading (1-6 wt.%) through an isothermal and non-isothermal crystallization kinetics study using differential scanning calorimetry (DSC) analysis. Mechanical properties of the PLA/CNF nanocomposites were also investigated. PLA/CNF3 exhibited the highest crystallization onset temperature and enthalpy among all the PLA/CNF nanocomposites. PLA/CNF3 also had the highest crystallinity of 44.2% with an almost 95% increment compared to neat PLA. The highest crystallization rate of 0.716 min-1 was achieved when PLA/CNF3 was isothermally melt crystallized at 100 °C. The crystallization rate was 65-fold higher as compared to the neat PLA (0.011 min-1). At CNF content higher than 3 wt.%, the crystallization rate decreased, suggesting the occurrence of agglomeration at higher CNF loading as evidenced by the FESEM micrographs. In contrast to the tensile properties, the highest tensile strength and Young's modulus were recorded by PLA/CNF4 at 76.1 MPa and 3.3 GPa, respectively. These values were, however, not much different compared to PLA/CNF3 (74.1 MPa and 3.3 GPa), suggesting that CNF at 3 wt.% can be used to improve both the crystallization rate and the mechanical properties. Results obtained from this study revealed the dual function of CNF in PLA nanocomposite, namely as nucleating agent and reinforcement material. Being an organic and biodegradable material, CNF has an increased advantage for use in PLA as compared to non-biodegradable material and is foreseen to enhance the potential use of PLA in single use plastics applications.
Collapse
Affiliation(s)
- Siti Shazra Shazleen
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Tengku Arisyah Tengku Yasim-Anuar
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
| | - Nor Azowa Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Ali Hassan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
| | - Hidayah Ariffin
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (T.A.T.Y.-A.); (M.A.H.)
- Correspondence:
| |
Collapse
|
29
|
Abstract
Poly(lactic acid) (PLA) is a biodegradable polymer material used for the fabrication of objects by fused filament fabrication (FFF) 3D printing. FFF 3D printing technology has been quickly spreading over the past few years. An FFF-3D-printed object is formed from melted polymer extruded from a nozzle layer-by-layer. The mechanical properties of the object, and the changes in those properties as the object degrades, differ from the properties and changes observed in bulk objects. In this study we evaluated FFF-3D-printed objects by uniaxial tensile tests and four-point flexural tests to characterize the changes of three mechanical properties, namely, the maximum stress, elastic modulus, and breaking energy. Eight types of test pieces printed directly by an FFF 3D printer using two scan patterns and two interior fill percentages (IFPs) were tested by the aforesaid methods. The test pieces were immersed in saline and kept in an incubator at 37 °C for 30, 60, or 90 days before the mechanical testing. The changes in the mechanical properties differed largely between the test piece types. In some of the test pieces, transient increases in strength were observed before the immersion degraded the strength. Several of the test piece types were found to have superior specific strength in the tests. The results obtained in this research will be helpful for the design of PLA structures fabricated by FFF 3D printing.
Collapse
|
30
|
Abstract
With the development of human society, the requirements for building materials are becoming higher. The development of polymer materials and their application in the field of architecture have greatly enhanced and broadened the functions of building materials. With the development of material science and technology, many functional materials have been developed. Polymer materials have many excellent properties compared with inorganic materials, and they can also be improved to enhance functional properties by blending or adding various additives (such as flame retardants, antistatic agents, and antioxidants). In this paper, polymer-based building materials are introduced with three classes according to the applications, that is, substrates, coatings, and binders, and their recent signs of progress in the preparations and applications are carefully demonstrated.
