1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
3
|
Shakya R, Amonruttanapun P, Limboonreung T, Chongthammakun S. 17β-estradiol mitigates the inhibition of SH-SY5Y cell differentiation through WNT1 expression. Cells Dev 2023; 176:203881. [PMID: 37914154 DOI: 10.1016/j.cdev.2023.203881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/01/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
17β-estradiol (E2) and canonical WNT-signaling represent crucial regulatory pathways for microtubule dynamics and synaptic formation. However, it is unclear yet whether E2-induced canonical WNT ligands have significant impact on neurogenic repair under inflammatory condition. In this study, first, we prepared the chronic activated-microglial-conditioned media, known to be comprised of neuro-inflammatory components. Long term exposure of microglial conditioned media to SH-SY5Y cells showed a negative impact on differentiation markers, microtubule associated protein-2 (MAP2) and synaptophysin (SYP), which was successfully rescued by pre and co-treatment of 10 nM 17β-estradiol. The inhibition of estrogen receptors, ERα and ERβ significantly blocked the E2-mediated recovery in the expression of differentiation marker, SYP. Furthermore, the inflammatory inhibition of canonical signaling ligand, WNT1 was also found to be rescued by E2. To our surprise, E2 was unable to replicate this success with β-catenin, which is considered to be the intracellular transducer of canonical WNT signaling. However, WNT antagonist - Dkk1 blocked the E2-mediated recovery in the expression of the differentiation marker, MAP2. Therefore, our data suggests that E2-mediated recovery in SH-SY5Y differentiation follows a divergent pathway from the conventional canonical WNT signaling pathway, which seems to regulate microtubule stability without the involvement of β-catenin. This mechanism provides fresh insight into how estradiol contributes to the restoration of differentiation marker proteins in the context of chronic neuroinflammation.
Collapse
Affiliation(s)
- Rubina Shakya
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Anatomy, Kathmandu University, School of Medical Sciences, Dhulikhel, Kavre 11008, Nepal.
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12121, Thailand.
| | - Tanapol Limboonreung
- Department of Oral Biology, Faculty of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand.
| | - Sukumal Chongthammakun
- Department of Anatomy and Center for Neuroscience Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Pham TH, Lee GH, Jin SW, Lee SY, Han EH, Kim ND, Jeong HG. Puerarin attenuates hepatic steatosis via G‐protein‐coupled estrogen receptor‐mediated calcium and
SIRT1
signaling pathways. Phytother Res 2022; 36:3601-3618. [DOI: 10.1002/ptr.7526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/27/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Thi Hoa Pham
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
- Molecular Microbiology Lab, Institute of Biotechnology Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Gi Ho Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Seung Yeon Lee
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis Korea Basic Science Institute (KBSI) Cheongju Republic of Korea
| | | | - Hye Gwang Jeong
- College of Pharmacy Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
5
|
Gao DD, Lan CF, Cao XN, Chen L, Lei TL, Peng L, Xu JW, Qiu ZE, Wang LL, Sun Q, Huang ZY, Zhu YX, Zhou WL, Zhang YL. G protein-coupled estrogen receptor promotes acrosome reaction via regulation of Ca2+ signaling in mouse sperm. Biol Reprod 2022; 107:1026-1034. [PMID: 35774023 DOI: 10.1093/biolre/ioac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized. This study revealed that GPER was expressed at the acrosome and the mid-flagellum of the mouse sperm. The endogenous GPER ligand 17β-estradiol and the selective GPER agonist G1 increased intracellular Ca2+ concentration ([Ca2+]i) in mouse sperm, which could be abolished by G15, an antagonist of GPER. In addition, the G1-stimulated Ca2+ response was attenuated by interference with the phospholipase C (PLC) signaling pathways or by blocking the cation sperm channel (CatSper). Chlortetracycline staining assay showed that the activation of GPER increased the incidence of acrosome-reacted sperm. Conclusively, GPER was located at the acrosome and mid-flagellum of the mouse sperm. Activation of GPER triggered the elevation of [Ca2+]i through PLC-dependent Ca2+ mobilization and CatSper-mediated Ca2+ influx, which promoted the acrosome reaction in mouse sperm.
