1
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
2
|
Fricke-Galindo I, Montoya-Angulo P, Buendía-Roldán I, Pérez-Rubio G, Chávez-Galán L, Falfán-Valencia R. HLA-G 14-bp variant is associated with exercise-induced oxygen desaturation in the post-COVID-19 condition. ERJ Open Res 2024; 10:01038-2023. [PMID: 39081501 PMCID: PMC11288400 DOI: 10.1183/23120541.01038-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/12/2024] [Indexed: 08/02/2024] Open
Abstract
The HLA-G 14-bp indel (rs371194629) variant is associated with IMV requirement in COVID-19 and with exercise-induced desaturation in the post-COVID-19 condition https://bit.ly/3THdx1D.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Paola Montoya-Angulo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
- Licenciatura en Químico Farmacéutico Biotecnólogo, Universidad del Valle de México, Mexico City, Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
3
|
Wang C, Su NW, Hsu K, Kao CW, Chang MC, Chang YF, Lim KH, Chiang YH, Chang YC, Sung MT, Wu HH, Chen CG. The implication of serum HLA-G in angiogenesis of multiple myeloma. Mol Med 2024; 30:86. [PMID: 38877399 PMCID: PMC11177474 DOI: 10.1186/s10020-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM. METHODS We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells. RESULTS We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN. CONCLUSION These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.
Collapse
Affiliation(s)
- Chi Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, New Taipei, 25160, Taiwan
| | - Nai-Wen Su
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan
| | - Kate Hsu
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 25245, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Chen-Wei Kao
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Ming-Chih Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yi-Fang Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Ken-Hong Lim
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yi-Hao Chiang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yu-Cheng Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Meng-Ta Sung
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsueh-Hsia Wu
- Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, 110, Taiwan
| | - Caleb G Chen
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan.
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan.
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu, Taiwan.
| |
Collapse
|
4
|
Wang S, Wang J, Xia Y, Zhang L, Jiang Y, Liu M, Gao Q, Zhang C. Harnessing the potential of HLA-G in cancer therapy: advances, challenges, and prospects. J Transl Med 2024; 22:130. [PMID: 38310272 PMCID: PMC10838004 DOI: 10.1186/s12967-024-04938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024] Open
Abstract
Immune checkpoint blockades have been prized in circumventing and ablating the impediments posed by immunosuppressive receptors, reaching an exciting juncture to be an innovator in anticancer therapy beyond traditional therapeutics. Thus far, approved immune checkpoint blockades have principally targeted PD-1/PD-L1 and CTLA-4 with exciting success in a plethora of tumors and yet are still trapped in dilemmas of limited response rates and adverse effects. Hence, unveiling new immunotherapeutic targets has aroused immense scientific interest in the hope of expanding the clinical application of immune checkpoint blockades to scale new heights. Human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex (MHC) class I molecule, is enriched on various malignant cells and is involved in the hindrance of immune effector cells and the facilitation of immunosuppressive cells. HLA-G stands out as a crucial next-generation immune checkpoint showing great promise for the benefit of cancer patients. Here, we provide an overview of the current understanding of the expression pattern and immunological functions of HLA-G, as well as its interaction with well-characterized immune checkpoints. Since HLA-G can be shed from the cell surface or released by various cells as free soluble HLA-G (sHLA-G) or as part of extracellular vesicles (EVs), namely HLA-G-bearing EVs (HLA-GEV), we discuss the potential of sHLA-G and HLA-GEV as predictive biomarkers. This review also addresses the advancement of HLA-G-based therapies in preclinical and clinical settings, with a focus on their clinical application in cancer.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yueqiang Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Man Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
5
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
6
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
7
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
8
|
Bandopadhyay S, Patranabis S. Mechanisms of HIF-driven immunosuppression in tumour microenvironment. J Egypt Natl Canc Inst 2023; 35:27. [PMID: 37646847 DOI: 10.1186/s43046-023-00186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hypoxia arises due to insufficient oxygen delivery to rapidly proliferating tumour cells that outpace the available blood supply. It is a characteristic feature of most solid tumour microenvironments and plays a critical role in regulating anti-tumour immunity, enhancing tumoral heterogeneity, and promoting therapeutic resistance and poor clinical outcomes. Hypoxia-inducible factors (HIFs) are the major hypoxia-responsive transcription factors that are activated under low oxygenation conditions and have been identified to drive multifunctional roles in tumour immune evasion. The HIF signalling network serves as an attractive target for targeted therapeutic approaches. This review aims to provide a comprehensive overview of the most crucial mechanisms by which HIF controls the expression of immunosuppressive molecules and immune checkpoints, disrupts cancer immunogenicity, and induces immunotherapeutic resistance.