Collapse
|
31
|
Kutlutürk Karagöz I, Allahverdiyev A, Bağırova M, Abamor EŞ, Dinparvar S. Current Approaches in Treatment of Diabetic Retinopathy and Future Perspectives. J Ocul Pharmacol Ther 2020; 36:487-496. [DOI: 10.1089/jop.2019.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Işıl Kutlutürk Karagöz
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
- Department of Ophthalmology, Ümraniye Trn. And Rch. Hospital, Istanbul, Turkey
| | - Adil Allahverdiyev
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Melehat Bağırova
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Emrah Şefik Abamor
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| | - Sahar Dinparvar
- Depatment of Bioengineering, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
32
|
Yan L, Shen J, Wang J, Yang X, Dong S, Lu S. Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose Response 2020; 18:1559325820936161. [PMID: 32699536 PMCID: PMC7357073 DOI: 10.1177/1559325820936161] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is widely used to treat cancer. The toxic effect of conventional chemotherapeutic drugs on healthy cells leads to serious toxic and side effects of conventional chemotherapy. The application of nanotechnology in tumor chemotherapy can increase the specificity of anticancer agents, increase the killing effect of tumors, and reduce toxic and side effects. Currently, a variety of formulations based on nanoparticles (NPs) for delivering chemotherapeutic drugs have been put into clinical use, and several others are in the stage of development or clinical trials. In this review, after briefly introducing current cancer chemotherapeutic methods and their limitations, we describe the clinical applications and advantages and disadvantages of several different types of NPs-based chemotherapeutic agents. We have summarized a lot of information in tables and figures related to the delivery of chemotherapeutic drugs based on NPs and the design of NPs with active targeting capabilities.
Collapse
Affiliation(s)
- Lina Yan
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Jingjing Shen
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang, China
| | - Jinqiao Wang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Xiaoyan Yang
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Saijun Lu
- Department of Rehabilitation Medicine, The First People’s Hospital of Wenling, Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
33
|
Development of Bionanocomposites Based on PLA, Collagen and AgNPs and Characterization of Their Stability and In Vitro Biocompatibility. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bionanocomposites including poly(lactic acid) (PLA), collagen, and silver nanoparticles (AgNPs) were prepared as biocompatible and stable films. Thermal properties of the PLA-based bionanocomposites indicated an increase in the crystallinity of PLA plasticized due to a small quantity of AgNPs. The results on the stability study indicate the promising contribution of the AgNPs on the durability of PLA-based bionanocomposites. In vitro biocompatibility conducted on the mouse fibroblast cell line NCTC, clone 929, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed high values of cell viability (>80%) after cell cultivation in the presence of bionanocomposite formulations for 48 h, while the percentages of lactate dehydrogenase (LDH) released in the culture medium were reduced (<15%), indicating no damages of the cell membranes. In addition, cell cycle analysis assessed by flow cytometry indicated that all tested bionanocomposites did not affect cell proliferation and maintained the normal growth rate of cells. The obtained results recommend the potential use of PLA-based bionanocomposites for biomedical coatings.
