1
|
Berinde GM, Socaciu AI, Socaciu MA, Petre GE, Rajnoveanu AG, Barsan M, Socaciu C, Piciu D. In Search of Relevant Urinary Biomarkers for Thyroid Papillary Carcinoma and Benign Thyroid Nodule Differentiation, Targeting Metabolic Profiles and Pathways via UHPLC-QTOF-ESI +-MS Analysis. Diagnostics (Basel) 2024; 14:2421. [PMID: 39518388 PMCID: PMC11544950 DOI: 10.3390/diagnostics14212421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Identification of specific urine metabolic profiles for patients diagnosed with papillary thyroid carcinoma (TC) vs. benign nodules (B) to identify specific biomarkers and altered pathways compared to those of healthy controls (C). METHODS Patient urine samples were collected, before surgery and after a histological confirmation of TC (n = 30) and B (n = 30), in parallel with sample collection from healthy controls (n = 20). The untargeted and semi-targeted metabolomic protocols were applied using UPLC-QTOF-ESI+-MS analysis, and the statistical analysis was performed using the Metaboanalyst 6.0 platform. The results for the blood biomarkers, previously published, were compared with the data obtained from urine sampling using the Venny algorithm and multivariate statistics. RESULTS Partial least squares discrimination, including VIP values, random forest graphs, and heatmaps (p < 0.05), together with biomarker analysis (AUROC ranking) and pathway analysis, suggested a specific model for the urinary metabolic profile and pathway alterations in TC and B vs. C, based on 190 identified metabolites in urine that were compared with the serum metabolites. By semi-targeted metabolomics, 10 classes of metabolites, considered putative biomarkers, were found to be responsible for specific alterations in the metabolic pathways, from polar molecules to lipids. Specific biomarkers for discrimination were identified in each class of metabolites that were either upregulated or downregulated when compared to those of the controls. CONCLUSIONS The lipidomic window was the most relevant for identifying biomarkers related to thyroid cancer and benign conditions, since this study detected a stronger involvement of lipids and selenium-related molecules for metabolic discrimination.
Collapse
Affiliation(s)
- Gabriela Maria Berinde
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania; (G.M.B.); (A.G.R.); (M.B.)
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania; (G.M.B.); (A.G.R.); (M.B.)
| | - Mihai Adrian Socaciu
- Department of Medical Imaging, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Gabriel Emil Petre
- Department of Surgery 4, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania;
| | - Armand Gabriel Rajnoveanu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania; (G.M.B.); (A.G.R.); (M.B.)
| | - Maria Barsan
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania; (G.M.B.); (A.G.R.); (M.B.)
| | - Carmen Socaciu
- Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta SRL, Str. Trifoiului 12G, 400478 Cluj-Napoca, Romania;
| | - Doina Piciu
- Doctoral School, University of Medicine and Pharmacy “Iuliu Hatieganu”, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Lukasiewicz M, Zwara A, Kowalski J, Mika A, Hellmann A. The Role of Lipid Metabolism Disorders in the Development of Thyroid Cancer. Int J Mol Sci 2024; 25:7129. [PMID: 39000236 PMCID: PMC11241618 DOI: 10.3390/ijms25137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Thyroid cancer (TC) is a neoplasm with an increasing incidence worldwide. Its etiology is complex and based on a multi-layered interplay of factors. Among these, disorders of lipid metabolism have emerged as an important area of investigation. Cancer cells are metabolically reprogrammed to promote their rapid growth, proliferation, and survival. This reprogramming is associated with significant changes at the level of lipids, mainly fatty acids (FA), as they play a critical role in maintaining cell structure, facilitating signaling pathways, and providing energy. These lipid-related changes help cancer cells meet the increased demands of continued growth and division while adapting to the tumor microenvironment. In this review, we examine lipid metabolism at different stages, including synthesis, transport, and oxidation, in the context of TC and the effects of obesity and hormones on TC development. Recent scientific efforts have revealed disturbances in lipid homeostasis that are specific to thyroid cancer, opening up potential avenues for early detection and targeted therapeutic interventions. Understanding the intricate metabolic pathways involved in FA metabolism may provide insights into potential interventions to prevent cancer progression and mitigate its effects on surrounding tissues.
Collapse
Affiliation(s)
- Martyna Lukasiewicz
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Agata Zwara
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Jacek Kowalski
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-309 Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| |
Collapse
|
3
|
Qu N, Chen D, Ma B, Zhang L, Wang Q, Wang Y, Wang H, Ni Z, Wang W, Liao T, Xiang J, Wang Y, Jin S, Xue D, Wu W, Wang Y, Ji Q, He H, Piao HL, Shi R. Integrated proteogenomic and metabolomic characterization of papillary thyroid cancer with different recurrence risks. Nat Commun 2024; 15:3175. [PMID: 38609408 PMCID: PMC11014849 DOI: 10.1038/s41467-024-47581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly defined. Here, we perform an integrative proteogenomic and metabolomic characterization of 102 Chinese PTC patients with different RRs. Genomic profiling reveals that mutations in MUC16 and TERT promoter as well as multiple gene fusions like NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses further describe the multi-dimensional characteristics of PTC, especially in metabolism pathways, and delineate dominated molecular patterns of different RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like) based on the omics data. Notably, the subtypes display significant differences considering BRAF and TERT promoter mutations, metabolism and immune pathway profiles, epithelial cell compositions, and various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can provide insights into the complex molecular characteristics of PTC recurrences and help promote early diagnosis and precision treatment of recurrent PTC.
Collapse
Affiliation(s)
- Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Zhang
- Department of General Surgery, Ganmei Affiliated Hospital of Kunming Medical University (The First People's Hospital of Kunming), Kunming, Yunnan, China
- Department of Surgery, Kunming Medical University, Kunming, Yunnan, China
| | - Qiuping Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuting Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongping Wang
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoxian Ni
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yulong Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi Jin
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dixin Xue
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weili Wu
- Department of Thyroid and Breast Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Hui He
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Hai-Long Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang, China.
| | - Rongliang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Kuang A, Kouznetsova VL, Kesari S, Tsigelny IF. Diagnostics of Thyroid Cancer Using Machine Learning and Metabolomics. Metabolites 2023; 14:11. [PMID: 38248814 PMCID: PMC10818630 DOI: 10.3390/metabo14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The objective of this research is, with the analysis of existing data of thyroid cancer (TC) metabolites, to develop a machine-learning model that can diagnose TC using metabolite biomarkers. Through data mining, pathway analysis, and machine learning (ML), the model was developed. We identified seven metabolic pathways related to TC: Pyrimidine metabolism, Tyrosine metabolism, Glycine, serine, and threonine metabolism, Pantothenate and CoA biosynthesis, Arginine biosynthesis, Phenylalanine metabolism, and Phenylalanine, tyrosine, and tryptophan biosynthesis. The ML classifications' accuracies were confirmed through 10-fold cross validation, and the most accurate classification was 87.30%. The metabolic pathways identified in relation to TC and the changes within such pathways can contribute to more pattern recognition for diagnostics of TC patients and assistance with TC screening. With independent testing, the model's accuracy for other unique TC metabolites was 92.31%. The results also point to a possibility for the development of using ML methods for TC diagnostics and further applications of ML in general cancer-related metabolite analysis.