Collapse
Affiliation(s)
| | - Somi Patranabis
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
10
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
11
|
Peripheral HLA-G/ILT-2 immune checkpoint axis in acute and convalescent COVID-19 patients. Hum Immunol 2023:S0198-8859(23)00043-5. [PMID: 36925435 PMCID: PMC10011044 DOI: 10.1016/j.humimm.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
The immunosuppressive non-classical human leukocyte antigen-G (HLA-G) can elicits pro-viral activities by down-modulating immune responses. We analysed soluble forms of HLA-G, IL-6 and IL-10 as well as on immune effector cell expression of HLA-G and its cognate ILT-2 receptor in peripheral blood obtained from hospitalised and convalescent COVID-19 patients. Compared with convalescents (N = 202), circulating soluble HLA-G levels (total and vesicular-bound molecules) were significantly increased in hospitalised patients (N = 93) irrespective of the disease severity. During COVID-19, IL-6 and IL-10 levels were also elevated. Regarding the immune checkpoint expression of HLA-G/ILT-2 on peripheral immune effector cells, the frequencies of membrane-bound HLA-G on CD3+ and CD14+ cells were almost identical in patients during and post COVID-19, while the frequency of ILT-2 receptor on CD3+ and CD14+ cells was increased during acute infection. A multi-parametric correlation analysis of soluble HLA-G forms with IL-6, IL-10, activation markers CD25 and CD154, HLA-G, and ILT-2 expression on immune cells revealed a strong positive correlation of soluble HLA-G forms with membrane-bound HLA-G molecules on CD3+/CD14+ cells only in convalescents. During COVID-19, only vesicular-bound HLA-G were positively correlated with the activation marker CD25 on T cells. Thus, our data suggest that the elevated levels of soluble HLA-G in COVID-19 are due to increased expression in organ tissues other than circulating immune effector cells. The concomitant increased expression of soluble HLA-G and ILT-2 receptor frequencies supports the concept that the immune checkpoint HLA-G/ILT-2 plays a role in the immune-pathogenesis of COVID-19.
Collapse
|
12
|
Alves CC, Arns T, Oliveira ML, Moreau P, Antunes DA, Castelli EC, Mendes-Junior CT, Giuliatti S, Donadi EA. Computational and atomistic studies applied to the understanding of the structural and behavioral features of the immune checkpoint HLA-G molecule and gene. Hum Immunol 2023:S0198-8859(23)00004-6. [PMID: 36710086 DOI: 10.1016/j.humimm.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
We took advantage of the increasingly evolving approaches for in silico studies concerning protein structures, protein molecular dynamics (MD), protein-protein and protein-DNA docking to evaluate: (i) the structure and MD characteristics of the HLA-G well-recognized isoforms, (ii) the impact of missense mutations at HLA-G receptor genes (LILRB1/2), and (iii) the differential binding of the hypoxia-inducible factor 1 (HIF1) to hypoxia-responsive elements (HRE) at the HLA-G gene. Besides reviewing these topics, they were revisited including the following novel results: (i) the HLA-G6 isoforms were unstable docked or not with β2-microglobulin or peptide, (ii) missense mutations at LILRB1/2 genes, exchanging amino acids at the intracellular domain, particularly those located within and around the ITIM motifs, may impact the HLA-G binding strength, and (iii) HREs motifs at the HLA-G promoter or exon 2 regions exhibiting a guanine at their third position present a higher affinity for HIF1 when compared to an adenine at the same position. These data shed some light into the functional aspects of HLA-G, particularly how polymorphisms may influence the role of the molecule. Computational and atomistic studies have provided alternative tools for experimental physical methodologies, which are time-consuming, expensive, demanding large quantities of purified proteins, and exhibit low output.