Collapse
|
34
|
Huang X, Lin H, Huang F, Xie Y, Wong KH, Chen X, Wu D, Lu A, Yang Z. Targeting Approaches of Nanomedicines in Acute Myeloid Leukemia. Dose Response 2019; 17:1559325819887048. [PMID: 31853234 PMCID: PMC6906351 DOI: 10.1177/1559325819887048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy, which is commonly
associated with high incidence and mortality among adult patients. The standard
induction regimen for AML has been substantially unchanged over the past 40
years, for which novel nanomedicines have represented a promising strategy in
AML therapies. Despite developments of multiple nanoparticles formulated with
drugs or genes, less there is not much information available about approaches in
AML is available. This review presents an overview of nanomedicines currently
being evaluated in AML. First, it briefly summarized conventional chemotherapies
in use. Second, nanomedicines presently ongoing in clinical trials or
preclinical researches were classified and described, with illustrative examples
from recent literatures. Finally, limitations and potential safety issues
concerns in clinical translation of AML treatment were discussed as well.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Feng Huang
- Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuning Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Dongyue Wu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
35
|
Salahuddin N, Abdelwahab M, Gaber M, Elneanaey S. Synthesis and Design of Norfloxacin drug delivery system based on PLA/TiO 2 nanocomposites: Antibacterial and antitumor activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110337. [PMID: 31923987 DOI: 10.1016/j.msec.2019.110337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 01/08/2023]
Abstract
Biodegradable, biocompatible and non-toxic polymer-based nanoparticles are the novel nanotherapeutic tool which is used for adsorption and encapsulation drugs. Extended release formulation of Norfloxacin antibiotic, chemotherapeutic agent model, drug in the form of encapsulated and loaded poly (lactic acid) nanocomposites-based Titanium dioxide (PLA/TiO2) was developed. Nanocomposites were prepared using different contents (1, 3, 5 wt %) and morphologies of TiO2 (spheres (S), rods (R). The dispersion of TiO2 was aided by ultrasonic technique followed by solution casting method. The morphology, particle size, crystallite size and composition of the nanocomposites were examined by SEM, TEM, XRD and FTIR. The crystallinity and thermal behavior of the nanocomposites were characterized by DSC and TGA. NOR was loaded onto TiO2 nanospheres (NOR@TiO2 (S)) and the optimum conditions for loading was investigated. Pseudo-second order model was the more adequate to represent the kinetic data. The equilibrium data followed Freundlich adsorption isotherm and the adsorption process was exothermic. NOR@TiO2 (S) was encapsulated into PLA and in vitro release behavior of drug was compared with NOR adsorbed into PLA (NOR@PLA) and nanocomposites (NOR@PLA/TiO2) using different pH (6.7, 7.4) media. To study the mechanism of NOR release, first order, Higuchi, Hixon Crowell and Korsmeyer-Peppas models were applied on the experimental results. The cytotoxicity of the loaded nanocomposites using MTT assay was studied against HepG 2, MCF-7, HCT 116, PC-3, Hela, WI-38 and WISH cells. The encapsulated (NOR@ 5S/En PLA) showed the highest cytotoxic efficacy with moderate effect on normal cells. Moreover, the nanocomposites have great potential against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Salmonella and Klebsiella pneumonia. NOR@ PLA/TiO2 nanocomposites showed better antibacterial efficacy than NOR encapsulated nanocomposites. The nanocomposites could be effective vehicles for the sustained delivery of toxic anticancer drug.
Collapse
Affiliation(s)
- Nehal Salahuddin
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed Abdelwahab
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sahar Elneanaey
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
36
|
Vacaras S, Baciut M, Lucaciu O, Dinu C, Baciut G, Crisan L, Hedesiu M, Crisan B, Onisor F, Armencea G, Mitre I, Barbur I, Kretschmer W, Bran S. Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites – a review of the clinical and metabolic impact. Drug Metab Rev 2019; 51:570-588. [DOI: 10.1080/03602532.2019.1642911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sergiu Vacaras
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Liana Crisan
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Mihaela Hedesiu
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Bogdan Crisan
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Cranio-Maxillofacial Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ileana Mitre
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioan Barbur
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Winfried Kretschmer
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral Rehabilitation, Maxillofacial Surgery and Implantology, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Liu H, Jian R, Chen H, Tian X, Sun C, Zhu J, Yang Z, Sun J, Wang C. Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current Status and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E950. [PMID: 31261962 PMCID: PMC6669760 DOI: 10.3390/nano9070950] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023]
Abstract
With the continuous increase in the production of electronic devices, large amounts of electronic waste (E-waste) are routinely being discarded into the environment. This causes serious environmental and ecological problems because of the non-degradable polymers, released hazardous chemicals, and toxic heavy metals. The appearance of biodegradable polymers, which can be degraded or dissolved into the surrounding environment with no pollution, is promising for effectively relieving the environmental burden. Additionally, biodegradable polymers are usually biocompatible, which enables electronics to be used in implantable biomedical applications. However, for some specific application requirements, such as flexibility, electric conductivity, dielectric property, gas and water vapor barrier, most biodegradable polymers are inadequate. Recent research has focused on the preparation of nanocomposites by incorporating nanofillers into biopolymers, so as to endow them with functional characteristics, while simultaneously maintaining effective biodegradability and biocompatibility. As such, bionanocomposites have broad application prospects in electronic devices. In this paper, emergent biodegradable and biocompatible polymers used as insulators or (semi)conductors are first reviewed, followed by biodegradable and biocompatible nanocomposites applied in electronics as substrates, (semi)conductors and dielectrics, as well as electronic packaging, which is highlighted with specific examples. To finish, future directions of the biodegradable and biocompatible nanocomposites, as well as the challenges, that must be overcome are discussed.
