1
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
2
|
Yang L. A causality between fruit consumption and colorectal cancer: a two-sample Mendelian randomization analysis. Front Oncol 2024; 14:1362269. [PMID: 38496761 PMCID: PMC10940414 DOI: 10.3389/fonc.2024.1362269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Colorectal cancer (CRC) significantly threatens human health with increasing incidence and mortality. A debate continues whether fruit consumption is associated with CRC, despite dietary habits having an impact on the disease. The study aims to examine the causal relationship between fruit consumption and CRC based on a two-sample Mendelian randomization method (MR). Methods Summary statistics for fruit consumption and CRC were obtained from the UK Biobank and the FinnGen Consortium, respectively. Analysis methods used in this study included the inverse-variance weighted (IVW), MR Egger, weighted median, simple mode, and weighted mode. Heterogeneity and horizontal pleiotropy were also assessed. Additionally, a leave-one-out analysis was performed to validate the robustness of the results. Results We found that fruit consumption was associated with a reduction in CRC risk by the IVW method (P = 0.021). This protective effect was predominantly observed in males (OR 0.374; 95% CI: 0.157-0.892; P = 0.027), while no protective effect was noted in females. However, causal correlations were not observed upon analyzing 16 individual types of fruits. Moreover, our results were unlikely to be influenced by horizontal pleiotropy and heterogeneity. Leave-one-out analysis confirmed the stability of the results. Conclusion Our findings suggest that a genetic predisposition for fruit consumption may be protective against CRC, underscoring the need for further research to elucidate the underlying mechanisms and dietary patterns involved.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Shapingba Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Flieger J, Raszewska-Famielec M, Radzikowska-Büchner E, Flieger W. Skin Protection by Carotenoid Pigments. Int J Mol Sci 2024; 25:1431. [PMID: 38338710 PMCID: PMC10855854 DOI: 10.3390/ijms25031431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Sunlight, despite its benefits, can pose a threat to the skin, which is a natural protective barrier. Phototoxicity caused by overexposure, especially to ultraviolet radiation (UVR), results in burns, accelerates photoaging, and causes skin cancer formation. Natural substances of plant origin, i.e., polyphenols, flavonoids, and photosynthetic pigments, can protect the skin against the effects of radiation, acting not only as photoprotectors like natural filters but as antioxidant and anti-inflammatory remedies, alleviating the effects of photodamage to the skin. Plant-based formulations are gaining popularity as an attractive alternative to synthetic filters. Over the past 20 years, a large number of studies have been published to assess the photoprotective effects of natural plant products, primarily through their antioxidant, antimutagenic, and anti-immunosuppressive activities. This review selects the most important data on skin photodamage and photoprotective efficacy of selected plant carotenoid representatives from in vivo studies on animal models and humans, as well as in vitro experiments performed on fibroblast and keratinocyte cell lines. Recent research on carotenoids associated with lipid nanoparticles, nanoemulsions, liposomes, and micelles is reviewed. The focus was on collecting those nanomaterials that serve to improve the bioavailability and stability of carotenoids as natural antioxidants with photoprotective activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Magdalena Raszewska-Famielec
- Faculty of Physical Education and Health, University of Physicl Education, Akademicka 2, 21-500 Biała Podlaska, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic, Reconstructive and Maxillary Surgery, National Medical Institute of the Ministry of the Interior and Administration, Wołoska 137 Street, 02-507 Warszawa, Poland;
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, K. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
4
|
Moskwa J, Bronikowska M, Socha K, Markiewicz-Żukowska R. Vegetable as a Source of Bioactive Compounds with Photoprotective Properties: Implication in the Aging Process. Nutrients 2023; 15:3594. [PMID: 37630784 PMCID: PMC10459432 DOI: 10.3390/nu15163594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The skin, as an external organ, protects the entire body against harmful external factors. One of these factors is ultraviolet (UV) radiation, which in excessive amounts can lead to premature skin aging, DNA damage, and even skin cancer. Therefore, it is worth supporting skin protection not only with commercially available preparations, but also with a proper diet. Consuming certain vegetables and applying them topically may reduce the effects of UV radiation. The aim of the review was to collect information on the effects of vegetables and their compounds on the skin when used externally or included in the diet. This review summarizes studies on vegetables, such as broccoli, cucumber, kale, tomato, and carrot, which have shown significant activity in skin photoprotection. Additionally, it outlines the bioactive substances present in these vegetables and their effects.