Collapse
Affiliation(s)
- Cinthia C Alves
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Thaís Arns
- Luxembourg Centre for Systems Biomedicine, Luxembourg
| | - Maria L Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Philippe Moreau
- CEA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France; U976 HIPI Unit, IRSL, Université Paris-Cité, Paris, France
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, USA
| | - Erick C Castelli
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvana Giuliatti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Eduardo A Donadi
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Pharmacogenetics Role of Genetic Variants in Immune-Related Factors: A Systematic Review Focusing on mCRC. Pharmaceutics 2022; 14:pharmaceutics14112468. [PMID: 36432658 PMCID: PMC9693433 DOI: 10.3390/pharmaceutics14112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Pharmacogenetics plays a key role in personalized cancer treatment. Currently, the clinically available pharmacogenetic markers for metastatic colorectal cancer (mCRC) are in genes related to drug metabolism, such as DPYD for fluoropyrimidines and UGT1A1 for irinotecan. Recently, the impact of host variability in inflammatory and immune-response genes on treatment response has gained considerable attention, opening innovative perspectives for optimizing tailored mCRC therapy. A literature review was performed on the predictive role of immune-related germline genetic biomarkers on pharmacological outcomes in patients with mCRC. Particularly, that for efficacy and toxicity was reported and the potential role for clinical management of patients was discussed. Most of the available data regard therapy effectiveness, while the impact on toxicity remains limited. Several studies focused on the effects of polymorphisms in genes related to antibody-dependent cellular cytotoxicity (FCGR2A, FCGR3A) and yielded promising but inconclusive results on cetuximab efficacy. The remaining published data are sparse and mainly hypothesis-generating but suggest potentially interesting topics for future pharmacogenetic studies, including innovative gene-drug interactions in a clinical context. Besides the tumor immune escape pathway, genetic markers belonging to cytokines/interleukins (IL-8 and its receptors) and angiogenic mediators (IGF1) seem to be the best investigated and hopefully most promising to be translated into clinical practice after validation.
Collapse
|
14
|
Seliger B, Jasinski-Bergner S, Massa C, Mueller A, Biehl K, Yang B, Bachmann M, Jonigk D, Eichhorn P, Hartmann A, Wickenhauser C, Bauer M. Induction of pulmonary HLA-G expression by SARS-CoV-2 infection. Cell Mol Life Sci 2022; 79:582. [PMID: 36334153 PMCID: PMC9637071 DOI: 10.1007/s00018-022-04592-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell responses. While it is physiologically expressed at the maternal-fetal interface and in immune-privileged organs, HLA-G expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were associated with a high frequency of tissue-infiltrating immune cells, but low numbers of CD8+ cells and an altered expression of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany.
- Institute of Translational Immunology, Medical School "Theodor Fontane", 14770, Brandenburg, Germany.
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Bo Yang
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Bachmann
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625, Hannover, Germany
- German Center for Lung Research (DZL), Hannover Medical School (BREATH), 30625, Hannover, Germany
| | - Philip Eichhorn
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University, 91054, Erlangen, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| | - Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, 06112, Halle (Saale), Germany
| |
Collapse
|
15
|
Chen G, Wu K, Li H, Xia D, He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front Oncol 2022; 12:961637. [PMID: 36212414 PMCID: PMC9545774 DOI: 10.3389/fonc.2022.961637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor microenvironment (TME), which is characterized by hypoxia, widely exists in solid tumors. As a current research hotspot in the TME, hypoxia is expected to become a key element to break through the bottleneck of tumor treatment. More and more research results show that a variety of biological behaviors of tumor cells are affected by many factors in TME which are closely related to hypoxia. In order to inhibiting the immune response in TME, hypoxia plays an important role in tumor cell metabolism and anti-apoptosis. Therefore, exploring the molecular mechanism of hypoxia mediated malignant tumor behavior and therapeutic targets is expected to provide new ideas for anti-tumor therapy. In this review, we discussed the effects of hypoxia on tumor behavior and its interaction with TME from the perspectives of immune cells, cell metabolism, oxidative stress and hypoxia inducible factor (HIF), and listed the therapeutic targets or signal pathways found so far. Finally, we summarize the current therapies targeting hypoxia, such as glycolysis inhibitors, anti-angiogenesis drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric medicine.