Collapse
Affiliation(s)
- Haichao Liu
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Ranran Jian
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongbo Chen
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Xiaolong Tian
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Changlong Sun
- College of Sino-German Science and Technology, Qingdao University of Science & Technology, Qingdao 266061, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jingyao Sun
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chuansheng Wang
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
- College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China.
| |
Collapse
|
38
|
Venkatesh C, Clear O, Major I, Lyons JG, Devine DM. Faster Release of Lumen-Loaded Drugs than Matrix-Loaded Equivalent in Polylactic Acid/Halloysite Nanotubes. MATERIALS 2019; 12:ma12111830. [PMID: 31195738 PMCID: PMC6600978 DOI: 10.3390/ma12111830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Nanocomposite-based drug delivery systems with intrinsic controlled release properties are of great interest in biomedical applications. We report a novel polylactic acid (PLA)/halloysite nanotube (HNT) nanocomposite-based drug delivery system. PLA/HNT nanocomposites have shown immense potential for use in biomedical applications due to their favorable cyto- and hemo-compatibility. The objective of this study was to evaluate the release of active pharmaceutical ingredients (API) from PLA/HNT composites matrix and the effect of preloading the API into the lumen of the HNT on its release profile. Aspirin was used in this study as a model drug as it is a common nonsteroidal anti-inflammatory and antiplatelet agent widely used for various medical conditions. These two types of drug-loaded PLA/HNT nanocomposites were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), surface wettability and mechanical testing. Statistical analysis was conducted on numerical data. Drug entrapment and in vitro drug release studies were conducted using UV spectrophotometry. Results indicate that aspirin was successfully loaded into the lumen of HNT, which resulted in the sustained release of aspirin from the nanocomposites. Furthermore, the addition of HNT into the polymer matrix increased the mechanical properties, indicating its suitability as a drug-eluting reinforcing agent.
Collapse
Affiliation(s)
- Chaitra Venkatesh
- Material Research Institute, Athlone Institute of Technology, Athlone N37 FK59, Ireland.
| | - Oran Clear
- Faculty of Engineering and Informatics, Athlone Institute of Technology, Athlone N37 FK59, Ireland.
| | - Ian Major
- Material Research Institute, Athlone Institute of Technology, Athlone N37 FK59, Ireland.
| | - John G Lyons
- Faculty of Engineering and Informatics, Athlone Institute of Technology, Athlone N37 FK59, Ireland.
| | - Declan M Devine
- Material Research Institute, Athlone Institute of Technology, Athlone N37 FK59, Ireland.