Collapse
Affiliation(s)
- Alyssa Kuang
- Haas Business School, University of California at Berkeley, Berkeley, CA 94720, USA;
| | - Valentina L. Kouznetsova
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093, USA;
- BiAna, La Jolla, CA 92038, USA
- CureScience Institute, San Diego, CA 92121, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute, Santa Monica, CA 90404, USA;
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093, USA;
- BiAna, La Jolla, CA 92038, USA
- CureScience Institute, San Diego, CA 92121, USA
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Hellmann A, Turyn J, Zwara A, Korczynska J, Taciak A, Mika A. Alterations in the amino acid profile in patients with papillary thyroid carcinoma with and without Hashimoto's thyroiditis. Front Endocrinol (Lausanne) 2023; 14:1199291. [PMID: 37664829 PMCID: PMC10471980 DOI: 10.3389/fendo.2023.1199291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Amino acids (AAs) play important physiological roles in living cells. Some amino acid changes in blood are specific for autoimmune disorders, and some are specific for thyroid cancer. The aims of this study were to profile AA metabolites in the serum of patients with papillary thyroid carcinoma (PTC0) without Hashimoto's thyroiditis (HT) and patients with PTC with HT (PTC1) and predict whether AA metabolites are associated with thyroid disease, thyroid hormone and thyroid autoantibodies. Methods A total of 95 serum samples were collected, including 28 healthy controls (HCs), 28 PTC0 patients and 39 PTC1 patients. Serum samples were analyzed by high-performance liquid chromatography-triple stage quadrupole-mass spectrometry (HPLC-TSQ-MS), and twenty-one amino acids (AAs) were detected. Results The serum concentration of glutamic acid was significantly elevated in PTC1 patients compared with PTC0 patients. Lysine was the second amino acid that differentiated these two groups of PTC patients. In addition, the serum concentrations of glycine, alanine and tyrosine were significantly reduced in both PTC patient groups compared to the HC group. These AAs were also correlated with thyroid hormones and antibodies. Five amino acid markers, namely, glycine, tyrosine, glutamic acid, glutamine and arginine, separated/distinguished PTC0 patients from healthy subjects, and eight AA markers, the same AAs as above without arginine but with alanine, leucine, valine and histidine, separated/distinguished PTC1 patients from healthy subjects based on ROC analysis. Conclusion Compared with the HCs, changes in AAs in PTC0 and PTC1 patients showed similar patterns, suggesting the possibility of a common pathophysiological basis, which confirms preliminary research that PTC is significantly associated with pathologically confirmed HT. We found two AAs, lysine and alanine, that can perform diagnostic functions in distinguishing PTC1 from PTC0.
Collapse
Affiliation(s)
- Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Taciak
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
6
|
Noltes ME, Bader M, Metman MJH, Vonk J, Steinkamp PJ, Kukačka J, Westerlaan HE, Dierckx RAJO, van Hemel BM, Brouwers AH, van Dam GM, Jüstel D, Ntziachristos V, Kruijff S. Towards in vivo characterization of thyroid nodules suspicious for malignancy using multispectral optoacoustic tomography. Eur J Nucl Med Mol Imaging 2023; 50:2736-2750. [PMID: 37039901 PMCID: PMC10317911 DOI: 10.1007/s00259-023-06189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/05/2023] [Indexed: 04/12/2023]
Abstract
PURPOSE Patient-tailored management of thyroid nodules requires improved risk of malignancy stratification by accurate preoperative nodule assessment, aiming to personalize decisions concerning diagnostics and treatment. Here, we perform an exploratory pilot study to identify possible patterns on multispectral optoacoustic tomography (MSOT) for thyroid malignancy stratification. For the first time, we directly correlate MSOT images with histopathology data on a detailed level. METHODS We use recently enhanced data processing and image reconstruction methods for MSOT to provide next-level image quality by means of improved spatial resolution and spectral contrast. We examine optoacoustic features in thyroid nodules associated with vascular patterns and correlate these directly with reference histopathology. RESULTS Our methods show the ability to resolve blood vessels with diameters of 250 μm at depths of up to 2 cm. The vessel diameters derived on MSOT showed an excellent correlation (R2-score of 0.9426) with the vessel diameters on histopathology. Subsequently, we identify features of malignancy observable in MSOT, such as intranodular microvascularity and extrathyroidal extension verified by histopathology. Despite these promising features in selected patients, we could not determine statistically relevant differences between benign and malignant thyroid nodules based on mean oxygen saturation in thyroid nodules. Thus, we illustrate general imaging artifacts of the whole field of optoacoustic imaging that reduce image fidelity and distort spectral contrast, which impedes quantification of chromophore presence based on mean concentrations. CONCLUSION We recommend examining optoacoustic features in addition to chromophore quantification to rank malignancy risk. We present optoacoustic images of thyroid nodules with the highest spatial resolution and spectral contrast to date, directly correlated to histopathology, pushing the clinical translation of MSOT.
Collapse
Affiliation(s)
- Milou E Noltes
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maximilian Bader
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Madelon J H Metman
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jasper Vonk
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter J Steinkamp
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Kukačka
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henriette E Westerlaan
- Department of Radiology, University Medical Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bettien M van Hemel
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gooitzen M van Dam
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- AxelaRx/TRACER Europe BV, Groningen, the Netherlands
| | - Dominik Jüstel
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
| | - Schelto Kruijff
- Department of Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Li R, He H, Li X, Zheng X, Li Z, Zhang H, Ye J, Zhang W, Yu C, Feng G, Fan W. EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 2023; 50:2100-2113. [PMID: 36807768 DOI: 10.1007/s00259-023-06147-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/08/2023] [Indexed: 02/20/2023]
Abstract
PURPOSE Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC. METHODS Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients. RESULTS The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety. CONCLUSION Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.