Collapse
Affiliation(s)
- Gaoqi Chen
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hao Li
- Deparment of Neurology, Affiliated Hospital of Jiangsu University, Jiang Su University, Zhenjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| | - Tianlin He
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Demeng Xia, ; Tianlin He,
| |
Collapse
|
16
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
17
|
Bignucolo A, Scarabel L, Toffoli G, Cecchin E, De Mattia E. Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Rev Clin Pharmacol 2022; 15:689-713. [PMID: 35829762 DOI: 10.1080/17512433.2022.2101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the introduction of targeted agents leading to therapeutic advances, clinical management of patients with metastatic colorectal cancer (mCRC) is still challenged by significant interindividual variability in treatment outcomes, both in terms of toxicity and therapy efficacy. The study of germline genetic variants could help to personalize and optimize therapeutic approaches in mCRC. AREAS COVERED A systematic review of pharmacogenetic studies in mCRC patients published on PubMed between 2011 and 2021, evaluating the role of germline variants as predictive markers of toxicity and efficacy of drugs currently approved for treatment of mCRC, was perfomed. EXPERT OPINION Despite the large amount of pharmacogenetic data published to date, only a few genetic markers (i.e., DPYD and UGT1A1 variants) reached the clinical practice, mainly to prevent the toxic effects of chemotherapy. The large heterogeneity of available studies represents the major limitation in comparing results and identifying potential markers for clinical use, the role of which remains exploratory in most cases. However, the available published findings are an important starting point for future investigations. They highlighted new promising pharmacogenetic markers within the network of inflammatory and immune response signaling. In addition, the emerging role of previously overlooked rare variants has been pointed out.
Collapse
Affiliation(s)
- Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| |
Collapse
|
18
|
Barmaki S, Al-Samadi A, Leskinen K, Wahbi W, Jokinen V, Vuoristo S, Salo T, Kere J, Wedenoja S, Saavalainen P. Transcriptomic Profiling of JEG-3 cells using human leiomyoma derived matrix. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100056. [PMID: 36824489 PMCID: PMC9934486 DOI: 10.1016/j.bbiosy.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022] Open
Abstract
Oxygen tension varies during placental and fetal development. Although hypoxia drives early trophoblast invasion, low placental oxygen levels during pregnancy show association with pregnancy complications including fetal growth restriction and preeclampsia. JEG-3 cells are often used as a trophoblast model. We studied transcriptional changes of JEG-3 cells on a uterine leiomyoma derived matrix Myogel. This might be the closest condition to the real uterine environment that we can get for an in vitro model. We observed that culturing JEG-3 cells on the leiomyoma matrix leads to strong stimulation of ribosomal pathways, energy metabolism, and ATP production. Furthermore, Myogel improved JEG-3 cell adherence in comparison to tissue culture treated plastic. We also included PDMS microchip hypoxia creation, and observed changes in oxidative phosphorylation, oxygen related genes and several hypoxia genes. Our study highlights the effects of Myogel matrix on growing JEG-3 cells, especially on mitochondria, energy metabolism, and protein synthesis.
Collapse
Affiliation(s)
- Samineh Barmaki
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland,Corresponding author.