| |
Collapse
|
39
|
Wang Y, Wu H, Wang Z, Zhang J, Zhu J, Ma Y, Yang Z, Yuan Y. Optimized Synthesis of Biodegradable Elastomer PEGylated Poly(glycerol sebacate) and Their Biomedical Application. Polymers (Basel) 2019; 11:E965. [PMID: 31163580 PMCID: PMC6630889 DOI: 10.3390/polym11060965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Poly(glycerol sebacate) (PGS), a biodegradable elastomer, has been extensively explored in biomedical applications for its favorable mechanical properties and biocompatibility. Efforts have been made to fabricate multifunctional PGS copolymer in recent years, in particular PGS-co-PEG (poly(glycerol sebacate)-co-polyethylene glycol) polymers. However, rare research has been systematically conducted on the effect of reactant ratios on physicochemical properties and biocompatibility of PGS copolymer till now. In this study, a serial of PEGylated PGS (PEGS) with PEG content from 20% to 40% and carboxyl to hydroxyl from 0.67 to 2 were synthesized by thermal curing process. The effects of various PEGS on the mechanical strength and biological activity were further compared and optimized. The results showed that the PEGS elastomers around 20PEGS-1.0C/H and 40PEGS-1.5C/H exhibited the desirable hydrophilicity, degradation behaviors, mechanical properties and cell viability. Subsequently, the potential applications of the 20PEGS-1.0C/H and 40PEGS-1.5C/H in bone repair scaffold and vascular reconstruction were investigated and the results showed that 20PEGS-1.0C/H and 40PEGS-1.5C/H could significantly improve the mechanical strength for the calcium phosphate scaffolds and exhibited preferable molding capability for fabrication of the vascular substitute. These results confirmed that the optimized PEGS elastomers should be promising multifunctional substrates in biomedical applications.
Collapse
Affiliation(s)
- Yanxiang Wang
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Haiwa Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Zihao Wang
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- Department of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
40
|
Zhuang J, Wu DM, Xu H, Huang Y, Liu Y, Sun JY. Edge Effect in Hot Embossing and its Influence on Global Pattern Replication of Polymer-Based Microneedles. INT POLYM PROC 2019. [DOI: 10.3139/217.3726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Hot embossing was used to fabricate a microneedle array on poly(methyl methacrylate) (PMMA) substrates. Both experimental and numerical researches were carried out to investigate the whole formation process. The results showed that the edge effect would significantly influence the replication rate of final products. An optimization design of convex flow barrier was proposed to improve the replication efficiency and structure uniformity. Furthermore, optimum parameters of the flow barrier were found to be 2 mm in length and 0.2 mm in height. Reasonable high molding temperature and force were conducive to reduce the filling time and increase the average height of microneedles.
Collapse
Affiliation(s)
- J. Zhuang
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - D.-M. Wu
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
- State Key Laboratory of Organic-Inorganic Composites , Beijing , PRC
| | - H. Xu
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - Y. Huang
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| | - Y. Liu
- State Key Laboratory of Organic-Inorganic Composites , Beijing , PRC
| | - J.-Y. Sun
- College of Mechanical and Electrical Engineering , Beijing University of Chemical Technology, Beijing , PRC
| |
Collapse
|
41
|
Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers (Basel) 2019; 11:E187. [PMID: 30960171 PMCID: PMC6418900 DOI: 10.3390/polym11020187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/12/2019] [Accepted: 01/19/2019] [Indexed: 12/13/2022] Open
Abstract
This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.
Collapse
Affiliation(s)
- Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Semen Kormakov
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaolong Gao
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiuting Zheng
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| |
Collapse
|
42
|
Shi J, Ma Y, Zhu J, Chen Y, Sun Y, Yao Y, Yang Z, Xie J. A Review on Electroporation-Based Intracellular Delivery. Molecules 2018; 23:E3044. [PMID: 30469344 PMCID: PMC6278265 DOI: 10.3390/molecules23113044] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022] Open
Abstract
Intracellular delivery is a critical step in biological discoveries and has been widely utilized in biomedical research. A variety of molecular tools have been developed for cell-based gene therapies, including FDA approved CAR-T immunotherapy, iPSC, cell reprogramming and gene editing. Despite the inspiring results of these applications, intracellular delivery of foreign molecules including nucleic acids and proteins remains challenging. Efficient yet non-invasive delivery of biomolecules in a high-throughput manner has thus long fascinates the scientific community. As one of the most popular non-viral technologies for cell transfection, electroporation has gone through enormous development with the assist of nanotechnology and microfabrication. Emergence of miniatured electroporation system brought up many merits over the weakness of traditional electroporation system, including precise dose control and high cell viability. These new generation of electroporation systems are of considerable importance to expand the biological applications of intracellular delivery, bypassing the potential safety issue of viral vectors. In this review, we will go over the recent progresses in the electroporation-based intracellular delivery and several potential applications of cutting-edge research on the miniatured electroporation, including gene therapy, cellular reprogramming and intracellular probe.