Collapse
Affiliation(s)
- Ruping Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Xinling Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Xiaobin Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Hu Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Jiacong Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou , 510060, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Avagliano A, Fiume G, Bellevicine C, Troncone G, Venuta A, Acampora V, De Lella S, Ruocco MR, Masone S, Velotti N, Carotenuto P, Mallardo M, Caiazza C, Montagnani S, Arcucci A. Thyroid Cancer and Fibroblasts. Cancers (Basel) 2022; 14:cancers14174172. [PMID: 36077709 PMCID: PMC9455043 DOI: 10.3390/cancers14174172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine cancer, and its prevalence continue to rise. Non-metastatic thyroid cancer patients are successfully treated. However, looking for new therapeutic strategies is of great importance for metastatic thyroid cancers that still lead to death. With respect to this, the tumor microenvironment (TME), which plays a key role in tumor progression, should be considered as a new promising therapeutic target to hamper thyroid cancer progression. Indeed, thyroid tumors consist of cancer cells and a heterogeneous and ever-changing niche, represented by the TME, which contributes to establishing most of the features of cancer cells. The TME consists of extracellular matrix (ECM) molecules, soluble factors, metabolites, blood and lymphatic tumor vessels and several stromal cell types that, by interacting with each other and with tumor cells, affect TME remodeling, cancer growth and progression. Among the thyroid TME components, cancer-associated fibroblasts (CAFs) have gained more attention in the last years. Indeed, recent important evidence showed that thyroid CAFs strongly sustain thyroid cancer growth and progression by producing soluble factors and ECM proteins, which, in turn, deeply affect thyroid cancer cell behavior and aggressiveness. Hence, in this article, we describe the thyroid TME, focusing on the desmoplastic stromal reaction, which is a powerful indicator of thyroid cancer progression and an invasive growth pattern. In addition, we discuss the origins and features of the thyroid CAFs, their influence on thyroid cancer growth and progression, their role in remodeling the ECM and their immune-modulating functions. We finally debate therapeutic perspectives targeting CAFs.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Venuta
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Acampora
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Sabrina De Lella
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Nunzio Velotti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Medical Genetics, Department of Translational Medical Science, University of Naples Federico II, 80131 Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Napoli Federico II, 80131 Naples, Italy
- Correspondence: (A.A.); (A.A.); Tel.: +39-081-7463422 (A.A. & A.A.)
| |
Collapse
|
9
|
Morad H, Abou-Elzahab MM, Aref S, EL-Sokkary AMA. Diagnostic Value of 1H NMR-Based Metabolomics in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, and Breast Cancer. ACS OMEGA 2022; 7:8128-8140. [PMID: 35284729 PMCID: PMC8908535 DOI: 10.1021/acsomega.2c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 05/05/2023]
Abstract
Cancer refers to a massive number of diseases distinguished by the development of abnormal cells that divide uncontrollably and have the capability of infiltration and destroying the normal body tissue. It is critical to detect biomarkers that are early detectable and noninvasive to save millions of lives. The aim of the present work is to use NMR as a noninvasive diagnostic tool for cancer diseases. This study included 30 plasma and 21 urine samples of patients diagnosed with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), 25 plasma and 17 urine samples of patients diagnosed with breast cancer (BC), and 9 plasma and urine samples obtained from healthy individuals as controls. They were prepared for NMR measurements; then, the metabolites were identified and the data were analyzed using multivariate statistical procedures. The OPLS-DA score plots clearly discriminated ALL, AML, and BC from healthy controls. Plots of the PLS-DA loadings and S-line plots showed that all metabolites in plasma were greater in BC than in the healthy controls, whereas lactate, O-acetylcarnitine, pyruvate, trimethylamine-N-oxide (TMAO), and glucose were higher in healthy controls than in ALL and AML. On the other hand, urine samples showed lower amounts of lactate, melatonin, pyruvate, and succinate in all of the studied types of cancer when compared to those of healthy controls. 1H NMR can be a successful and noninvasive tool for the diagnosis of different types of cancer.
Collapse
Affiliation(s)
- Hanaa
M. Morad
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | | - Salah Aref
- Department
of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. EL-Sokkary
- Biochemistry
Division, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
10
|
Ibrahiem AT, Fawzy MS, Abdulhakim JA, Toraih EA. GLUT1 and ASCT2 Protein Expression in Papillary Thyroid Carcinoma Patients and Relation to Hepatitis C Virus: A Propensity-Score Matched Analysis. Int J Gen Med 2022; 15:2929-2944. [PMID: 35308569 PMCID: PMC8932928 DOI: 10.2147/ijgm.s354108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose Recently, glucose and amino acid transporters have gradually become a hot topic in thyroid gland biology and cancer research. We aimed to investigate the expressions of glucose transporter 1 (GLUT1) and glutamine transporter 2 (ASCT2) in papillary thyroid carcinoma (PTC) and their clinical significance and relation to HCV-related hepatitis. Patients and Methods Screening 202 TC tissue samples against the selection criteria using a propensity-score matched analysis to adjust for age, sex, side of tumor, histopathological variants, TNM staging system, and the positivity for HCV yielded 51 matched (17 HCV positive and 34 HCV negative) PTC samples. The expressions of GLUT1 and ASCT2 expressions were detected by immunohistochemical staining. Kaplan–Meier survival curves were generated for disease-free and overall survival, and multivariate Cox regression analysis was applied to identify predictors for mortality. Results Of 51 thyroid cancer tissues, 85% showed positive GLUT1 cytoplasmic staining, and 26% had a high expression score. All thyroid cancer specimens demonstrated ASCT2 cytoplasmic staining with membranous accentuation. Of these, 78% showed a high expression score, and 22% showed weak staining. On stratifying the study cohort based on the HCV status, HCV negative cohort showed a significantly higher immunoreactivity score for GLUT1 (p = 0.004) but not ASCT2 (p = 0.94) than HCV positive group. The expressions of the studied transporters showed no significant associations with the prognostic features of PTC nor the disease-free/overall survival. Conclusion GLUT1 and ASCT2 immunohistochemical staining showed positive expression with variable intensity in nearly 85% and 100% of PTC tissue samples compared to normal ones, respectively. Furthermore, GLUT1 protein expression, not ASCT2, showed a higher immunoreactivity score in PTC patients who are negative for HCV than cancer patients with positive HCV. Meanwhile, the expression of both protein markers was not associated with the clinicopathological characteristics of the studied PTC patients. Further large-scale multicenter studies are recommended to validate the present findings.