Collapse
|
5
|
Bianchi AR, Vitale E, Guerretti V, Palumbo G, De Clemente IM, Vitale L, Arena C, De Maio A. Antioxidant Characterization of Six Tomato Cultivars and Derived Products Destined for Human Consumption. Antioxidants (Basel) 2023; 12:antiox12030761. [PMID: 36979009 PMCID: PMC10045220 DOI: 10.3390/antiox12030761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The consumption of fresh tomatoes and processed tomato products is widespread in the Mediterranean diet. This fruit is a valuable source of antioxidants and plays an important role in preventing oxidative stress. This study aimed to investigate the content of antioxidants and measure the total antioxidant capacity (ABTS and DPPH assays) in the peel, pulp, and seed fractions of six tomato cultivars. Finally, some bioactive compounds and total antioxidant activity were also determined in homemade tomato purees, since such homemade production is commonplace in Southern Italy. The level of antioxidants and total antioxidant capacity in each fraction were also calculated based on their actual fresh weight in the whole tomato. The overall results indicated that the peel and seeds of all analysed tomato cultivars contribute significantly to the antioxidant charge of the fruits. Consequently, consuming tomatoes without peel and seeds results in a substantial loss of compounds beneficial for human health. Our results also showed that phenolic and lycopene content, as well as antioxidant activities in all purees are higher than in fresh tomatoes. Based on this evidence, producing homemade tomato puree is a good practice, and its consumption helps prevent oxidative stress damage.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Valeria Guerretti
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Giancarlo Palumbo
- Department of Economy, Management, Institutions, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Isabella Maria De Clemente
- Department of Economy, Management, Institutions, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| | - Luca Vitale
- Institute for Agricultural and Forestry Systems in the Mediterranean, National Research Council of Italy, P. le Enrico Fermi 1, Loc. Porto del Granatello, 80055 Portici, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
- NBFC-National Biodiversity Future Center, 90133 Palermo, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB)-Consorzio Interuniversitario, Viale delle Medaglie d'Oro, 00136 Rome, Italy
| |
Collapse
|
6
|
Sukhonthasilakun S, Mahakunakorn P, Naladta A, Nuankaew K, Nualkaew S, Yenjai C, Nualkaew N. Anti-inflammatory effects of Derris scandens extract on narrowband-ultraviolet B exposed HaCaT human keratinocytes. J Ayurveda Integr Med 2023; 14:100693. [PMID: 36868047 PMCID: PMC9996209 DOI: 10.1016/j.jaim.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/21/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Narrowband-ultraviolet B (NB-UVB) has been used to treat skin diseases such as psoriasis. Chronic use of NB-UVB might cause skin inflammation and lead to skin cancer. In Thailand, Derris Scandens (Roxb.) Benth. is used as an alternative medicine to nonsteroidal anti-inflammatory drugs (NSAIDs) for low back pain and osteoarthritis. Therefore, this study aimed to evaluate the potential anti-inflammatory effect of Derris scandens extract (DSE) on pre- and post exposed NB-UVB human keratinocytes (HaCaT). The results indicated that DSE could not protect HaCaT from cell morphology changes or DNA fragmentation and could not recover cell proliferation ability from the NB-UVB effects. DSE treatment reduced the expression of genes related to inflammation, collagen degradation, and carcinogenesis, such as IL-1α, IL-1β, IL-6, iNOS, COX-2, MMP-1, MMP-9, and Bax. These results indicated the potential use of DSE as a topical preparation against NB-UVB-induced inflammation, anti-aging, and prevention of skin cancer from phototherapy.
Collapse
Affiliation(s)
- Sumrit Sukhonthasilakun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pramote Mahakunakorn
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Katesaraporn Nuankaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
7
|
Qadir A, Ullah SNMN, Gupta DK, Khan N. Phytoconstituents loaded nanomedicines for the management of Acne. J Cosmet Dermatol 2022; 21:3240-3255. [DOI: 10.1111/jocd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
- Department of Research and Developments Herbalfarm Health care Private Limited New Delhi 110020
| | | | - Dipak Kumar Gupta
- Department of Pharmaceutics School of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry school of pharmaceutical education and research Jamia Hamdard New Delhi 110062
| |
Collapse
|
8
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
9
|
Asfour HZ, Fahmy UA, Alharbi WS, Almehmady AM, Alamoudi AJ, Tima S, Mansouri RA, Omar UM, Ahmed OAA, Zakai SA, Aldarmahi AA, Bagalagel A, Diri R, Alhakamy NA. Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells. Pharmaceutics 2021; 13:2144. [PMID: 34959424 PMCID: PMC8709205 DOI: 10.3390/pharmaceutics13122144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon® 90H (PL) were incorporated in a nano-based delivery platform to assess THQ's cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-α and NF-κB in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Waleed S. Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Singkome Tima
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.A.M.); (U.M.O.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadi A. Zakai
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.Z.A.); (S.A.Z.)
| | - Ahmed A. Aldarmahi
- College of Sciences and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia;
| | - Alaa Bagalagel
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Reem Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.B.); (R.D.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.S.A.); (A.M.A.); (O.A.A.A.); (N.A.A.)