Collapse
Affiliation(s)
- Junfeng Shi
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yuanxin Chen
- Department of Neurosurgery, Mayo Clinic College of Medicine, Jacksonville, FL 33573, USA.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yicheng Yao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
43
|
Zou J, Qi Y, Su L, Wei Y, Li Z, Xu H. Synthesis and Characterization of Poly(ester amide)s Consisting of Poly(L-lactic acid) and Poly(butylene succinate) Segments with 2,2′-Bis(2-oxazoline) Chain Extending. Macromol Res 2018. [DOI: 10.1007/s13233-019-7018-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Wu H, Zhu J, Huang Y, Wu D, Sun J. Microfluidic-Based Single-Cell Study: Current Status and Future Perspective. Molecules 2018; 23:E2347. [PMID: 30217082 PMCID: PMC6225124 DOI: 10.3390/molecules23092347] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/05/2018] [Accepted: 09/09/2018] [Indexed: 01/29/2023] Open
Abstract
Investigation of cell behavior under different environments and manual operations can give information in specific cellular processes. Among all cell-based analysis, single-cell study occupies a peculiar position, while it can avoid the interaction effect within cell groups and provide more precise information. Microfluidic devices have played an increasingly important role in the field of single-cell study owing to their advantages: high efficiency, easy operation, and low cost. In this review, the applications of polymer-based microfluidics on cell manipulation, cell treatment, and cell analysis at single-cell level are detailed summarized. Moreover, three mainly types of manufacturing methods, i.e., replication, photodefining, and soft lithography methods for polymer-based microfluidics are also discussed.
Collapse
Affiliation(s)
- Haiwa Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Jing Zhu
- Department of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
45
|
Sun J, Kormakov S, Liu Y, Huang Y, Wu D, Yang Z. Recent Progress in Metal-Based Nanoparticles Mediated Photodynamic Therapy. Molecules 2018; 23:E1704. [PMID: 30002333 PMCID: PMC6099795 DOI: 10.3390/molecules23071704] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is able to non-invasively treat and diagnose various cancers and nonmalignant diseases by combining light, oxygen, and photosensitizers (PSs). However, the application of PDT is hindered by poor water solubility and limited light-penetration depth of the currently available photosensitizers (PSs). Water solubility of PSs is crucial for designing pharmaceutical formulation and administration routes. Wavelength of light source at visible range normally has therapeutic depth less than 1 mm. In this review, focus is on the recent research progress of metal-based nanoparticles being applied in PDT. The potential toxicity of these nanoscales and future directions are further discussed.
Collapse
Affiliation(s)
- Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Semen Kormakov
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Yao Huang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Sun J, Shen J, Chen S, Cooper MA, Fu H, Wu D, Yang Z. Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers (Basel) 2018; 10:E505. [PMID: 30966540 PMCID: PMC6415396 DOI: 10.3390/polym10050505] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022] Open
Abstract
The increasing demand for environmental protection has led to the rapid development of greener and biodegradable polymers, whose creation provided new challenges and opportunities for the advancement of nanomaterial science. Biodegradable polymer materials and even nanofillers (e.g., natural fibers) are important because of their application in greener industries. Polymers that can be degraded naturally play an important role in solving public hazards of polymer materials and maintaining ecological balance. The inherent shortcomings of some biodegradable polymers such as weak mechanical properties, narrow processing windows, and low electrical and thermal properties can be overcome by composites reinforced with various nanofillers. These biodegradable polymer composites have wide-ranging applications in different areas based on their large surface area and greater aspect ratio. Moreover, the polymer composites that exploit the synergistic effect between the nanofiller and the biodegradable polymer matrix can lead to enhanced properties while still meeting the environmental requirement. In this paper, a broad review on recent advances in the research and development of nanofiller reinforced biodegradable polymer composites that are used in various applications, including electronics, packing materials, and biomedical uses, is presented. We further present information about different kinds of nanofillers, biodegradable polymer matrixes, and their composites with specific concern to our daily applications.