Collapse
Affiliation(s)
- Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, P.R. China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiao-Nian Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Long-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
7
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
8
|
Niță AR, Knock GA, Heads RJ. Signalling mechanisms in the cardiovascular protective effects of estrogen: With a focus on rapid/membrane signalling. Curr Res Physiol 2021; 4:103-118. [PMID: 34746830 PMCID: PMC8562205 DOI: 10.1016/j.crphys.2021.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
In modern society, cardiovascular disease remains the biggest single threat to life, being responsible for approximately one third of worldwide deaths. Male prevalence is significantly higher than that of women until after menopause, when the prevalence of CVD increases in females until it eventually exceeds that of men. Because of the coincidence of CVD prevalence increasing after menopause, the role of estrogen in the cardiovascular system has been intensively researched during the past two decades in vitro, in vivo and in observational studies. Most of these studies suggested that endogenous estrogen confers cardiovascular protective and anti-inflammatory effects. However, clinical studies of the cardioprotective effects of hormone replacement therapies (HRT) not only failed to produce proof of protective effects, but also revealed the potential harm estrogen could cause. The "critical window of hormone therapy" hypothesis affirms that the moment of its administration is essential for positive treatment outcomes, pre-menopause (3-5 years before menopause) and immediately post menopause being thought to be the most appropriate time for intervention. Since many of the cardioprotective effects of estrogen signaling are mediated by effects on the vasculature, this review aims to discuss the effects of estrogen on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) with a focus on the role of estrogen receptors (ERα, ERβ and GPER) in triggering the more recently discovered rapid, or membrane delimited (non-genomic), signaling cascades that are vital for regulating vascular tone, preventing hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ana-Roberta Niță
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
| | - Greg A. Knock
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Richard J. Heads
- School of Bioscience Education, Faculty of Life Sciences and Medicine, King’s College London, UK
- Cardiovascular Research Section, King’s BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King’s College London, UK
| |
Collapse
|
9
|
Zhou WJ, Zhang J, Xie F, Wu JN, Ye JF, Wang J, Wu K, Li MQ. CD45RO -CD8 + T cell-derived exosomes restrict estrogen-driven endometrial cancer development via the ERβ/miR-765/PLP2/Notch axis. Theranostics 2021; 11:5330-5345. [PMID: 33859750 PMCID: PMC8039953 DOI: 10.7150/thno.58337] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: Estrogen-dependent cancers (e.g., breast, endometrial, and ovarian cancers) are among the leading causes of morbidity and mortality in women worldwide. Recently, exosomes released by tumor-infiltrating CD8+ T cells have been under the spotlight in the field of cancer immunotherapy. Our study aims at elucidating the underlying mechanisms of the crosstalk between estrogen signaling and CD8+ T cells, and possible intervention values in uterine corpus endometrial cancer (UCEC). Methods: Micro RNA-seq was conducted to screen differentially expressed micro RNA in UCEC. Bioinformatic analysis was processed to predict the target of miR-765. RNA silencing or overexpressing and pharmacologic inhibitors were used to assess the functions of ERβ/miR-765/PLP2/Notch axis in UCEC cell proliferation and invasion in vivo and in vitro. In vivo imaging was performed to evaluate the metastasis of tumor in mice. Combined fluorescent in situ hybridization for miR-765 and immunofluorescent labeling for CD8 was carried out to prove the co-localization between miR-765 and CD8+ T cells. Exosomes derived from CD45RO-CD8+ T cells were isolated to detect the regulatory effects on UCEC. Results: miR-765 is characterized as the most downregulated miRNA in UCEC, and there is a negative correlation between miR-765 and Proteolipid protein 2 (PLP2) in UCEC lesion. Estrogen significantly down-regulates miR-765 level, and facilitates the development of UCEC by estrogen receptor (ER) β. Mechanistically, this process is mediated through the miRNAs (e.g., miR-3584-5p, miR-7-5p, miR-150-5p, and miR-124-3p) cluster-controlled regulation of the PLP2, which further regulates Ki-67 and multiple epithelial-mesenchymal transition (EMT)-related molecules (e.g, E-cadherin and Vimentin) in a Notch signaling pathway-dependent manner. Interestingly, the selective ER degrader Fulvestrant alleviates estrogen-mediated miR-765/PLP2 expression regulation and UCEC development in ERβ-dependent and -independent manners. Additionally, CD45RO-CD8+ T cell-derived exosomes release more miR-765 than that from CD45RO+CD8+ T cells. In therapeutic studies, these exosomes limit estrogen-driven disease development via regulation of the miR-765/PLP2 axis. Conclusions: This observation reveals novel molecular mechanisms underlying estrogen signaling and CD8+ T cell-released exosomes in UCEC development, and provides a potential therapeutic strategy for UCEC patients with aberrant ERβ/miR-765/PLP2/Notch signaling axis.
