1
|
Somi Sankaran P. High-fat-diet induced obesity and diabetes mellitus in Th1 and Th2 biased mice strains: A brief overview and hypothesis. Chronic Dis Transl Med 2023; 9:14-19. [PMID: 36926255 PMCID: PMC10011668 DOI: 10.1002/cdt3.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Obesity and diabetes mellitus are common metabolic diseases prevalent worldwide. Mice are commonly used to study the pathogenesis of these two conditions. Obesity and diabetes mellitus are induced by administering a high-fat diet in many studies although other diet-induced models are also used. Several factors may influence the outcome of the studies done to study diet-induced obesity in mice. The immune system plays a crucial role in the susceptibility of mice to develop obesity and metabolic disease. In this article, the reasons for differences in susceptibility to develop obesity and diabetes mellitus in mice in response to high-fat-diet feeding and the influence of immunological bias of the mice strain used in studies are evaluated. Mice strains that induce proinflammatory and Th1-type immune responses are found to be susceptible to high-fat-diet-induced obesity. A few studies which directly compared the effect of a high-fat diet on obesity and diabetic phenotype in Th1- and Th2-biased mice strains were briefly analyzed. Based on the observations, it is proposed that the liver and adipose tissue may respond differently to high-fat-diet feeding regimens in Th1- and Th2-biased mice strains. For instance, in Th1-biased mice, adipose tissue fat content was high both in the baseline as well as in response to a high-fat diet whereas in the liver, it was found to be less. It can be inferred that the immune responses to diet-induced models may provide insights into the pathogenesis of obesity and diabetes mellitus.
Collapse
|
2
|
Seal SV, Henry M, Pajot C, Holuka C, Bailbé D, Movassat J, Darnaudéry M, Turner JD. A Holistic View of the Goto-Kakizaki Rat Immune System: Decreased Circulating Immune Markers in Non- Obese Type 2 Diabetes. Front Immunol 2022; 13:896179. [PMID: 35677049 PMCID: PMC9168276 DOI: 10.3389/fimmu.2022.896179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Type-2 diabetes is a complex disorder that is now considered to have an immune component, with functional impairments in many immune cell types. Type-2 diabetes is often accompanied by comorbid obesity, which is associated with low grade inflammation. However,the immune status in Type-2 diabetes independent of obesity remains unclear. Goto-Kakizaki rats are a non-obese Type-2 diabetes model. The limited evidence available suggests that Goto-Kakizaki rats have a pro-inflammatory immune profile in pancreatic islets. Here we present a detailed overview of the adult Goto-Kakizaki rat immune system. Three converging lines of evidence: fewer pro-inflammatory cells, lower levels of circulating pro-inflammatory cytokines, and a clear downregulation of pro-inflammatory signalling in liver, muscle and adipose tissues indicate a limited pro-inflammatory baseline immune profile outside the pancreas. As Type-2 diabetes is frequently associated with obesity and adipocyte-released inflammatory mediators, the pro-inflammatory milieu seems not due to Type-2 diabetes per se; although this overall reduction of immune markers suggests marked immune dysfunction in Goto-Kakizaki rats.
Collapse
Affiliation(s)
- Snehaa V Seal
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathilde Henry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Clémentine Pajot
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Danielle Bailbé
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Jamileh Movassat
- Université de Paris, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptative), Centre National de la Recherche Scientifique -Unité Mixte de Recherche (CNRS UMR) 8251, Paris, France
| | - Muriel Darnaudéry
- Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Bordeaux Institut National Polytechnique (INP), NutriNeuro, Unité Mixte de Recherche (UMR) 1286, University of Bordeaux, Bordeaux, France
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
3
|
Ugurlu I, Baltaci SB, Unal O, Mogulkoc R, Ucaryilmaz H, Baltaci AK. Chronic Running Exercise Regulates Cytotoxic Cell Functions and Zinc Transporter SLC39A10/ZIP10 Levels in Diabetic Rats. Biol Trace Elem Res 2022; 200:699-705. [PMID: 33742346 DOI: 10.1007/s12011-021-02680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study is to investigate how chronic running exercise affects ZIP10 levels in thymus and spleen tissue as well as immune parameters in diabetic rats. A total of 40 adult male Wistar rats were divided into 4 equal groups: group 1, control; group 2, exercise control; group 3, diabetes; group 4, diabetes + exercise. Diabetes was induced by injecting intraperitoneal streptozotocin (STZ) at a dose of 40 mg/kg twice with 24-h intervals to the animals in groups 3 and 4. The animals in group 2 and group 4 underwent exercise for 45 min on the rat treadmill for 4 weeks at 20 m/min. Twenty-four hours after the last running exercise, the animals were sacrificed under general anesthesia. Immunological parameters were determined by flow cytometric method; tissue ZIP 10 levels were determined by ELISA method. The diabetic group had the lowest natural killer (NK) and natural killer T (NKT) cells percentages. Chronic exercise partially improved NK and NKT cell percentages in diabetic rats. The diabetic group had the lowest ZIP10 levels in spleen and thymus tissue. ZIP10 values in spleen and thymus tissue of diabetes exercise group were significantly higher than diabetes group. The results of our study show that the impaired cytotoxic cell functions in diabetes are partially corrected with 4 weeks of chronic exercise, and that the suppressed ZIP 10 levels in diabetic rats are reversed by 4 weeks of chronic exercise.