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
de Andrades EO, da Costa JMAR, de Lima Neto FEM, de Araujo AR, de Oliveira Silva Ribeiro F, Vasconcelos AG, de Jesus Oliveira AC, Sobrinho JLS, de Almeida MP, Carvalho AP, Dias JN, Silva IGM, Albuquerque P, Pereira IS, do Amaral Rabello D, das Graças Nascimento Amorim A, de Souza de Almeida Leite JR, da Silva DA. Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity. Int J Biol Macromol 2021; 191:1026-1037. [PMID: 34563578 DOI: 10.1016/j.ijbiomac.2021.09.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles. The antioxidant activity was determinated and cell viability was evaluated in the human breast cancer cells (MCF-7) and human keratinocytes (HaCaT) by MTT assay. The toxic effect was evaluated by hemolysis test and by Galleria mellonella model. NFGa showed higher stability than NGa, having a size of 162.10 ± 3.21 nm, polydispersity of 0.348 ± 0.019, zeta potential -30.70 ± 0.53 mV, concentration of 6.4 × 109 nanoparticles/mL and 60% LEG encapsulation. Microscopic analysis revealed a spherical and smooth shape of NFGa. NFGa showed antioxidant capacity by ABTS method and ORAC assay. The NFGa presented significant cytotoxicity against MCF-7 from the lowest concentration tested (6.25-200 μg/mL) and did not affect the cell viability of the HaCaT. NFGa showed non-toxic effect in the in vitro and in vivo models. Therefore, NFGa may have a promising application in LEG stabilization for antioxidant and antitumor purposes.
Collapse
Affiliation(s)
- Eryka Oliveira de Andrades
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | | | - Alyne Rodrigues de Araujo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Fabio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Andreanne Gomes Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Antônia Carla de Jesus Oliveira
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - José Lamartine Soares Sobrinho
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, NCQMC, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | - Miguel Peixoto de Almeida
- LAQV/REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ana P Carvalho
- LAQV/REQUIMTE-GRAQ, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Porto, Portugal; Centro de Biotecnologia e Química Fina, CBQF, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Jhones Nascimento Dias
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - Patrícia Albuquerque
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Ildinete Silva Pereira
- Laboratório de Biologia Molecular de Fungos Patogênicos, Instituto de Biologia, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Doralina do Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Área de Patologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | | | - José Roberto de Souza de Almeida Leite
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil; Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Área de Morfologia, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Durcilene Alves da Silva
- Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil.
| |
Collapse
|
11
|
Gea-Botella S, Moreno-Chamba B, de la Casa L, Salazar-Bermeo J, Martí N, Martínez-Madrid MC, Valero M, Saura D. Carotenoids from Persimmon ( Diospyros kaki Thunb.) Byproducts Exert Photoprotective, Antioxidative and Microbial Anti-Adhesive Effects on HaCaT. Pharmaceutics 2021; 13:1898. [PMID: 34834313 PMCID: PMC8618857 DOI: 10.3390/pharmaceutics13111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Persimmon (Diospyros kaki Thunb.) fruits are a remarkable source of carotenoids, which have shown protective effects against UV radiation in bacteria, fungi, algae, and plants. The aim of this study was to analyze the photoprotection provided by an acetone extract, rich in carotenoids and obtained from byproducts derived from the persimmon juice industry, against UV-induced cell death in the keratinocyte HaCaT cell line. For this purpose, the cytotoxicity and phototoxicity of carotenoid extract, as well as its intracellular reactive oxygen species (ROS) scavenging and anti-adhesive activities towards HaCaT cells, were evaluated. The in vitro permeation test provided information about the permeability of the carotenoid extract. Persimmon extracts, rich in carotenoids (PEC), were absorbed by HaCaT keratinocyte cells, which reduced the UV-induced intracellular ROS production in treated cells. Thus, PEC exerted a photoprotective and regenerative effect on UV-irradiated HaCaT cells, and this protection was UV dose-dependent. No cytotoxic effect was observed in HaCaT cultures at the concentration tested. PEC treatment also stimulated the adhesion capacity of skin microbiome to HaCaT cells, while exhibiting a significant anti-adhesive activity against all tested pathogens. In conclusion, PEC showed potential for use as a functional ingredient in skin-care products.
Collapse
Affiliation(s)
- Sara Gea-Botella
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Bryan Moreno-Chamba
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Laura de la Casa
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Julio Salazar-Bermeo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Nuria Martí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | | | - Manuel Valero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| | - Domingo Saura
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, 03202 Alicante, Spain; (S.G.-B.); (B.M.-C.); (L.d.l.C.); (J.S.-B.); (N.M.); (D.S.)