Collapse
|
10
|
Xu XL, Deng SL, Lian ZX, Yu K. Estrogen Receptors in Polycystic Ovary Syndrome. Cells 2021; 10:cells10020459. [PMID: 33669960 PMCID: PMC7924872 DOI: 10.3390/cells10020459] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Female infertility is mainly caused by ovulation disorders, which affect female reproduction and pregnancy worldwide, with polycystic ovary syndrome (PCOS) being the most prevalent of these. PCOS is a frequent endocrine disease that is associated with abnormal function of the female sex hormone estrogen and estrogen receptors (ERs). Estrogens mediate genomic effects through ERα and ERβ in target tissues. The G-protein-coupled estrogen receptor (GPER) has recently been described as mediating the non-genomic signaling of estrogen. Changes in estrogen receptor signaling pathways affect cellular activities, such as ovulation; cell cycle phase; and cell proliferation, migration, and invasion. Over the years, some selective estrogen receptor modulators (SERMs) have made substantial strides in clinical applications for subfertility with PCOS, such as tamoxifen and clomiphene, however the role of ER in PCOS still needs to be understood. This article focuses on the recent progress in PCOS caused by the abnormal expression of estrogen and ERs in the ovaries and uterus, and the clinical application of related targeted small-molecule drugs.
Collapse
Affiliation(s)
- Xue-Ling Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Ministry of Health, Beijing 100021, China;
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| |
Collapse
|
11
|
Méndez-Luna D, Morelos-Garnica LA, García-Vázquez JB, Bello M, Padilla-Martínez II, Fragoso-Vázquez MJ, Dueñas González A, De Pedro N, Gómez-Vidal JA, Mendoza-Figueroa HL, Correa-Basurto J. Modifications on the Tetrahydroquinoline Scaffold Targeting a Phenylalanine Cluster on GPER as Antiproliferative Compounds against Renal, Liver and Pancreatic Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14010049. [PMID: 33435260 PMCID: PMC7826836 DOI: 10.3390/ph14010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
The implementation of chemo- and bioinformatics tools is a crucial step in the design of structure-based drugs, enabling the identification of more specific and effective molecules against cancer without side effects. In this study, three new compounds were designed and synthesized with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-tox) properties and high affinity for the G protein-coupled estrogen receptor (GPER) binding site by in silico methods, which correlated with the growth inhibitory activity tested in a cluster of cancer cell lines. Docking and molecular dynamics (MD) simulations accompanied by a molecular mechanics/generalized Born surface area (MMGBSA) approach yielded the binding modes and energetic features of the proposed compounds on GPER. These in silico studies showed that the compounds reached the GPER binding site, establishing interactions with a phenylalanine cluster (F206, F208 and F278) required for GPER molecular recognition of its agonist and antagonist ligands. Finally, a 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay showed growth inhibitory activity of compounds 4, 5 and 7 in three different cancer cell lines-MIA Paca-2, RCC4-VA and Hep G2-at micromolar concentrations. These new molecules with specific chemical modifications of the GPER pharmacophore open up the possibility of generating new compounds capable of reaching the GPER binding site with potential growth inhibitory activities against nonconventional GPER cell models.
Collapse
Affiliation(s)
- David Méndez-Luna
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Zacatenco, Av. Wilfrido Massieu 399, Col. Nueva Industrial Vallejo, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Loreley Araceli Morelos-Garnica
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
- Correspondence: (J.B.G.-V.); (J.C.-B.)
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
| | - Itzia Irene Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto s/n., Barrio La Laguna Ticomán, Ciudad de México 07340, Mexico;
| | - Manuel Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Prolongación de Carpio y Plan de Ayala S/N. Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico;
| | - Alfonso Dueñas González
- Genomic Medicine and Environmental Toxicology, Biomedical Research Institute, UNAM, National Cancer Institute, Av San Fernando 22, Tlalpan, Mexico City 14080, Mexico;
| | - Nuria De Pedro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016 Granada, Spain;
| | - José Antonio Gómez-Vidal
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, 18071 Granada, Spain;
| | - Humberto Lubriel Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, s/n, Col. Casco de Santo Tomas, Ciudad de México 11340, Mexico; (D.M.-L.); (L.A.M.-G.); (M.B.); (H.L.M.-F.)