Collapse
Affiliation(s)
- Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jingjing Shen
- School of Civil Engineering & Architecture, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Shoukai Chen
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Merideth A Cooper
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Hongbo Fu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
- State Key Laboratory of Organic-Inorganic Composites, Beijing 100029, China.
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
47
|
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs. Polymers (Basel) 2018; 10:polym10010031. [PMID: 30966075 PMCID: PMC6415012 DOI: 10.3390/polym10010031] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology plays a significant role in drug development. As carriers, polymeric nanoparticles can deliver vaccine antigens, proteins, and drugs to the desired site of action. Polymeric nanoparticles with lower cytotoxicity can protect the delivered antigens or drugs from degradation under unfavorable conditions via a mucosal administration route; further, the uptake of nanoparticles by antigen-presenting cells can increase and induce potent immune responses. Additionally, nanomaterials are widely used in vaccine delivery systems because nanomaterials can make the vaccine antigen long-acting. This review focuses on some biodegradable polymer materials such as natural polymeric nanomaterials, chemically synthesized polymer materials, and biosynthesized polymeric materials, and points out the advantages and the direction of research on degradable polymeric materials. The application and future perspectives of polymeric materials as delivery carriers and vaccine adjuvants in the field of drugs and vaccines are presented. With the increase of knowledge and fundamental understandings of polymer-based nanomaterials, means of integrating some other attractive properties, such as slow release, target delivery, and alternative administration methods and delivery pathways are feasible. Polymer-based nanomaterials have great potential for the development of novel vaccines and drug systems for certain needs, including single-dose and needle-free deliveries of vaccine antigens and drugs in the future.
Collapse
|
48
|
Bayer IS. Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E748. [PMID: 28773109 PMCID: PMC5551791 DOI: 10.3390/ma10070748] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
Due to its biodegradable and bioabsorbable characteristics polylactic acid (PLA) has attracted considerable attention for numerous biomedical applications. Moreover, a number of tissue engineering problems for function restoration of impaired tissues have been addressed by using PLA and its copolymers due to their biocompatibility and distinctive mechanical properties. Recent studies on various stereocomplex formation between enantiomeric PLA, poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) indicated that stereocomplexation enhances the mechanical properties as well as the thermal- and hydrolysis-resistance of PLA polymers. On the other hand, biomedical application of graphene is a relatively new front with significant potential. Many recent reports have indicated that understanding of graphene-cell (or tissue, organ) interactions; particularly the cellular uptake mechanisms are still challenging. Therefore, use of graphene or graphene oxide properly embedded in suitable PLA matrices can positively impact and accelerate the growth, differentiation, and proliferation of stem cells, conceivably minimizing concerns over cytotoxicity of graphene. As such, PLA-graphene composites hold great promise in tissue engineering, regenerative medicine, and in other biomedical fields. However, since PLA is classified as a hard bio-polyester prone to hydrolysis, understanding and engineering of thermo-mechanical properties of PLA-graphene composites are very crucial for such cutting-edge applications. Hence, this review aims to present an overview of current advances in the preparation and applications of PLA-graphene composites and their properties with focus on various biomedical uses such as scaffolds, drug delivery, cancer therapy, and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genoa, Italy.
| |
Collapse
|