| |
Collapse
|
12
|
Lim ZW, Chen WL. Association Between Micronutrient Concentrations and Human Epididymis Protein 4. J Inflamm Res 2021; 14:4945-4954. [PMID: 34611420 PMCID: PMC8486278 DOI: 10.2147/jir.s327597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Background Human epididymis protein 4 (HE4) has been frequently used to study in many malignant tumors, while serum nutritional markers are used to determine a person's health status. However, the link between serum micronutrient concentrations and HE4 has not yet been clarified. Methods A total of 2464 eligible female participants and serum concentrations of nutritional biomarkers were chosen from the National Health and Nutrition Examination Surveys (NHANES) 2001-2002. For statistical analysis, we used the χ 2 test, multivariable linear regression, and analysis of variance. Adjusted models were used, and the concentrations of serum nutritional biomarkers were divided into quartiles. Results The mean age of the participants was 48.07 years. Among twelve micronutrients, five were negatively associated with HE4 in models 1, 2 and 3. Only α-carotene, trans-β-carotene, cis-β-carotene, trans-lycopene and retinol were associated with HE4, with beta coefficients of -0.102, -0.027, -0.506, -0.131 and -0.054, respectively. After performing quartile-based analysis, statistical significance was only found for serum α-carotene, trans-lycopene, and retinol in the three models. In model 3, the beta coefficients [95% confidence intervals (CIs)] of the fourth quartiles compared to the first quartiles for α-carotene, trans-lycopene, and retinol were -3.390 (-5.053, -1.727), -4.036 (-5.722, -2.351) and -4.146 (-5.899, -2.393), respectively. Serum concentrations of these three nutritional biomarkers were inversely related to serum HE4 concentration (p trend <0.001). Conclusion HE4 is a useful and novel biomarker that can be used with many diseases, especially ovarian cancer. Three of our selected micronutrients were inversely associated with HE4 concentration. Supplement of micronutrients may reduce the levels of HE4 and the subsequent of ovarian cancer's risk. Therefore, a formula that correlates HE4 with nutritional biomarkers needs to be established before use in clinical applications.
Collapse
Affiliation(s)
- Zhu Wei Lim
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wei Liang Chen
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
13
|
Çavuşoğlu D, Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. Extenuating role of lycopene against 254-nm UV-C radiation-mediated damages in Allium cepa L. roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47429-47438. [PMID: 33893579 PMCID: PMC8064420 DOI: 10.1007/s11356-021-14047-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
UV-C exposure has become a crucial risk for living organisms due to its widespread use in sterilization. In this study, the mitigating potential of lycopene was investigated against UV-C-mediated toxicity in Allium cepa L. roots. Allium bulbs were separated into six groups which treated with tap water, 215 mg/L lycopene, 430 mg/L lycopene, 254-nm UV radiation, 215 mg/L lycopene + 254-nm UV radiation, and 430 mg/L lycopene + 254-nm UV radiation. Germination percentage, root length, weight gain, mitotic index, micronucleus frequency, and other chromosomal aberrations as well as meristematic cell damages were investigated in all groups. Malondialdehyde level and the activities of superoxide dismutase and catalase enzymes were also analyzed to understand the severity of oxidative stress. UV-C radiation was revealed to negatively affect all parameters investigated, while the mitigating activities of lycopene against UV-C-mediated toxicity were dose-dependent. Therefore, the study evidently demonstrated the promising potential of lycopene in the protection against the detrimental effects of UV-C exposure in A. cepa.
Collapse
Affiliation(s)
- Dilek Çavuşoğlu
- Department of Plant and Animal Production, Atabey Vocational School, Isparta Applied Sciences University, 32200, Isparta, Turkey
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey.
| | - Oksal Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, 28400, Giresun, Turkey
| | - Emine Yalçın
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, 28049, Giresun, Turkey
| |
Collapse
|
14
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
15
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
16
|
Fonseca DFS, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sá I, Bastos V, Oliveira H, Vilela C, Silvestre AJD, Freire CSR. Swellable Gelatin Methacryloyl Microneedles for Extraction of Interstitial Skin Fluid toward Minimally Invasive Monitoring of Urea. Macromol Biosci 2020; 20:e2000195. [PMID: 33405374 DOI: 10.1002/mabi.202000195] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Urea, the main nitrogenous waste product of protein metabolism, is eliminated almost exclusively by the kidney, and hence, displays considerable clinical significance in the assessment of kidney disorders. The aim of this study is to prepare and investigate the potential of swellable cross-linked gelatin methacryloyl (c-GelMA) microneedles (MNs) as a platform for minimally invasive extraction of interstitial skin fluid (ISF) toward straightforward point-of-care healthcare monitoring of renal complaints, by quantification of urea. c-GelMA MNs are successfully prepared by photo-cross-linking and micromolding, faithfully replicating the master molds (387 ± 16 µm height, 200 µm base and 500 µm tip-to-tip distance). These MN patches display good mechanical properties, withstanding more than 0.15 N per needle without breaking. Ex vivo skin insertion assays reveal that the MNs penetrate up to 237 µm depth, reaching the dermis, where they should extract ISF considering a real application. In an in vitro application using an agarose skin model system, the c-GelMA MNs are able to efficiently recover urea (>98%). Additionally, these MNs exhibit noncytotoxic effects toward human keratinocytes. These findings suggest that c-GelMA MNs are promising devices for sampling ISF and offline analysis of urea, opening new avenues for simple point-of-care healthcare monitoring.