- Correspondence: (J.B.G.-V.); (J.C.-B.)
| |
Collapse
|
12
|
Łapińska Z, Dębiński M, Szewczyk A, Choromańska A, Kulbacka J, Saczko J. Electrochemotherapy with Calcium Chloride and 17β-Estradiol Modulated Viability and Apoptosis Pathway in Human Ovarian Cancer. Pharmaceutics 2020; 13:E19. [PMID: 33374223 PMCID: PMC7823502 DOI: 10.3390/pharmaceutics13010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Estrogens (Es) play a significant role in the carcinogenesis and progression of ovarian malignancies. Depending on the concentration, Es may have a protective or toxic effect on cells. Moreover, they can directly or indirectly affect the activity of membrane ion channels. In the presented study, we investigated in vitro the effectiveness of the ovarian cancer cells (MDAH-2774) pre-incubation with 17β-estradiol (E2; 10 µM) in the conventional chemotherapy (CT) and electrochemotherapy (ECT) with cisplatin or calcium chloride. We used three different protocols of electroporation including microseconds (µsEP) and nanoseconds (nsEP) range. The cytotoxic effect of the applied treatment was examined by the MTT assay. We used fluorescent staining and holotomographic imaging to observe morphological changes. The immunocytochemical staining evaluated the expression of the caspase-12. The electroporation process's effectiveness was analyzed by a flow cytometer using the Yo-Pro™-1 dye absorption assay. We found that pre-incubation of ovarian cancer cells with 17β-estradiol may effectively enhance the chemo- and electrochemotherapy with cisplatin and calcium chloride. At the same time, estradiol reduced the effectiveness of electroporation, which may indicate that the mechanism of increasing the effectiveness of ECT by E2 is not related to the change of cell membrane permeability.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Michał Dębiński
- Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.S.); (A.C.); (J.K.); (J.S.)
| |
Collapse
|
13
|
Chimento A, De Luca A, Nocito MC, Avena P, La Padula D, Zavaglia L, Pezzi V. Role of GPER-Mediated Signaling in Testicular Functions and Tumorigenesis. Cells 2020; 9:cells9092115. [PMID: 32957524 PMCID: PMC7563107 DOI: 10.3390/cells9092115] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Estrogen signaling plays important roles in testicular functions and tumorigenesis. Fifteen years ago, it was discovered that a member of the G protein-coupled receptor family, GPR30, which binds also with high affinity to estradiol and is responsible, in part, for the rapid non-genomic actions of estrogens. GPR30, renamed as GPER, was detected in several tissues including germ cells (spermatogonia, spermatocytes, spermatids) and somatic cells (Sertoli and Leydig cells). In our previous review published in 2014, we summarized studies that evidenced a role of GPER signaling in mediating estrogen action during spermatogenesis and testis development. In addition, we evidenced that GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth; however, the effects on cell survival and proliferation depend on specific cell type. In this review, we update the knowledge obtained in the last years on GPER roles in regulating physiological functions of testicular cells and its involvement in neoplastic transformation of both germ and somatic cells. In particular, we will focus our attention on crosstalk among GPER signaling, classical estrogen receptors and other nuclear receptors involved in testis physiology regulation.
Collapse
Affiliation(s)
- Adele Chimento
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| | | | | | | | | | | | - Vincenzo Pezzi
- Correspondence: (A.C.); (V.P.); Tel.: +39-0984-493184 (A.C.); +39-0984-493148 (V.P.)
| |
Collapse
|
14
|
Integration of ATAC-seq and RNA-seq Unravels Chromatin Accessibility during Sex Reversal in Orange-Spotted Grouper ( Epinephelus coioides). Int J Mol Sci 2020; 21:ijms21082800. [PMID: 32316525 PMCID: PMC7215633 DOI: 10.3390/ijms21082800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Chromatin structure plays a pivotal role in maintaining the precise regulation of gene expression. Accessible chromatin regions act as the binding sites of transcription factors (TFs) and cis-elements. Therefore, information from these open regions will enhance our understanding of the relationship between TF binding, chromatin status and the regulation of gene expression. We employed an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq analyses in the gonads of protogynous hermaphroditic orange-spotted groupers during sex reversal to profile open chromatin regions and TF binding sites. We focused on several crucial TFs, including ZNF263, SPIB, and KLF9, and analyzed the networks of TF-target genes. We identified numerous transcripts exhibiting sex-preferred expression among their target genes, along with their associated open chromatin regions. We then investigated the expression patterns of sex-related genes as well as the mRNA localization of certain genes during sex reversal. We found a set of sex-related genes that—upon further study—might be identified as the sex-specific or cell-specific marker genes that trigger sex reversal. Moreover, we discovered the core genes (gnas, ccnb2, and cyp21a) of several pathways related to sex reversal that provide the guideposts for future study.