Collapse
Affiliation(s)
- Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Correspondence: Manal S Fawzy, Tel +966 583241944, Fax +966 146640705, Email
| | - Jawaher A Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Xia E, Chi Y, Jin L, Shen Y, Hirachan S, Bhandari A, Wang O. Preoperative prediction of lymph node metastasis in patients with papillary thyroid carcinoma by an artificial intelligence algorithm. Am J Transl Res 2021; 13:7695-7704. [PMID: 34377246 PMCID: PMC8340231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND It is necessary to identify patients at risk of developing lymph node metastasis prior to papillary thyroid carcinoma (PTC) surgery. This can be challenging due to limiting factors, and an artificial intelligence algorithm may be a viable option. OBJECTIVE In this study, we aimed to evaluate whether combining an artificial intelligence algorithm (support vector machine and probabilistic neural network) and clinico-pathologic data can preoperatively predict lymph node metastasis of papillary thyroid carcinoma (PTC). METHODS We retrospectively examined 251 PTCs with lymph node metastasis and 194 PTCs without lymph node metastasis. The artificial intelligence algorithm included the support vector machine (SVM) and the probabilistic neural network (PNN). RESULTS The ACR TI-RADS (Thyroid Imaging, Reporting and Data System), number of tumours, no well-defined margin, lymph node status and rim calcification on ultrasonography (US), age, sex, tumour size, and presence of Hashimoto's thyroiditis were significantly more frequent among PTCs with central lymph node metastasis than those without metastasis (P<0.05). The PNN classifier revealed an F1 score of 0.88 on the central lymph node metastasis test set. The SVM classifier revealed an F1 score of 0.93 on the lateral lymph node metastasis test set. Our study demonstrates that combining artificial intelligence algorithms and clinico-pathologic data can effectively predict the lymph node metastasis of papillary thyroid carcinoma prior to surgery.
Collapse
Affiliation(s)
- Erjie Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Yili Chi
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Linli Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Yanyan Shen
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Suzita Hirachan
- Department of Surgery, Breast Unit, Tribhuvan University Teaching HospitalKathmandu, Nepal
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
12
|
Zhao H, Zhu X, Luo Y, Liu S, Wu W, Zhang L, Zhu J. LINC01816 promotes the migration, invasion and epithelial‑mesenchymal transition of thyroid carcinoma cells by sponging miR‑34c‑5p and regulating CRABP2 expression levels. Oncol Rep 2021; 45:81. [PMID: 33786631 PMCID: PMC8025121 DOI: 10.3892/or.2021.8032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Thyroid carcinoma (THCA) is a common type of endocrine system cancer and its current clinical treatment method is surgical resection. Long non-coding RNAs (lncRNAs) have been revealed to serve important roles in a variety of complex human diseases. Therefore, determining the association between lncRNAs and diseases may provide novel insight into disease-related lncRNAs, with the aim of improving disease treatments and diagnoses. Long intergenic non-protein coding RNA 1816 (LINC01816) was identified to be associated with the survival of patients with colorectal cancer using the IDHI-MIRW method. The present study aimed to investigate the role and molecular mechanism of LINC01816 in THCA. Analysis of datasets from The Cancer Genome Atlas database revealed that the upregulation of LINC01816 expression levels was associated with a variety of cancer types. Reverse transcription-quantitative PCR analysis demonstrated that compared with the normal thyroid tissues, the expression levels of LINC01816 were upregulated in THCA tissues. The results of wound healing and Transwell assays, and western blotting demonstrated that the overexpression of LINC01816 could strengthen the invasive and migratory abilities of THCA cells and enhance epithelial-mesenchymal transition progression. Analysis using the starBase website and dual-luciferase reporter assays identified that microRNA (miR)-34c-5p was a target of LINC01816. The overexpression of miR-34c-5p could inhibit the invasive and migratory abilities of THCA cells, in addition to inhibiting the cellular retinoic acid binding protein 2 (CRABP2) overexpression-induced effects on invasion, migration and EMT processes. In conclusion, the findings of the present study indicated that LINC01816 may be capable of sponging miR-34c-5p to upregulate CRABP2 expression levels, which subsequently promoted the invasion, migration and EMT of THCA cells. Therefore, targeting the LINC01816/miR-34c-5p/CRABP2 pathway may be an effective therapeutic approach for patients with THCA.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Xiaofeng Zhu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 510515, P.R. China
| | - Yi Luo
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 510515, P.R. China
| | - Shengshan Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 510515, P.R. China
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
13
|
New Insights into the Link between Melanoma and Thyroid Cancer: Role of Nucleocytoplasmic Trafficking. Cells 2021; 10:cells10020367. [PMID: 33578751 PMCID: PMC7916461 DOI: 10.3390/cells10020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer remains a major public health concern, mainly because of the incompletely understood dynamics of molecular mechanisms for progression and resistance to treatments. The link between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplasmic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cutaneous malignant melanoma than healthy patients. Our group and others showed that patients with melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E mutation has been reported as a biological marker for aggressiveness and a potential genetic link between malignant melanoma and TC. The main mechanistic factor in the connection between these two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A meticulous English-language literature analysis was performed using the PubMed Central database. Search parameters included articles published up to 2021 with keyword search terms melanoma and thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.
Collapse
|
14
|
Shen F, Gan X, Zhong R, Feng J, Chen Z, Guo M, Li Y, Wu Z, Cai W, Xu B. Identifying Thyroid Carcinoma-Related Genes by Integrating GWAS and eQTL Data. Front Cell Dev Biol 2021; 9:645275. [PMID: 33614667 PMCID: PMC7889963 DOI: 10.3389/fcell.2021.645275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 01/21/2023] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine malignancy. The incidence rate of thyroid cancer has increased rapidly in recent years. The occurrence and development of thyroid cancers are highly related to the massive genetic and epigenetic changes. Therefore, it is essential to explore the mechanism of thyroid cancer pathogenesis. Genome-Wide Association Studies (GWAS) have been widely used in various diseases. Researchers have found multiple single nucleotide polymorphisms (SNPs) are significantly related to TC. However, the biological mechanism of these SNPs is still unknown. In this paper, we used one GWAS dataset and two eQTL datasets, and integrated GWAS with expression quantitative trait loci (eQTL) in both thyroid and blood to explore the mechanism of mutations and causal genes of thyroid cancer. Finally, we found rs1912998 regulates the expression of IGFALS (P = 1.70E-06) and HAGH (P = 5.08E-07) in thyroid, which is significantly related to thyroid cancer. In addition, KEGG shows that these genes participate in multiple thyroid cancer-related pathways.