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Disease, University of Helsinki, Helsinki 00290, Finland
| | - Katarzyna Leskinen
- Translational Immunology Research Program, and Department of Clinical and Medical Genetics, University of Helsinki, Helsinki 00290, Finland
| | - Wafa Wahbi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Ville Jokinen
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Sanna Vuoristo
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Disease, University of Helsinki, Helsinki 00290, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden,Folkhälsan Research Center, Helsinki 00290, Finland,Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki 00014, Finland
| | - Satu Wedenoja
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland,Stem Cells and Metabolism Research Program, University of Helsinki, and Folkhälsan Research Center, Helsinki 00290, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, and Department of Clinical and Medical Genetics, University of Helsinki, Helsinki 00290, Finland,Folkhälsan Research Center, Helsinki 00290, Finland
| |
Collapse
|
19
|
Almeida RS, Gomes TT, Araújo FS, de Oliveira SAV, Santos JF, Donadi EA, Lucena-Silva N. Differentially Expressed Bone Marrow microRNAs Are Associated With Soluble HLA-G Bone Marrow Levels in Childhood Leukemia. Front Genet 2022; 13:871972. [PMID: 35774498 PMCID: PMC9237524 DOI: 10.3389/fgene.2022.871972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 11/15/2022] Open
Abstract
HLA-G is a nonclassical histocompatibility class I molecule that plays a role in immune vigilance in cancer and infectious diseases. We previously reported that highly soluble HLA-G (sHLA-G) levels in the bone marrow were associated with a high blood cell count in T-acute lymphoblastic leukemia, a marker associated with a poor prognosis. To understand the posttranscriptional HLA-G gene regulation in leukemia, we evaluated the bone marrow microRNA profile associated with the HLA-G bone marrow mRNA expression and sHLA-G bone marrow levels in children exhibiting acute leukemia (B-ALL, T-ALL, and AML) using massively parallel sequencing. Ten differentially expressed miRNAs were associated with high sHLA-G bone marrow levels, and four of them (hsa-miR-4516, hsa-miR-486-5p, hsa-miR-4488, and hsa-miR-5096) targeted HLA-G, acting at distinct HLA-G gene segments. For qPCR validation, these miRNA expression levels (ΔCt) were correlated with HLA-G5 and RREB1 mRNA expressions and sHLA-G bone marrow levels according to the leukemia subtype. The hsa-miR-4488 and hsa-miR-5096 expression levels were lower in B-ALL than in AML, while that of hsa-miR-486-5p was lower in T-ALL than in AML. In T-ALL, hsa-miR-5096 correlated positively with HLA-G5 and negatively with sHLA-G. In addition, hsa-miR-4516 correlated negatively with sHLA-G levels. In AML, hsa-miR-4516 and hsa-miR-4488 correlated positively with HLA-G5 mRNA, but the HLA-G5 negatively correlated with sHLA-G. Our findings highlight the need to validate the findings of massively parallel sequencing since the experiment generally uses few individuals, and the same type of leukemia can be molecularly quite variable. We showed that miRNA's milieu in leukemia's bone marrow environment varies according to the type of leukemia and that the regulation of sHLA-G expression exerted by the same miRNA may act by a distinct mechanism in different types of leukemia.
Collapse
Affiliation(s)
- Renata Santos Almeida
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Thailany Thays Gomes
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Felipe Souza Araújo
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Sávio Augusto Vieira de Oliveira
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Jair Figueredo Santos
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Eduardo Antônio Donadi
- Clinical Immunology Division, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
- Laboratory of Molecular Biology, Pediatric Oncology Service, IMIP Hospital, Recife, Brazil
| |
Collapse
|
20
|
Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2407223. [PMID: 35592530 PMCID: PMC9113874 DOI: 10.1155/2022/2407223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a major transcription factor that adapts to low oxygen homeostasis and regulates the expression of several hypoxic genes, which aid in cancer survival and development. It has recently piqued the interest of translational researchers in the disciplines of cancer sciences. Hypoxia triggers an ample adaptive mechanism mediated via the HIF-1α transcriptional domain. Anaerobic glycolysis, angiogenesis, metastasis, and mitophagy are adaptive mechanisms that support tumor survival by promoting oxygen supply and regulating oxygen demand in hypoxic tumor cells. Throughout this pathway, the factor-inhibiting HIF-1α is a negative regulator of HIF-1α leading to its hydroxylation at the C-TAD domain of HIF-1α under normoxia. Thus, hydroxylated HIF-1α is unable to proceed with the transcriptional events due to interference in binding of C-TAD and CBP/p300. From this review, we can hypothesize that remodeling of FIH-1 activity is a unique mechanism that decreases the transcriptional activity of HIF-1α and, as a result, all of its hypoxic consequences. Hence, this review manuscript details the depth of knowledge of FIH-1 on hypoxia-associated cellular and molecular events, a potential strategy for targeting hypoxia-induced malignancies.