Collapse
|
15
|
Hernández-Silva CD, Villegas-Pineda JC, Pereira-Suárez AL. Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers. Front Endocrinol (Lausanne) 2020; 11:544. [PMID: 32973677 PMCID: PMC7468389 DOI: 10.3389/fendo.2020.00544] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer is a major public health issue and represents the second leading cause of death in women worldwide, as female reproductive-related neoplasms are the main cause of incidence and mortality. Female reproductive cancers have a close relationship to estrogens, the principal female sex steroid hormones. Estrogens exert their actions by the nuclear estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). ERα, and ERβ act as transcription factors mediating genomic effects. Besides, the G protein-coupled estrogen receptor (GPER, formerly known as GPR30) was recently described as a seven-transmembrane receptor that mediates non-genomic estrogenic signaling, including calcium mobilization, cAMP synthesis, cleavage of matrix metalloproteinases, transactivation of epidermal growth factor receptor (EGFR), and the subsequent activation of PI3K and MAPK signaling pathways, which are the reasons why it is related to cellular processes, such as cell-cycle progression, cellular proliferation, differentiation, apoptosis, migration, and invasion. Since its discovery, selective agonists and antagonists have been found and developed. GPER has been implicated in a variety of hormone-responsiveness tumors, such as breast, endometrial, ovarian, cervical, prostate, and testicular cancer as well as lung, hepatic, thyroid, colorectal, and adrenocortical cancers. Nevertheless, GPER actions in cancer are still debatable due to the conflicting information that has been reported to date, since many reports indicate that activation of this receptor can modulate carcinogenesis. In contrast, many others show that its activation inhibits tumor activity. Besides, estrogens play an essential role in the regulation of the immune system, but little information exists about the role of GPER activation on its modulation within cancer context. This review focuses on the role that the stimulation of GPER plays in female reproductive neoplasms, specifically breast, endometrial, ovarian, and cervical cancers, in its tumor activity and immune response regulation.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez
| |
Collapse
|
16
|
Luo J, Liu D. Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo? Front Endocrinol (Lausanne) 2020; 11:148. [PMID: 32296387 PMCID: PMC7137379 DOI: 10.3389/fendo.2020.00148] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Estrogen can elicit pleiotropic cellular responses via a diversity of estrogen receptors (ERs)-mediated genomic and rapid non-genomic mechanisms. Unlike the genomic responses, where the classical nuclear ERα and ERβ act as transcriptional factors following estrogen binding to regulate gene transcription in estrogen target tissues, the non-genomic cellular responses to estrogen are believed to start at the plasma membrane, leading to rapid activation of second messengers-triggered cytoplasmic signal transduction cascades. The recently acknowledged ER, GPR30 or GPER, was discovered in human breast cancer cells two decades ago and subsequently in many other cells. Since its discovery, it has been claimed that estrogen, ER antagonist fulvestrant, as well as some estrogenic compounds can directly bind to GPER, and therefore initiate the non-genomic cellular responses. Various recently developed genetic tools as well as chemical ligands greatly facilitated research aimed at determining the physiological roles of GPER in different tissues. However, there is still lack of evidence that GPER plays a significant role in mediating endogenous estrogen action in vivo. This review summarizes current knowledge about GPER, including its tissue expression and cellular localization, with emphasis on the research findings elucidating its role in health and disease. Understanding the role of GPER in estrogen signaling will provide opportunities for the development of new therapeutic strategies to strengthen the benefits of estrogen while limiting the potential side effects.