Collapse
Affiliation(s)
- Fei Shen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiong Gan
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiying Zhong
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Feng
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Chen
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengli Guo
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yayi Li
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhaofeng Wu
- Department of Hepatobiliary, Pancreatic and Splenic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wensong Cai
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Thyroid Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Skorupa A, Ciszek M, Chmielik E, Boguszewicz Ł, Oczko-Wojciechowska M, Kowalska M, Rusinek D, Tyszkiewicz T, Kluczewska-Gałka A, Czarniecka A, Jarząb B, Sokół M. Shared and unique metabolic features of the malignant and benign thyroid lesions determined with use of 1H HR MAS NMR spectroscopy. Sci Rep 2021; 11:1344. [PMID: 33446721 PMCID: PMC7809111 DOI: 10.1038/s41598-020-79565-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
The purpose of this work was to investigate the distinct and common metabolic features of the malignant and benign thyroid lesions in reference to the non-transformed tissue from the contralateral gland (chronic thyroiditis and colloid goiter). 1H HR MAS NMR spectra of 38 malignant lesions, 32 benign lesions and 112 samples from the non-tumoral tissue (32 from chronic thyroiditis and 80 samples from colloid goiter) were subjected both to multivariate and univariate analysis. The increased succinate, glutamine, glutathione, serine/cysteine, ascorbate, lactate, taurine, threonine, glycine, phosphocholine/glycerophosphocholine and decreased lipids were found in both lesion types in comparison to either colloid goiter or chronic thyroiditis. The elevated glutamate and choline, and reduced citrate and glucose were additionally evident in these lesions in reference to goiter, while the increased myo-inositol-in comparison to thyroiditis. The malignant lesions were characterized by the higher alanine and lysine levels than colloid goiter and thyroiditis, while scyllo-inositol was uniquely increased in the benign lesions (not in cancer) in comparison to both non-tumoral tissue types. Moreover, the benign lesions presented with the unique increase of choline in reference to thyroiditis (not observed in the cancerous tissue). The metabolic heterogeneity of the non-tumoral tissue should be considered in the analysis of metabolic reprogramming in the thyroid lesions.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland.
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Małgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Małgorzata Kowalska
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Dagmara Rusinek
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Tomasz Tyszkiewicz
- Department of Genetic and Molecular Diagnostics of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Aneta Kluczewska-Gałka
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Agnieszka Czarniecka
- The Oncologic and Reconstructive Surgery Clinic, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Barbara Jarząb
- Department of Nuclear Medicine and Endocrine Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102, Gliwice, Poland
| |
Collapse
|
16
|
Liu CZ, Guo WP, Peng JB, Chen G, Lin P, Huang XL, Liu XF, Yang H, He Y, Pang YY, Ma W. Clinical significance of CCNE2 protein and mRNA expression in thyroid cancer tissues. Adv Med Sci 2020; 65:442-456. [PMID: 33059229 DOI: 10.1016/j.advms.2020.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Thyroid carcinoma (TC) is the most common endocrinal malignancy worldwide. Cyclin E2 (CCNE2), a member of the cyclin family, acts as a regulatory subunit of cyclin-dependent kinases (CDKs). It controls the transition of quiescent cells into the cell cycle, regulates the G1/S transition, promotes DNA replication, and activates CDK2. This study explored the role and potential molecular mechanisms of CCNE2 expression in TC tissues. MATERIAL/METHODS Immunohistochemistry was used to evaluate the CCNE2 protein expression levels in TC. High-throughput data on CCNE2 in TC were obtained from RNA sequencing (RNA-seq), microarray, and literature data. The CCNE2 expression levels in TC were comprehensively assessed through an integrated analysis. Analyses of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPIs) data facilitated the investigation of the relative molecular mechanisms of CCNE2 in TC. RESULTS The immunohistochemical experiment showed a significant increase in the expression of CCNE2 in the TC tissues. For 505 TC and 59 non-cancerous samples from RNA-seq data, the area under the curve (AUC) was 0.8016 (95% confidence interval [CI] 0.742-0.8612; p<0.001). With another 14 microarrays, the pool standard mean difference [SMD] was 1.01 (95% CI [0.82-1.19]). The pooled SMD of CCNE2 was 1.12 (95% CI [0.60-1.64]), and the AUC was 0.87 (95% CI [0.84-0.90]) for 1157 TC samples and 366 non-cancerous thyroid samples from all possible sources. Nine hub genes were upregulated in TC. CONCLUSIONS A high expression of CCNE2 may lead to carcinogenesis and the development of TC.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/metabolism
- Adenocarcinoma, Follicular/pathology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
- Cell Proliferation
- Cyclins/genetics
- Cyclins/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Cui-Zhen Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Wan-Ping Guo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jin-Bo Peng
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao-Li Huang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiao-Fan Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| | - Wei Ma
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
17
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
18
|
Subramanian C, Gorney R, Wang T, Ge D, Zhang N, Zuo A, Blagg BSJ, Cohen MS. A novel heat shock protein inhibitor KU757 with efficacy in lenvatinib-resistant follicular thyroid cancer cells overcomes up-regulated glycolysis in drug-resistant cells in vitro. Surgery 2020; 169:34-42. [PMID: 32718802 DOI: 10.1016/j.surg.2020.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Patients with advanced differentiated thyroid cancer develop resistance to lenvatinib treatment from metabolic dysregulation. Heat shock protein 90 is a molecular chaperone that plays an important role in glycolysis and metabolic pathway regulation. We hypothesize that lenvatinib-resistant differentiated thyroid cancer cells will have an increased dependency on glycolysis and that a novel C-terminal heat shock protein 90 inhibitor (KU757) can effectively treat lenvatinib-resistant cells by targeting glycolysis. METHODS Inhibitory concentration 50 values of thyroid cancer cells were determined by CellTiter-Glo assay (Promega Corp, Madison, WI). Glycolysis was measured through Seahorse experiments. Reverse transcription-polymerase chain reaction and Western blot evaluated glycolytic pathway genes/proteins. Exosomes were isolated/validated by nanoparticle tracking analysis and Western blot. Differentially expressed long non-coding ribonucleic acids in exosomes and cells were evaluated using quantitative polymerase chain reaction. RESULTS Extracellular acidification rate demonstrated >2-fold upregulation of glycolysis in lenvatinib-resistant cells versus parent cells and was downregulated after KU757 treatment. Lenvatinib-resistant cells showed increased expression of the glycolytic genes lactic acid dehydrogenase, pyruvate kinase M1/2, and hexokinase 2. KU757 treatment resulted in downregulation of these genes and proteins. Several long non-coding ribonucleic acids associated with glycolysis were significantly upregulated in WRO-lenvatinib-resistant cells and exosomes and downregulated after KU757 treatment. CONCLUSION Lenvatinib resistance leads to increased glycolysis, and KU757 effectively treats lenvatinib-resistant cells and overcomes this increased glycolysis by targeting key glycolytic genes, proteins, and long non-coding ribonucleic acids.