Collapse
Affiliation(s)
- Daniela F S Fonseca
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Paulo Cardoso Costa
- UCIBIO, REQUIMTE, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Isabel F Almeida
- UCIBIO, REQUIMTE, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Patrícia Dias-Pereira
- Institute of Biomedical Sciences Abel Salazar, ICBAS-Uporto, University of Porto, Porto, 4050-313, Portugal
| | - Inês Correia-Sá
- Department of Plastic, Aesthetic, Reconstructive and Aesthetic Surgery, Centro Hospitalar de S. João, Porto, 4200-319, Portugal
| | - Verónica Bastos
- Department of Biology & CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carla Vilela
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Carmen S R Freire
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
17
|
Fonseca DFS, Vilela C, Pinto RJB, Bastos V, Oliveira H, Catarino J, Faísca P, Rosado C, Silvestre AJD, Freire CSR. Bacterial nanocellulose-hyaluronic acid microneedle patches for skin applications: In vitro and in vivo evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111350. [PMID: 33254971 DOI: 10.1016/j.msec.2020.111350] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to develop innovative patches for dermo-cosmetic applications based on dissolvable hyaluronic acid (HA) microneedles (MNs) combined with bacterial nanocellulose (BC) as the back layer. HA was employed as an active biomacromolecule, with hydrating and regenerative properties and volumizing effect, whereas BC was used as support for the incorporation of an additional bioactive molecule. Rutin, a natural antioxidant, was selected as the model bioactive compound to demonstrate the effectiveness of the system. The obtained HA-MNs arrays present homogenous and regular needles, with 200 μm in base width, 450 μm in height and 500 μm tip-to-tip distance, and with sufficient mechanical force to withstand skin insertion with a failure force higher than 0.15 N per needle. The antioxidant activity of rutin was neither affected by its incorporation in the MNs system nor by their storage at room temperature for 6 months. Preliminary in vivo studies in human volunteers unveiled their safety and cutaneous compatibility, as no significant changes in barrier function, stratum corneum hydration nor redness were detected. These results confirm the potentiality of this novel system for skin applications, e.g. cosmetics, taking advantage of the recognized properties of HA and the capacity of BC to control the release of bioactive molecules.
Collapse
Affiliation(s)
- Daniela F S Fonseca
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Verónica Bastos
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Catarino
- CBIOS - Centre for Research in Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, 1740-024 Lisbon, Portugal
| | - Pedro Faísca
- CBIOS - Centre for Research in Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, 1740-024 Lisbon, Portugal; Faculty of Veterinary Medicine, Lusófona University of Humanities and Technologies, Lisbon, Portugal
| | - Catarina Rosado
- CBIOS - Centre for Research in Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, 1740-024 Lisbon, Portugal
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Fonseca DF, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sá I, Bastos V, Oliveira H, Duarte-Araújo M, Morato M, Vilela C, Silvestre AJ, Freire CS. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym 2020; 241:116314. [DOI: 10.1016/j.carbpol.2020.116314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
|
19
|
Caseiro M, Ascenso A, Costa A, Creagh-Flynn J, Johnson M, Simões S. Lycopene in human health. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109323] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
|
21
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. Unravelling the insulin-like growth factor I-mediated photoprotection of the skin. Cytokine Growth Factor Rev 2019; 52:45-55. [PMID: 31767341 DOI: 10.1016/j.cytogfr.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Chronic exposure of human skin to solar ultraviolet radiation (UVR) induces a range of biological reactions which may directly or indirectly lead to the development of skin cancer. In order to overcome these damaging effects of UVR and to reduce photodamage, the skin's endogenous defence system functions in concert with the various exogenous photoprotectors. Growth factors, particularly insulin-like growth factor-I (IGF-I), produced within the body as a result of cellular interaction in response to UVR demonstrates photoprotective properties in human skin. This review summarises the impact of UVR-induced photolesions on human skin, discusses various endogenous as well as exogenous approaches of photoprotection described to date and explains how IGF-I mediates UVR photoprotective responses at the cellular and mitochondrial level. Further, we describe the current interventions using growth factors and propose how the knowledge of the IGF-I photoprotection signalling cascades may direct the development of improved UVR protection and remedial strategies.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Institute of Medical Biology, A⁎STAR, Singapore
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
22
|
Rodríguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs 2019; 17:E451. [PMID: 31374828 PMCID: PMC6722862 DOI: 10.3390/md17080451] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 μM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1β production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Helena Oliveira
- Department of Biology, Faculty of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
23
|
Reis-Mansur MCPP, Cardoso-Rurr JS, Silva JVMA, de Souza GR, Cardoso VDS, Mansoldo FRP, Pinheiro Y, Schultz J, Lopez Balottin LB, da Silva AJR, Lage C, Dos Santos EP, Rosado AS, Vermelho AB. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci Rep 2019; 9:9554. [PMID: 31266976 PMCID: PMC6606617 DOI: 10.1038/s41598-019-45840-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
The Microbacterium sp. LEMMJ01 isolated from Antarctic soil does not belong to any of the nearest species identified in the RDP database. Under UV radiation (A, B and C wavebands) the survival fractions of Microbacterium sp. cells were much higher compared with wild-type E. coli K12A15. Especially remarkable for an Antarctic bacterium, an expressive resistance against high UV-B doses was observed. The increased survival of DNA repair-proficient E. coli grown overnight added of 0.1 mg/ml or 1 mg/ml of the whole pigment extract produced by Microbacterium sp. revealed that part of the resistance of Microbacterium sp. against UV-B radiation seems to be connected with photoprotection by its pigments. Scanning electron microscopy revealed that UV-A and UV-B ensued membrane alterations only in E. coli. The APCI-MS fingerprints revealed the diagnostic ions for neurosporene (m/z 580, 566, 522, 538, and 524) synergism for the first time in this bacterium by HPLC-MS/MS analysis. Carotenoids also were devoid of phototoxicity and cytotoxicity effects in mouse cells and in human keratinocytes and fibroblasts.