Collapse
Affiliation(s)
- Jing Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu
| |
Collapse
|
17
|
Ino Y, Akimoto T, Takasawa A, Takasawa K, Aoyama T, Ueda A, Ota M, Magara K, Tagami Y, Murata M, Hasegawa T, Saito T, Sawada N, Osanai M. Elevated expression of G protein-coupled receptor 30 (GPR30) is associated with poor prognosis in patients with uterine cervical adenocarcinoma. Histol Histopathol 2019; 35:351-359. [PMID: 31483053 DOI: 10.14670/hh-18-157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Uterine cervical adenocarcinoma has a worse prognosis than that of squamous cell carcinoma and useful diagnostic and prognostic markers are needed. Estrogen is one of the key regulators of several cancers, however, the estrogen signaling has not been focused on in cervical adenocarcinoma. Here, we shows expression profile of classical estrogen receptor (ER) and a novel membrane type estrogen receptor, G protein-coupled receptor 30 (GPR30), in surgical specimens (n=53). GPR30 was strongly expressed on the cell membrane and in the cytoplasm in adenocarcinoma in situ (AIS) and adenocarcinoma, and its expression was especially strong at the invasion front in most of the cases of GPR30-positive adenocarcinoma. Nuclear staining of ER was strong in non-neoplastic glands, whereas it was almost absent in most of the AIS and adenocarcinoma cases. There was a weak but statistically significant negative correlation between immunoreactivity of GPR30 and that of ER in cervical AIS and adenocarcinoma lesions (Spearman's correlation, r=-0.324, p=0.017). ROC curve analysis revealed that immunoreactivity of GPR30 successfully distinguished neoplasms from non-neoplastic glands with high specificity (100%) and sensitivity (75.5%). GPR30 positivity was significantly correlated with histological type (p=0.009), tumor diameter (p=0.003), tumor size (p<0.001), lymphovascular infiltration (p=0.005) and UICC stage (p<0.001). ER expression was correlated only with tumor factor (p=0.047). GPR30-high patients had poor prognosis with a significantly shorter overall survival (OS) period (p=0.0309). GPR30 expression is a potential diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Yoshihiko Ino
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taishi Akimoto
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Ueda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Misaki Ota
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yohei Tagami
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
18
|
Ramelyte E, Koelblinger P, Dummer R. Oestrogen receptor expression in melanoma. J Eur Acad Dermatol Venereol 2019; 31:1399-1400. [PMID: 28815749 DOI: 10.1111/jdv.14520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- E Ramelyte
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - P Koelblinger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - R Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Tian S, Zhan N, Li R, Dong W. Downregulation of G Protein-Coupled Estrogen Receptor (GPER) is Associated with Reduced Prognosis in Patients with Gastric Cancer. Med Sci Monit 2019; 25:3115-3126. [PMID: 31028714 PMCID: PMC6503750 DOI: 10.12659/msm.913634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study is aimed to investigate the prognostic significance of the expression of G protein-coupled estrogen receptor (GPER) in gastric cancer tissue using bioinformatics data and immunohistochemistry. MATERIAL AND METHODS Expression of GPER mRNA in gastric cancer tissues and normal adjacent tissues was investigated using data from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and Oncomine database. Kaplan-Meier Plotter identified the association between GPER mRNA and prognosis. Correlation between GPER mRNA and DNA methylation used the cBioPortal for Cancer Genomics and the MethHC website. Genes co-expressed with GPER were identified from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) underwent FunRich analysis. Immunohistochemistry and Western blot evaluated GPER protein expression in tissue microarrays (TMAs) and gastric cancer cell lines. RESULTS GPER mRNA and protein levels were significantly lower in gastric cancer tissue and cells lined when compared with normal tissues and cells. The results from GSE15459 showed that patients with low levels of GPER mRNA had a reduced overall survival (OS) (P=0.013) and disease-free survival (DFS) (P=0.019). A negative correlation (r=-0.611) between GPER mRNA and DNA methylation was found using the cBioPortal and MethHC. Co-expressed epithelial-mesenchymal transformation (EMT) genes were enriched with GPER (P<0.0001). Cox regression analysis showed that GPER protein expression was an independent prognostic factor (P=0.035) CONCLUSIONS Downregulation of GPER predicts poor prognosis in gastric cancer. GPER may act as a tumor suppressor through the regulation of EMT in gastric cancer.