Collapse
Affiliation(s)
| | - Rebecca Gorney
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Ton Wang
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Derek Ge
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Nina Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Ang Zuo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Mark S Cohen
- Department of Surgery, University of Michigan, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
19
|
Zhang G, Zhou S, Yang Q, Liu F. MicroRNA-125b reduces glucose uptake in papillary thyroid carcinoma cells. Oncol Lett 2020; 20:2806-2810. [PMID: 32782598 PMCID: PMC7400998 DOI: 10.3892/ol.2020.11832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that microRNA (miR)-125b plays important roles in several human cancer types. The aim of the present study was to analyze the potential roles of miR-125b in papillary thyroid carcinoma (PTC). It was found that miR-125b was downregulated in PTC and its expression was affected by clinical stages. Glucose transporter 1 (GLUT1) was upregulated in PTC and was negatively correlated with miR-125b. In PTC cells, overexpression of miR-125b suppressed glucose uptake and downregulated GLUT1. Furthermore, GLUT1 overexpression reduced the effects of miR-125b overexpression on glucose uptake. Moreover, miR-125b overexpression suppressed PTC cell proliferation. GLUT1 overexpression promoted the proliferation of PTC cells and reduced the effects of miR-125b overexpression on cancer cell proliferation. Overall, miR-125b decreased glucose uptake in PTC cells by downregulating GLUT1.
Collapse
Affiliation(s)
- Guowu Zhang
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Sihai Zhou
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Quan Yang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Fang Liu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
20
|
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18:83. [PMID: 32493394 PMCID: PMC7268348 DOI: 10.1186/s12964-020-00586-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract Thyroid cancer is the most common sort of endocrine-related cancer with more prevalent in women and elderly individuals which has quickly widespread expansion in worldwide over the recent decades. Common features of malignant thyroid cells are to have accelerated metabolism and increased glucose uptake to optimize their energy supply which provides a fundamental advantage for growth. In tumor cells the retaining of required energy charge for cell survival is imperative, indeed glucose transporters are enable of promoting of this task. According to this relation it has been reported the upregulation of glucose transporters in various types of cancers. Human studies indicated that poor survival can be occurred following the high levels of GLUT1 expression in tumors. GLUT-1 and GLUT3 are the glucose transporters which seems to be mainly engaged with the oncogenesis of thyroid cancer and their expression in malignant tissues is much more than in the normal one. They are promising targets for the advancement of anticancer strategies. The lack of oncosuppressors have dominant effect on the membrane expression of GLUT1 and glucose uptake. Overexpression of hypoxia inducible factors have been additionally connected with distant metastasis in thyroid cancers which mediates transcriptional regulation of glycolytic genes including GLUT1 and GLUT3. Though the physiological role of the thyroid gland is well illustrated, but the metabolic regulations in thyroid cancer remain evasive. In this study we discuss proliferation pathways of the key regulators and signaling molecules such as PI3K-Akt, HIF-1, MicroRNA, PTEN, AMPK, BRAF, c-Myc, TSH, Iodide and p53 which includes in the regulation of GLUTs in thyroid cancer cells. Incidence of deregulations in cellular energetics and metabolism are the most serious signs of cancers. In conclusion, understanding the mechanisms of glucose transportation in normal and pathologic thyroid tissues is critically important and could provide significant insights in science of diagnosis and treatment of thyroid disease. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpoor
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Lin P, He RQ, Huang ZG, Zhang R, Wu HY, Shi L, Li XJ, Li Q, Chen G, Yang H, He Y. Role of global aberrant alternative splicing events in papillary thyroid cancer prognosis. Aging (Albany NY) 2020; 11:2082-2097. [PMID: 30986203 PMCID: PMC6503875 DOI: 10.18632/aging.101902] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alternative splicing events have been increasingly reported for anomalous perturbations in various cancers, including papillary thyroid cancer (PTC). METHODS Integration analysis of RNA sequencing and clinical information were utilized to identify survival associated splicing events in PTC. Then, several prognosis-related splicing events were submitted to develop moderate predictors for survival monitoring by using least absolute shrinkage and selection operator model. In addition, several biomedical computational algorithms were conducted to identify pathways enriched by genes with prognostic splicing events and construct regulatory network dominated by splicing factors. RESULTS Survival analysis in 496 PTC patients indicated that TNM stage, tumor stage, distant metastasis and tumor status were significantly correlated with PTC patients' progression-free interval. 2799 splicing events were identified as prognostic molecular events. Functional enrichment analysis suggested that prognostic splicing events are associated with several energy metabolism-related processes. Based on these prognostic events, several prognostic signatures were developed. The final prognostic signature acted as an independent prognostic factor after adjusting for several clinical parameters. Interestingly, splicing regulatory network was constructed to display potential regulatory mechanisms of splicing events in PTC. CONCLUSIONS Our analysis provides the status of splicing events involved in the progression and may represent an underappreciated hallmark of PTC.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lin Shi
- Departments of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Jiao Li
- Departments of PET/CT, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Qing Li
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
22
|
Fu L, Niu X, Jin R, Xu F, Ding J, Zhang L, Huang Z. Triptonide inhibits metastasis potential of thyroid cancer cells via astrocyte elevated gene-1. Transl Cancer Res 2020; 9:1195-1204. [PMID: 35117464 PMCID: PMC8799231 DOI: 10.21037/tcr.2019.12.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022]
Abstract
Background Triptonide (TN) was recently proved to have anti-tumor effects. The current study explored whether TN inhibited thyroid cancer and the possible underlying mechanism. Methods MDA-T68 and BCPAP cells were treated by TN. Cell viability, migration and invasion rate were detected by MTT and Transwell. Protein expressions were determined by Western blot and mRNA expressions were detected by Real-time Quantitative PCR (qPCR). Results TN at the concentration higher than 50 nmol/L inhibited cell viability, migration and invasion of MDA-T68 and BCPAP cells, and astrocyte elevated gene (AEG-1) expression, was decreased by TN at the concentration higher than 50 nmol/L. Furthermore, AEG-1 overexpression inhibited cell viability, migration and invasion capacity of MDA-T68 and BCPAP cells, while TN reduced AEG-1 expression, and weaken the effect of AEG-1 overexpression on cell viability, migration and invasion capacities. Moreover, TN depressed the increase of matrix metalloproteinase (MMP) 2, MMP9 and N-cadherin expressions caused by AEG-1 overexpression. Meanwhile, E-cadherin expression reduced by AEG-1 overexpression was increased by TN. Conclusions TN could inhibit the metastasis potential of thyroid cancer cells through inhibiting the expression of AEG-1. Our findings reveal the mechanism of TN in the treatment of thyroid cancer, which should be further explored in the study of thyroid cancer. Keywords Triptonide; metastasis; thyroid cancer; regulation; drug monomer
Collapse
Affiliation(s)
- Liangjie Fu
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Xiaohong Niu
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Ruhui Jin
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Feiyun Xu
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Jiguo Ding
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Li Zhang
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| | - Zihui Huang
- Department of Scrofulosis, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210014, China
| |
Collapse
|
23
|
Lu H, Chen S, You Z, Xie C, Huang S, Hu X. PFKFB4 negatively regulated the expression of histone acetyltransferase GCN5 to mediate the tumorigenesis of thyroid cancer. Dev Growth Differ 2020; 62:129-138. [PMID: 31912488 DOI: 10.1111/dgd.12645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Thyroid cancer (TC) is the most common malignant endocrine tumor, and its incidence has progressively increased over several decades. Accumulating evidence has suggested that PFKFB4, a critical regulatory enzyme of glycolysis, has been implicated in various solid cancers. However, the exact effect of PFKFB4 on TC remains unclear. Hence, the objective of this work was to investigate the role of PFKFB4 in TC and explore the underlying regulatory mechanisms. Here, we provide evidence that mRNA levels of PFKFB4 were upregulated in TC patients' thyroids and cell lines. Downregulation of PFKFB4 reduced TC cell viability and inhibited colony formation. In addition, the migration and invasion of TC cells were suppressed by PFKFB4 knockdown, suggesting that PFKFB4 is positively correlated with tumorigenesis of TC. Molecularly, knockdown of PFKFB4 significantly inhibited expression of GCN5 and phosphorylation of PI3K/AKT. Moreover, the suppressive role of shPFKFB4 in TC cell growth was reversed by upregulation of GCN5. Finally, the in vivo experiment indicated that downregulation of PFKF4B suppressed tumor growth in xenografts TC model mice. In total, our results suggested that PFKFB4-mediated TC tumorigenesis by positively regulating GCN5 and PI3K/AKT signaling. These findings provide new research directions and therapeutic options considering PFKF4B as a novel diagnosis marker and therapeutic target.