Collapse
Affiliation(s)
- Maria Cristina P P Reis-Mansur
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Janine S Cardoso-Rurr
- LaRBio - Radiations and Biology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Josemar V Maiworm Abreu Silva
- Labio/Dimav/Inmetro - Laboratory of Tissue Bioengineering/Directorate of Metrology Applied to Life Sciences/National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Gabriela Rodrigues de Souza
- Research Institute for Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Verônica da Silva Cardoso
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Felipe Raposo Passos Mansoldo
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Yuri Pinheiro
- LEMM - Laboratory of Microbial Molecular Ecology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Júnia Schultz
- LEMM - Laboratory of Microbial Molecular Ecology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciene B Lopez Balottin
- Labio/Dimav/Inmetro - Laboratory of Tissue Bioengineering/Directorate of Metrology Applied to Life Sciences/National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | | | - Claudia Lage
- LaRBio - Radiations and Biology Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisabete Pereira Dos Santos
- Faculty of Pharmacy, Galenico Development Laboratory, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- LEMM - Laboratory of Microbial Molecular Ecology, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alane Beatriz Vermelho
- BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Santhakumaran I, Kesavan SS, Arumugam G. Asperyellone pretreatment protects HaCaT cells from UVB irradiation induced oxidative damages: Assessment under in vitro and in vivo conditions and at molecular level. J Cell Biochem 2019; 120:10715-10725. [PMID: 30693585 DOI: 10.1002/jcb.28363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022]
Abstract
The present study explores the UVB protective role of Asperyellone (AY), a secondary metabolite of Aspergillus niger strain AN01. The in vitro UVB protective efficacy of AY was studied using the Human Epidermal keratinocytes cells (HaCaT) cell line. The results suggest the appreciable scavenging of UVB-induced reactive oxygen species in the AY-pretreated cells compared with UVB control. Experimental results on the antioxidant enzymes (Catalase, SOD, LPO, and GPx) profile, histochemical, and molecular analyses support the UVB protective effect of AY in HaCaT cells. Further, the in vivo UVB protective efficacy of AY was studied using animal models and compared with that of commercially available UVB protective agents. Physical, biochemical, and molecular analyses of skin samples emphasized the UVB protective role of AY. Thus, the important beneficial effects of AY have been explored in the present study.
Collapse
|
25
|
Grabowska M, Wawrzyniak D, Rolle K, Chomczyński P, Oziewicz S, Jurga S, Barciszewski J. Let food be your medicine: nutraceutical properties of lycopene. Food Funct 2019; 10:3090-3102. [DOI: 10.1039/c9fo00580c] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we highlight research and clinical trials involving lycopene and its impact on human health.
Collapse
Affiliation(s)
- Małgorzata Grabowska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- Centre for Advanced Technology
- Adam Mickiewicz University
| | | | | | - Stefan Jurga
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- NanoBioMedical Centre
- Adam Mickiewicz University
| |
Collapse
|
26
|
Antioxidants from Plants Protect against Skin Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1454936. [PMID: 30174780 PMCID: PMC6098906 DOI: 10.1155/2018/1454936] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
Abstract
Exposure to UV light triggers the rapid generation and accumulation of reactive oxygen species (ROS) in skin cells, with consequent increase in oxidative stress and thus in photoaging. Exogenous supplementation with dietary antioxidants and/or skin pretreatment with antioxidant-based lotions before sun exposure might be a winning strategy against age-related skin pathologies. In this context, plants produce many secondary metabolites to protect themselves from UV radiations and these compounds can also protect the skin from photoaging. Phenolic compounds, ascorbic acid and carotenoids, derived from different plant species, are able to protect the skin by preventing UV penetration, reducing inflammation and oxidative stress, and influencing several survival signalling pathways. In this review, we focus our attention on the double role of oxidants in cell metabolism and on environmental and xenobiotic agents involved in skin photoaging. Moreover, we discuss the protective role of dietary antioxidants from fruits and vegetables and report their antiaging properties related to the reduction of oxidative stress pathways.