Collapse
Affiliation(s)
- Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Ruixue Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
20
|
Li Y, Jia Y, Bian Y, Tong H, Qu J, Wang K, Wan XP. Autocrine motility factor promotes endometrial cancer progression by targeting GPER-1. Cell Commun Signal 2019; 17:22. [PMID: 30836961 PMCID: PMC6402158 DOI: 10.1186/s12964-019-0336-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Background Autocrine motility factor (AMF) is a critical factor regulating aggressiveness of endometrial cancer (EC). Multiple pieces of evidence indicate that it is through G protein coupled estrogen receptor (GPER) signaling pathway that some growth factors promoted the migration and proliferation of tumor cells. The aim of this study is to explore the role of GPER-1 in AMF mediated regulatory mechanisms of EC recurrence and progression. Methods Real-Time Cell Analysis (RTCA) assays were performed to assess whether AMF depends on Autocrine motility factor recepter (AMFR) signaling in EC cells. A genome-wide expression microarray and Yeast Two-Hybrid assay were used to detect AMF and GPER-1 interaction in the context of AMFR depletion, and co-immunoprecipitation and immunofluorescence experiments were performed to confirm the physical interaction. Isobaric Tags for Relative and Absolute Quantification (iTRAQ) analysis was used for the identification of the target pathway activated by AMF-GPER-1 interaction. Cohorts of mice harboring xenografts derived from modified SPEC2 cell lines were treated with or without exogenous AMF to validate the results of previous experiments. Immunohistochemistry was performed to assess AMF and GPER-1 expression in endometrial cancer specimens and normal endometrium. Results Our data showed that GPER-1 binds to AMF and the formed complex translocates from the plasma membrane to the cytoplasm. Mechanistic investigations demonstrated that interaction between AMF and GPER-1 triggers phosphoinositide-3-kinase signaling and promotes EC cell growth. More importantly, through animal experiments and human tissue experiments, we found that AMF contributes to GPER-1-mediated EC progression, which is consistent with the above observations. Conclusions Our work not only delineated the regulatory mechanisms of endometrial cancer progression by AMF-GPER-1-AKT signaling cascade but also laid the foundation of targeting this pathway for treating endometrial cancer. Electronic supplementary material The online version of this article (10.1186/s12964-019-0336-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiran Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanhui Jia
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiding Bian
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Huan Tong
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Junjie Qu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Mol Sci 2019; 20:ijms20020306. [PMID: 30646517 PMCID: PMC6359026 DOI: 10.3390/ijms20020306] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled estrogen receptor (GPER), an alternate estrogen receptor (ER) with a structure distinct from the two canonical ERs, being ERα, and ERβ, is expressed in 50% to 60% of breast cancer tissues and has been presumed to be associated with the development of tamoxifen resistance in ERα positive breast cancer. On the other hand, triple-negative breast cancer (TNBC) constitutes 15% to 20% of breast cancers and frequently displays a more aggressive behavior. GPER is prevalent and involved in TNBC and can be a therapeutic target. However, contradictory results exist regarding the function of GPER in breast cancer, proliferative or pro-apoptotic. A better understanding of the GPER, its role in breast cancer, and the interactions with the ER and epidermal growth factor receptor will be beneficial for the disease management and prevention in the future.
Collapse
|
22
|
17-β-estradiol enhances neutrophil extracellular trap formation by interaction with estrogen membrane receptor. Arch Biochem Biophys 2018; 663:64-70. [PMID: 30590021 DOI: 10.1016/j.abb.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022]
Abstract
Cell death-associated neutrophil extracellular trap formation (NETosis) occurs during various autoimmune diseases including systemic lupus erythematosus and rheumatoid arthritis, as well as during gestation. Although increasing estrogen concentrations associated with pregnancy might induce NETosis via nuclear estrogen receptor (ERα/ERβ), little is known about the mechanisms associated with estrogen-induced NETosis. Here, we investigated the effects of estrogen (17-β-estradiol; E2) on NETosis, focusing on mechanisms associated with estrogen membrane receptor (GPR30) in neutrophil-like HL-60 cells. Our results show that E2 and the GPR30 agonist G-1 increases level of NETosis and NET formation. Moreover, NETosis-associated intracellular and extracellular histone citrullination and peptidyl arginine deiminase 4 (PAD4) expression were also increased by E2 or G-1 treatment. Furthermore, GPR30 antagonist pre-treatment inhibited increases in NETosis and PAD4 expression mediated by G-1 and partially inhibited these effects mediated by E2. These results demonstrate that E2 treatment induces NETosis via not only ERα/ERβ but also GPR30 in neutrophil-like HL-60 cells.