Collapse
Affiliation(s)
- Huanquan Lu
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Siyuan Chen
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Zhijian You
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Chuping Xie
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Shichuan Huang
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Xiarong Hu
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| |
Collapse
|
24
|
Wang M, Qiu S, Qin J. Baicalein induced apoptosis and autophagy of undifferentiated thyroid cancer cells by the ERK/PI3K/Akt pathway. Am J Transl Res 2019; 11:3341-3352. [PMID: 31312348 PMCID: PMC6614652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/31/2019] [Indexed: 06/10/2023]
Abstract
Thyroid cancer is the most common endocrine system malignancy, and undifferentiated thyroid cancer is one of the most invasive tumors. Studies have found that baicalein, a major flavonoid separated from the root of Scutellaria baicalensis Georgi, has an inhibitory effect on a variety of malignant tumor cells. However, the effect of baicalein on undifferentiated thyroid cancer has not yet been investigated. In the present study, follicular undifferentiated thyroid cancer cells (FRO) were treated with different concentrations of baicalein (10 μM, 20 μM, 40 μM, 80 μM) for 12 h, 24 h, 36 h, or 48 h; then, the cell viability and clonogenicity were measured. Cell cycles and cell apoptosis were measured by flow cytometer after FRO cells were treated with baicalein for 36 h or 48 h. After FRO cells were treated with baicalein for 48 h, the expression of apoptosis-related proteins (Bcl-2, Bax, Caspase-3 and Caspase-8), autophagy-related proteins (Beclin-1, p62, Atg5 and Atg12) and the phosphorylation levels of ERK and Akt in FRO cells were measured by Western blot. The results showed that baicalein reduced the cell viability and cell colony numbers of FRO cells in a dose- and time-dependent manner. Baicalein also induced cell apoptosis and arrested the cell cycles of FRO cells. Baicalein decreased the ratio of Bcl-2/Bax but increased the expression of Caspase-3 and Caspase-8. Furthermore, baicalein induced autophagy in FRO cells. It significantly increased the expression of Beclin-1, Atg5, p62 and Atg12. Baicalein significantly decreased the ratios of p-ERK/ERK and p-Akt/Akt, indicating that it suppressed the ERK and PI3K/Akt pathways. In conclusion, baicalein could suppress the growth of undifferentiated thyroid cancer cells by inducing apoptosis and autophagy. The inhibition of the ERK and PI3K/Akt pathways may be involved in the mechanism.
Collapse
Affiliation(s)
- Min Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| | - Shenglong Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200080, China
| |
Collapse
|
25
|
Liu CL, Yang PS, Wang TY, Huang SY, Kuo YH, Cheng SP. PGC1α downregulation and glycolytic phenotype in thyroid cancer. J Cancer 2019; 10:3819-3829. [PMID: 31333799 PMCID: PMC6636295 DOI: 10.7150/jca.30018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Abstract
Increased aerobic glycolysis portends an unfavorable prognosis in thyroid cancer. The metabolic reprogramming likely results from altered mitochondrial activity and may promote cancer progression. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) plays a pivotal role in mitochondrial biogenesis and function. In the present study, we aimed to evaluate the clinicopathological significance of PGC1α expression and the potential effects of PGC1α modulation. Firstly, the expression of PGC1α in thyroid cancer samples was evaluated using western blot analysis and immunohistochemical staining. Compared with normal thyroid tissue, PGC1α expression was downregulated in thyroid cancer. PGC1α-negative papillary cancer was associated with BRAF V600E mutation, large tumor size, extrathyroidal or lymphovascular invasion, lymph node metastasis, and advanced stage. The results were consistent with the analysis of The Cancer Genome Atlas data. PGC1α expression correlated with oxygen consumption in thyroid cancer cells and was inversely related to AKT activity. The biologic relevance of PGC1α was further investigated by gain- and loss-of-function experimental studies. PGC1α overexpression led to augmented oxidative metabolism and accelerated tumor growth, whereas PGC1α knockdown induced a glycolytic phenotype but reduced tumor growth in vivo. In conclusion, PGC1α downregulation is associated with glycolytic metabolism and advanced disease in thyroid cancer. Nonetheless, manipulating PGC1α expression and metabolic phenotype does not necessarily translate into beneficial effects. It suggests that the metabolic phenotype is likely the consequence rather than the cause of disease progression in thyroid cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tao-Yeuan Wang
- Department of Pathology, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Shih-Yuan Huang
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hue Kuo
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Interplay of fibroblasts with anaplastic tumor cells promotes follicular thyroid cancer progression. Sci Rep 2019; 9:8028. [PMID: 31142771 PMCID: PMC6541589 DOI: 10.1038/s41598-019-44361-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy. Anaplastic thyroid cancer is one of the most aggressive thyroid tumors. It is known that activation of oncogenes and/or inactivation of tumor suppressor genes in tumor cells promotes tumorigenesis. The microenvironment of the tumor also plays a key role on cancer development and progression in a variety of tumors. However, the mechanisms by which tumor-stroma crosstalk in thyroid cancer remains poorly characterized. In this study we aimed to understand how interactions between fibroblasts and anaplastic thyroid cancer cells contribute to thyroid carcinogenesis. We first characterized the phenotypic changes of human fibroblasts in vitro through co-cultures by using transwells as well as by using anaplastic thyroid cancer cells-derived conditioned media. We found that fibroblasts acquired an activated phenotype or also known as cancer-associated fibroblast phenotype after being in contact with soluble factors secreted from anaplastic thyroid cancer cells, compared to the fibroblasts in mono-cultures. All the changes were partly mediated through Src/Akt activation. Treatment with the antioxidant N-acetyl-cysteine reversed in part the metabolic phenotype of activated fibroblasts. Remarkably, conditioned media obtained from these activated fibroblasts promoted cell proliferation and invasion of follicular thyroid cancer cell line, FTC-133 cells. Thus, a reciprocal and dynamic interaction exists between tumor and stromal cells, which results in the promotion of thyroid tumorigenesis. The present studies have advanced the understanding of the molecular basis of tumor-stroma communications, enabling identification and targeting of tumor-supportive mechanisms for novel treatment modalities.