Collapse
|
27
|
36H: A Novel Potent Inhibitor for Antimelanogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6354972. [PMID: 29507652 PMCID: PMC5817369 DOI: 10.1155/2018/6354972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/15/2017] [Accepted: 11/05/2017] [Indexed: 01/17/2023]
Abstract
N-Hydroxycinnamoylphenalkylamides (36H) exhibited both antioxidation and antityrosinase abilities. The compound was studied for its antioxidative properties, using a 1,1-diphenyl-2-picrylhydrazul- (DPPH-) scavenging test, a ferric ion-reducing antioxidant power assay (FRAP) assessment, and a metal-chelating power assay. The results showed that 36H had antioxidative capabilities in the DPPH-scavenging and ferric-reducing power examinations but the chelating power assay did not demonstrate antioxidative capability. 36H was also measured for tyrosinase inhibitory activity applying various species platforms, including in vitro mushroom, B16F10 mouse melanoma, and human melanocyte cells. In terms of in vitro mushroom tyrosinase suppression, 36H restrained the melanogenesis processes. It is assumed that 36H blocked the tyrosinase active site as a competitive inhibitor for mushroom tyrosinase, hence not decreasing the human normal melanocyte cellular viability. A quantitative real-time polymerase chain reaction (qRT-PCR) and western blot discovered that 36H downregulated melanogenesis-related RNA and proteins, including pigment production (MITF, tyrosinase, TRP-1, and TRP-2), melanosome maturation (Rab27a), and melanosome transportation (Myo5a, MLPH and Mreg). Overall, 36H displayed the biofunctions of antioxidation and melanin suppression, so there was a possibility for its application as a food additive or a skin-whitening agent.
Collapse
|
28
|
Abstract
The skin cells continuously produce, through cellular respiration, metabolic processes or under external aggressions, highly reactive molecules oxidation products, generally called free radicals. These molecules are immediately neutralized by enzymatic and non-enzymatic systems in a physiological and dynamic balance. In situations where this balance is broken, various cellular structures, such as the cell membrane, nuclear or mitochondrial DNA may suffer structural modifications, triggering or worsening skin diseases. several substances with alleged antioxidant effects has been offered for topical or oral use, but little is known about their safety, possible associations and especially their mechanism of action. The management of topical and oral antioxidants can help dermatologist to intervene in the oxidative processes safely and effectively, since they know the mechanisms, limitations and potential risks of using these molecules as well as the potential benefits of available associations.
Collapse
|
29
|
Shanuja SK, Iswarya S, Gnanamani A. Marine fungal DHICA as a UVB protectant: Assessment under in vitro and in vivo conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:139-148. [PMID: 29367149 DOI: 10.1016/j.jphotobiol.2018.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/24/2022]
Abstract
The present study explores UVB protective role of a melanin precursor namely DHICA (5,6- Dihydroxyindole-2-carboxylic acid) expressed by the marine imperfect fungus Aspergillus nidulans. In brief, A. nidulans grown in a modified growth medium for the period of 5 days at 25 °C under shaking conditions and the extracellular medium free from fungal biomass used for the extraction of DHICA. The extracted DHICA further exposed to partial purification and subjected to UVB protection studies using HaCaT cells and Balb/c mice independently. DHICA obtained in the present study found soluble in water. Experiments on HaCaT cell compatibility revealed nil cell death up to 500 μM concentration of DHICA. UVB protection studies under in vitro conditions emphasizes DHICA significantly protect HaCaT cells from UVB exposure by quenching the generated ROS, reducing cell apoptosis, maintain the cellular integrity and sequentially down regulating the LPO (Lipid peroxidation) and up-regulating the antioxidant enzyme (SOD (Superoxide Dismutase), Catalase, GPx (Glutathione peroxidase)) respectively. Further, experiments on cell cycle arrest analysis, gelatin zymography, and western blot analysis on COX-2 and TNF-alpha, IHC (Immunohistochemistry) on apoptotic markers (Bax, Bcl2) substantiate the protective role of DHICA. Furthermore, in vivo studies on BALB/c mice carried out and compared with the sunscreen cream with sun protective factor (SPF) of 20. Analysis of skin sections of experimental samples revealed that an appreciable reduction in the epidermal thickness of the skin samples of mice pre-exposed to DHICA followed by UVB exposure compared to UVB exposure alone. RT-PCR results on various inflammatory apoptotic markers also suggested that DHICA has UVB protective potential. The observations made in the present study explore the possible application of DHICA alone as a sun-protective agent for skin care.