Collapse
|
23
|
Fábián M, Rencz F, Krenács T, Brodszky V, Hársing J, Németh K, Balogh P, Kárpáti S. Expression of G protein-coupled oestrogen receptor in melanoma and in pregnancy-associated melanoma. J Eur Acad Dermatol Venereol 2017; 31:1453-1461. [PMID: 28467693 DOI: 10.1111/jdv.14304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The hormone sensitivity of melanoma and the role of 'classical' oestrogen receptor (ER) α and β in tumour progression have been intensively studied with rather contradictory results. The presence of 'non-classical' G protein-coupled oestrogen receptor (GPER) has not been investigated on human melanoma tissues. OBJECTIVE To analyse the expression of GPER, ERα and ERβ in pregnancy-associated (PAM) and in non-pregnancy-associated (NPAM) melanomas in correlation with traditional prognostic markers and disease-free survival (DFS). METHODS Receptor protein levels were tested using immunohistochemistry in 81 formalin-fixed paraffin-embedded melanoma tissues. PAMs (n = 38) were compared with age- and Breslow thickness-matched cases (n = 43) including non-pregnant women (NPAM-W) (n = 22) and men (NPAM-M) (n = 21). The association between receptor expression and DFS was analysed by uni- and multivariate Cox proportional hazards regression. RESULTS G protein-coupled oestrogen receptor was detected both in PAMs and NPAMs. In 39 of the 41 (95.1%) GPER-positive melanomas, GPER and ERβ were co-expressed. GPER/ERβ-positive melanomas were significantly more common in PAM compared to NPAM (P = 0.0001) with no significant difference between genders (P = 0.4383). In PAMs, the distribution of GPER and ERβ was similar (78.4% vs. 81.6%; P = 0.8504), while in NPAM, ERβ was the representative ER (60.5% vs. 27.9%; P = 0.0010) without gender difference (59.1% vs. 61.9%). GPER-/ERβ-positive melanomas were associated with lower Breslow thickness, lower mitotic rate and higher presence of peritumoral lymphocyte infiltration (PLI) compared to GPER-/ERβ-negative cases (P = 0.0156, P = 0.0036 and P = 0.0001) predicting a better DFS (HR = 0.785, 95% CI 0.582-1.058). Despite the significantly higher frequency of GPER and ERβ expression in PAM, no significant difference was found in DFS between PAM and NPAM. All but one case failed to show ERα expression. CONCLUSIONS The presence of GPER and its simultaneous expression with ERβ can serve as a new prognostic indicator in a significant subpopulation of melanoma patients.
Collapse
Affiliation(s)
- M Fábián
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary.,Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - F Rencz
- Department of Health Economics, Corvinus University of Budapest, Budapest, Hungary
| | - T Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,MTA-SE Tumour Progression Research Group, Budapest, Hungary
| | - V Brodszky
- Department of Health Economics, Corvinus University of Budapest, Budapest, Hungary
| | - J Hársing
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - K Németh
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - P Balogh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - S Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Thiebaut C, Chamard-Jovenin C, Chesnel A, Morel C, Djermoune EH, Boukhobza T, Dumond H. Mammary epithelial cell phenotype disruption in vitro and in vivo through ERalpha36 overexpression. PLoS One 2017; 12:e0173931. [PMID: 28301550 PMCID: PMC5354400 DOI: 10.1371/journal.pone.0173931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022] Open
Abstract
Estrogen receptor alpha 36 (ERα36) is a variant of the canonical estrogen receptor alpha (ERα66), widely expressed in hormone sensitive cancer cells and whose high expression level correlates with a poor survival prognosis for breast cancer patients. While ERα36 activity have been related to breast cancer progression or acquired resistance to treatment, expression level and location of ERα36 are poorly documented in the normal mammary gland. Therefore, we explored the consequences of a ERα36 overexpression in vitro in MCF-10A normal mammary epithelial cells and in vivo in a unique model of MMTV-ERα36 transgenic mouse strain wherein ERα36 mRNA was specifically expressed in the mammary gland. By a combination of bioinformatics and computational analyses of microarray data, we identified hierarchical gene networks, downstream of ERα36 and modulated by the JAK2/STAT3 signaling pathway. Concomitantly, ERα36 overexpression lowered proliferation rate but enhanced migration potential and resistance to staurosporin-induced apoptosis of the MCF-10A cell line. In vivo, ERα36 expression led to duct epithelium thinning and disruption in adult but not in prepubescent mouse mammary gland. These phenotypes correlated with a loss of E-cadherin expression. Here, we show that an enhanced expression of ERα36 is sufficient, by itself, to disrupt normal breast epithelial phenotype in vivo and in vitro through a dominant-positive effect on nongenomic estrogen signaling pathways. These results also suggest that, in the presence of adult endogenous steroid levels, ERα36 overexpression in vivo contributes to alter mammary gland architecture which may support pre-neoplastic lesion and augment breast cancer risk.
Collapse
Affiliation(s)
- Charlène Thiebaut
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Clémence Chamard-Jovenin
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Amand Chesnel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Chloé Morel
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - El-Hadi Djermoune
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Taha Boukhobza
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
| | - Hélène Dumond
- CNRS-Université de Lorraine, UMR 7039, Centre de Recherche en Automatique de Nancy, BP70239, Vandœuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|