Collapse
Affiliation(s)
- Ibrahim Ugurlu
- Vocational School of Health Services, Selcuk University, Konya, Turkey
| | | | - Omer Unal
- Medical Faculty, Department of Physiology, Selcuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Medical Faculty, Department of Physiology, Selcuk University, Konya, Turkey
| | - Hulya Ucaryilmaz
- Medical Faculty Department of Medical Biology, Selcuk University, Konya, Turkey
| | | |
Collapse
|
4
|
Alterations in Energy Metabolism, Mitochondrial Function and Redox Homeostasis in GK Diabetic Rat Tissues Treated with Aspirin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010104. [PMID: 35054496 PMCID: PMC8780217 DOI: 10.3390/life12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
Our recent studies have demonstrated that aspirin treatment prevents inflammatory and oxidative stress-induced alterations in mitochondrial function, improves glucose tolerance and pancreatic endocrine function and preserves tissue-specific glutathione (GSH)-dependent redox homeostasis in Goto-Kakizaki (GK) diabetic rats. In the current study, we have investigated the mechanism of action of aspirin in maintaining mitochondrial bioenergetics and redox metabolism in the liver and kidneys of GK rats. Aspirin reduced the production of reactive oxygen species (ROS) and oxidative stress-induced changes in GSH metabolism. Aspirin treatment also improved mitochondrial respiratory function and energy metabolism, in addition to regulating the expression of cell signaling proteins that were altered in diabetic animals. Ultrastructural electron microscopy studies revealed decreased accumulation of glycogen in the liver of aspirin-treated diabetic rats. Hypertrophic podocytes with irregular fusion of foot processes in the renal glomerulus and detached microvilli, condensed nuclei and degenerated mitochondria observed in the proximal convoluted tubules of GK rats were partially restored by aspirin. These results provide additional evidence to support our previous observation of moderation of diabetic complications by aspirin treatment in GK rats and may have implications for cautious use of aspirin in the therapeutic management of diabetes.
Collapse
|
5
|
Zhang P, Yang CL, Du T, Liu YD, Ge MR, Li H, Liu RT, Wang CC, Dou YC, Duan RS. Diabetes mellitus exacerbates experimental autoimmune myasthenia gravis via modulating both adaptive and innate immunity. J Neuroinflammation 2021; 18:244. [PMID: 34702288 PMCID: PMC8549151 DOI: 10.1186/s12974-021-02298-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Yu-Dong Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Meng-Ru Ge
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ru-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China.,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China.,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China. .,Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China. .,Shandong Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, 250014, People's Republic of China.
| |
Collapse
|
6
|
Effect of Aspirin on Mitochondrial Dysfunction and Stress in the Pancreas and Heart of Goto-Kakizaki Diabetic Rats. Life (Basel) 2021; 11:life11090902. [PMID: 34575050 PMCID: PMC8465065 DOI: 10.3390/life11090902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Our previous study in Goto-Kakizaki (GK) type 2 diabetic rats provided significant evidence that aspirin treatment improves pancreatic β-cell function by reducing inflammatory responses and improving glucose tolerance. In the present study, we aimed to elucidate the mechanism of action of aspirin on the pathophysiology and progression of type 2 diabetic complications in the heart and pancreas of insulin-resistant GK rats. Aspirin treatment demonstrated a reduction in mitochondrial reactive oxygen species (ROS) production and lipid peroxidation, accompanied by improved redox homeostasis. Furthermore, the recovery of metabolic and mitochondrial functions, as well as cytochrome P450 enzyme activities, which were altered in the pancreas and heart of GK rats, were observed. Aspirin treatment brought the activity of CYP 2E1 to the control level in both tissues, whereas the CYP 3A4 level decreased only in the pancreas. This suggests the tissue-specific differential metabolism of substrates in these rats. The recovery of redox homeostasis could be the key target in the improvement of oxidative-stress-dependent alterations in mitochondrial functions which, in turn, facilitated improved energy metabolism in these tissues in the aspirin-treated GK rats. These results may have implications in determining the therapeutic use of aspirin, either alone or in combination with other clinically approved therapies, in insulin-resistant type 2 diabetes.