Collapse
Affiliation(s)
- S K Shanuja
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India
| | - S Iswarya
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India
| | - A Gnanamani
- Microbiology Division, CSIR-CLRI, Adyar, Chennai 20, India.
| |
Collapse
|
30
|
Menezes AC, Carvalheiro M, Ferreira de Oliveira JMP, Ascenso A, Oliveira H. Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells. Toxicol In Vitro 2017; 47:72-78. [PMID: 29155207 DOI: 10.1016/j.tiv.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023]
Abstract
1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells.
Collapse
Affiliation(s)
- Ana Catarina Menezes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| | - Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
31
|
Higgins S, Miller KA, Wojcik KY, Ahadiat O, Escobedo LA, Wysong A, Cockburn M. Phytochemicals and Naturally Occurring Substances in the Chemoprevention of Skin Cancer. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chen P, Xu S, Qu J. Lycopene Protects Keratinocytes Against UVB Radiation‐Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway. J Cell Biochem 2017; 119:366-377. [DOI: 10.1002/jcb.26189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ping Chen
- Department of PharmacyAffiliated Hospital of Shandong Medical CollegeLinyi276000Shandong ProvinceChina
| | - Shina Xu
- Department of PharmacyAffiliated Hospital of Shandong Medical CollegeLinyi276000Shandong ProvinceChina
| | - Jinlong Qu
- Department of DermatologyLinyi Central HospitalYishui CountyLinyi276400Shandong ProvinceChina
| |
Collapse
|
33
|
Lee S, Kim CM, Lee JH, Lee K, Cho KS, Kim ES. Effect of hemp fiber on UVB-induced epidermal cell proliferation and PCNA expression. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Montes de Oca MK, Pearlman RL, McClees SF, Strickland R, Afaq F. Phytochemicals for the Prevention of Photocarcinogenesis. Photochem Photobiol 2017; 93:956-974. [PMID: 28063168 DOI: 10.1111/php.12711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Ultraviolet (UV) exposure has an array of damaging effects and is the main cause of skin cancer in humans. Nonmelanoma skin cancer (NMSC), including basal cell carcinoma and squamous cell carcinoma, is the most common type of cancer. Incidence of NMSC has increased due to greater UV radiation, increased life expectancy and other changes in lifestyle; the annual cost of skin cancer treatment in the United States has increased concurrently to around eight billion dollars. Because of these trends, novel approaches to skin cancer prevention have become an important area of research to decrease skin cancer morbidity and defray the costs associated with treatment. Chemoprevention aims to prevent or delay the development of skin cancer through the use of phytochemicals. Use of phytochemicals as chemopreventive agents has gained attention due to their low toxicity and anticarcinogenic properties. Phytochemicals also exhibit antioxidant, anti-inflammatory and antiproliferative effects which support their use as chemopreventive agents, particularly for skin cancer. Preclinical and human studies have shown that phytochemicals decrease UV-induced skin damage and photocarcinogenesis. In this review article, we discuss the selected phytochemicals that may prevent or delay UV-induced carcinogenesis and highlight their potential use for skin protection.
Collapse
Affiliation(s)
| | - Ross L Pearlman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Sarah F McClees
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
35
|
Biofunctional Activities of Equisetum ramosissimum Extract: Protective Effects against Oxidation, Melanoma, and Melanogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2853543. [PMID: 27403230 PMCID: PMC4926015 DOI: 10.1155/2016/2853543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022]
Abstract
Equisetum ramosissimum, a genus of Equisetaceae, is a medicinal plant that can be separated into ethyl acetate (EA), dichloromethane (DM), n-hexane (Hex), methanol (MeOH), and water extracts. EA extract was known to have potent antioxidative properties, reducing power, DPPH scavenging activity, and metal ion chelating activity. This study compared these five extracts in terms of their inhibiting effects on three human malignant melanomas: A375, A375.S2, and A2058. MTT assay presented the notion that both EA and DM extracts inhibited melanoma growth but did not affect the viabilities of normal dermal keratinocytes (HaCaT) or fibroblasts. Western blot analyses showed that both EA and DM extracts induced overexpression of caspase proteins in all three melanomas. To determine their roles in melanogenesis, this study analyzed their in vitro suppressive effects on mushroom tyrosinase. All extracts except for water revealed moderate suppressive effects. None of the extracts affected B16-F10 cells proliferation. EA extract inhibited cellular melanin production whereas DM extract unexpectedly enhanced cellular pigmentation in B16-F10 cells. Data for modulations of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1, and tyrosinase-related protein 2 showed that EA extract inhibited protein expression mentioned above whereas DM extract had the opposite effect. Overall, the experiments indicated that the biofunctional activities of EA extract contained in food and cosmetics protect against oxidation, melanoma, and melanin production.
Collapse
|