Collapse
|
27
|
Ihara M, Ashizawa K, Shichijo K, Kudo T. Expression of the DNA-dependent protein kinase catalytic subunit is associated with the radiosensitivity of human thyroid cancer cell lines. JOURNAL OF RADIATION RESEARCH 2019; 60:171-177. [PMID: 30476230 PMCID: PMC6430255 DOI: 10.1093/jrr/rry097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/13/2018] [Indexed: 05/02/2023]
Abstract
The prognosis and treatment of thyroid cancer depends on the type and stage of the disease. Radiosensitivity differs among cancer cells owing to their varying capacity for repair after irradiation. Radioactive iodine can be used to destroy thyroid cancer cells. However, patient prognosis and improvement after irradiation varies. Therefore, predictive measures are important for avoiding unnecessary exposure to radiation. We describe a new method for predicting the effects of radiation in individual cases of thyroid cancer based on the DNA-dependent protein kinase (DNA-PK) activity level in cancer cells. The radiation sensitivity, DNA-PK activity, and cellular levels of DNA-PK complex subunits in five human thyroid cancer cell lines were analyzed in vitro. A positive correlation was observed between the D10 value (radiation dose that led to 10% survival) of cells and DNA-PK activity. This correlation was not observed after treatment with NU7441, a DNA-PK-specific inhibitor. A significant correlation was also observed between DNA-PK activity and expression levels of the DNA-PK catalytic subunit (DNA-PKcs). Cells expressing low DNA-PKcs levels were radiation-sensitive, and cells expressing high DNA-PKcs levels were radiation-resistant. Our results indicate that radiosensitivity depends on the expression level of DNA-PKcs in thyroid cancer cell lines. Thus, the DNA-PKcs expression level is a potential predictive marker of the success of radiation therapy for thyroid tumors.
Collapse
Affiliation(s)
- Makoto Ihara
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Corresponding author. Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan. Tel: +81-95-819-71013; Fax: +81-95-849-7104;
| | - Kiyoto Ashizawa
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Kazuko Shichijo
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Takashi Kudo
- Department of Radioisotope Medicine, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| |
Collapse
|
28
|
The Emerging Role of Insulin Receptor Isoforms in Thyroid Cancer: Clinical Implications and New Perspectives. Int J Mol Sci 2018; 19:ijms19123814. [PMID: 30513575 PMCID: PMC6321330 DOI: 10.3390/ijms19123814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine tumor. Although the majority of TCs show good prognoses, a minor proportion are aggressive and refractory to conventional therapies. So far, the molecular mechanisms underlying TC pathogenesis are incompletely understood. Evidence suggests that TC cells and their precursors are responsive to insulin and insulin-like growth factors (IGFs), and often overexpress receptors for insulin (IR) and IGF-1 (IGF-1R). IR exists in two isoforms, namely IR-A and IR-B. The first binds insulin and IGF-2, unlike IR-B, which only binds insulin. IR-A is preferentially expressed in prenatal life and contributes to development through IGF-2 action. Aggressive TC overexpresses IR-A, IGF-2, and IGF-1R. The over-activation of IR-A/IGF-2 loop in TC is associated with stem-like features and refractoriness to some targeted therapies. Importantly, both IR isoforms crosstalk with IGF-1R, giving rise to the formation of hybrids receptors (HR-A or HR-B). Other interactions have been demonstrated with other molecules such as the non-integrin collagen receptor, discoidin domain receptor 1 (DDR1), and the receptor for the hepatocyte growth factor (HGF), Met. These functional networks provide mechanisms for IR signaling diversification, which may also exert a role in TC stem cell biology, thereby contributing to TC initiation and progression. This review focuses on the molecular mechanisms by which deregulated IR isoforms and their crosstalk with other molecules and signaling pathways in TC cells and their precursors may contribute to thyroid carcinogenesis, progression, and resistance to conventional treatments. We also highlight how targeting these alterations starting from TC progenitors cells may represent new therapeutic strategies to improve the clinical management of advanced TCs.
Collapse
|
29
|
Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. Int J Mol Sci 2018; 19:ijms19102948. [PMID: 30262749 PMCID: PMC6213810 DOI: 10.3390/ijms19102948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), is characterized by a heterogeneous group of cells, including cancer stem cells (CSCs), crucially involved in tumor initiation, progression and recurrence. CSCs appear to have a distinct metabolic phenotype, compared to non-stem cancer cells. How they adapt their metabolism to the cancer process is still unclear, and no data are yet available for PTC. We recently isolated thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from PTC of the BRAF-like expression profile class, and stem-like cells from Nthy-ori3-1 normal thyreocyte-derived cell line. In the present study, gas chromatography/mass spectrometry metabolomic profiles of cancer thyrospheres were compared to cancer parental adherent cells and to non cancer thyrospheres profiles. A statistically significant decrease of glycolytic pathway metabolites and variations in Krebs cycle metabolites was found in thyrospheres versus parental cells. Moreover, cancer stem-like cells showed statistically significant differences in Krebs cycle intermediates, amino acids, cholesterol, and fatty acids content, compared to non-cancer stem-like cells. For the first time, data are reported on the metabolic profile of PTC cancer stem-like cells and confirm that changes in metabolic pathways can be explored as new biomarkers and targets for therapy in this tumor.
Collapse
|