Collapse
|
7
|
Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules 2020; 25:molecules25235713. [PMID: 33287318 PMCID: PMC7731446 DOI: 10.3390/molecules25235713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a well-known chronic metabolic disease that poses a long-term threat to human health and is characterized by a relative or absolute lack of insulin, resulting in hyperglycemia. Type 2 diabetes mellitus (T2DM) typically affects many metabolic pathways, resulting in β-cell dysfunction, insulin resistance, abnormal blood glucose levels, inflammatory processes, excessive oxidative reactions, and impaired lipid metabolism. It also leads to diabetes-related complications in many organ systems. Antidiabetic drugs have been approved for the treatment of hyperglycemia in T2DM; these are beneficial for glucose metabolism and promote weight loss, but have the risk of side effects, such as nausea or an upset stomach. A wide range of active components, derived from medicinal plants, such as alkaloids, flavonoids, polyphenol, quinones, and terpenoids may act as alternative sources of antidiabetic agents. They are usually attributed to improvements in pancreatic function by increasing insulin secretions or by reducing the intestinal absorption of glucose. Ease of availability, low cost, least undesirable side effects, and powerful pharmacological actions make plant-based preparations the key player of all available treatments. Based on the study of therapeutic reagents in the pathogenesis of humans, we use the appropriate animal models of T2DM to evaluate medicinal plant treatments. Many of the rat models have characteristics similar to those in humans and have the advantages of ease of genetic manipulation, a short breeding span, and access to physiological and invasive testing. In this review, we summarize the pathophysiological status of T2DM rat models and focus on several bioactive compounds from herbal medicine with different functional groups that exhibit therapeutic potential in the T2DM rat models, in turn, may guide future approach in treating diabetes with natural drugs.
Collapse
|
8
|
Abdel-Daim MM, Shaaban Ali M, Madkour FF, Elgendy H. Oral Spirulina Platensis Attenuates Hyperglycemia and Exhibits Antinociceptive Effect in Streptozotocin-Induced Diabetic Neuropathy Rat Model. J Pain Res 2020; 13:2289-2296. [PMID: 32982392 PMCID: PMC7507773 DOI: 10.2147/jpr.s267347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetic neuropathy is a common consequence of diabetes. Hyperalgesia is one of the main symptoms of diabetic neuropathy. In response to noxious stimuli, streptozotocin (STZ)-induced diabetic rats show exaggerated hyperalgesic behavior, while Spirulina platensis has anti-inflammatory, antioxidant, and insulin-like effects. To assess the antinociceptive effect of oral Spirulina platensis (SP) powder on formalin-induced nociceptive responses in STZ-induced diabetic rats. Methods Sixty mature male albino rats were randomly allocated into six equal groups (10 in each group). Group 1 (control non-diabetic group) received 0.9% saline; group 2 was given oral pure SP powder-treated as a non-diabetic control group, group 3 was sodium salicylate-treated rats and used as a positive non-diabetic control group, group 4 managed as vehicle-treated diabetic rats, group 5 considered as SP-treated-diabetic group, and sodium salicylate-treated-diabetic rats used as a diabetic positive control group (group 6). STZ-diabetic rats were orally given SP in a dose of 500 mg kg/day for 1 month. The formalin test was implemented in two phases: the early phase in the first 10-min post-formalin injection, and the late phase was considered in the 15–60 min post-formalin injection time interval. Results Pain scores were increased in the diabetic groups during both phases of the experiment. Blood glucose was significantly reduced in diabetic rats that received oral SP, P < 0.01. Besides, SP-treated rats had lower pain scores during both phases of the experiment than untreated diabetic ones. However, in the sodium salicylate group, the pain score was reduced only during the second phase. An exaggerated nociceptive response occurred in diabetic rats after the formalin test. A significant antinociceptive effect appeared in SP-treated control and diabetic rats. Discussion The findings suggest that oral Spirulina platensis could have a potential therapeutic role for managing induced painful diabetic neuropathy in rats.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | | | - Fedekar F Madkour
- Marine Science Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Hamed Elgendy
- Anesthesia Department, Assiut University Hospitals, Assiut, Egypt.,Anesthesia Department, HAMAD Medical Corporation & Weill Cornell Medicine Qatar & Qatar University, Doha, Qatar
| |
Collapse
|
9
|
An Analysis of the Intracellular Signal Transduction of Peripheral Blood Leukocytes in Animal Models of Diabetes Using Flow Cytometry. Methods Mol Biol 2018. [PMID: 30535695 DOI: 10.1007/978-1-4939-8994-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Various complications of diabetes are induced by the augmentation of chronic inflammation and attenuation of immunity. Leukocytes, which play major roles in inflammation and immune responses, are affected by the glycemic status and blood insulin level. In this chapter, we explain a method for analyzing the signal transduction pathway of leukocytes in peripheral blood. This method using flow cytometry can analyze a small amount of blood (50-100 μL/sample) without leukocyte purification. Thus, this procedure is useful for experiments using small-animal models of diabetes, such as mice and rats. We also introduce a new method for classifying intracellular signal transduction by combining the dispersibility level and the activation level of the signaling molecules.
Collapse
|