Collapse
|
21
|
Dietz S, Schwarz J, Velic A, González-Menéndez I, Quintanilla-Martinez L, Casadei N, Marmé A, Poets CF, Gille C, Köstlin-Gille N. Human Leucocyte Antigen G and Murine Qa-2 Are Critical for Myeloid Derived Suppressor Cell Expansion and Activation and for Successful Pregnancy Outcome. Front Immunol 2022; 12:787468. [PMID: 35111157 PMCID: PMC8801456 DOI: 10.3389/fimmu.2021.787468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
During pregnancy, maternal immune system has to balance tightly between protection against pathogens and tolerance towards a semi-allogeneic organism. Dysfunction of this immune adaptation can lead to severe complications such as pregnancy loss, preeclampsia or fetal growth restriction. In the present study we analyzed the impact of the murine MHC class Ib molecule Qa-2 on pregnancy outcome in vivo. We demonstrate that lack of Qa-2 led to intrauterine growth restriction and increased abortion rates especially in late pregnancy accompanied by a disturbed trophoblast invasion and altered spiral artery remodeling as well as protein aggregation in trophoblast cells indicating a preeclampsia-like phenotype. Furthermore, lack of Qa-2 caused imbalanced immunological adaptation to pregnancy with altered immune cell and especially T-cell homeostasis, reduced Treg numbers and decreased accumulation and functional activation of myeloid-derived suppressor cells. Lastly, we show that application of sHLA-G reduced abortion rates in Qa-2 deficient mice by inducing MDSC. Our results highlight the importance of an interaction between HLA-G and MDSC for pregnancy success and the therapeutic potential of HLA-G for treatment of immunological pregnancy complications.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Ana Velic
- Interfaculty Institute for Cell Biology, Proteome Center Tuebingen (PCT), University of Tuebingen, Tübingen, Germany
| | | | | | - Nicolas Casadei
- Next Generation Sequencing (NGS) Competence Center Tuebingen (NCCT), Tuebingen, Germany; Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexander Marmé
- Gynecology and Obstetrics Practice, Am Lustnauer Tor, Tuebingen, Germany
| | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany.,Department of Neonatology, Heidelberg University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
22
|
Jasinski-Bergner S, Schmiedel D, Mandelboim O, Seliger B. Role of HLA-G in Viral Infections. Front Immunol 2022; 13:826074. [PMID: 35237271 PMCID: PMC8882596 DOI: 10.3389/fimmu.2022.826074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
The human leukocyte antigen (HLA)-G is a non-classical HLA class I molecule, which has distinct features to classical HLA-A, -B, -C antigens, such as a low polymorphism, different splice variants, highly restricted, tightly regulated expression and immune modulatory properties. HLA-G expression in tumor cells and virus-infected cells, as well as the release of soluble HLA-G leads to escape from host immune surveillance. Increased knowledge of the link between HLA-G expression, viral infection and disease progression is urgently required, which highlights the possible use of HLA-G as novel diagnostic and prognostic biomarker for viral infections, but also as therapeutic target. Therefore, this review aims to summarize the expression, regulation, function and impact of HLA-G in the context of different viral infections including virus-associated cancers. The characterization of HLA-G-driven immune escape mechanisms involved in the interactions between host cells and viruses might result in the design of novel immunotherapeutic strategies targeting HLA-G and/or its interaction with its receptors on immune effector cells.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dominik Schmiedel
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- *Correspondence: Barbara Seliger,
| |
Collapse
|
23
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
24
|
Castelli EC, de Almeida BS, Muniz YCN, Silva NSB, Passos MRS, Souza AS, Page AE, Dyble M, Smith D, Aguileta G, Bertranpetit J, Migliano AB, Duarte YAO, Scliar MO, Wang J, Passos-Bueno MR, Naslavsky MS, Zatz M, Mendes-Junior CT, Donadi EA. HLA-G genetic diversity and evolutive aspects in worldwide populations. Sci Rep 2021; 11:23070. [PMID: 34845256 PMCID: PMC8629979 DOI: 10.1038/s41598-021-02106-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
HLA-G is a promiscuous immune checkpoint molecule. The HLA-G gene presents substantial nucleotide variability in its regulatory regions. However, it encodes a limited number of proteins compared to classical HLA class I genes. We characterized the HLA-G genetic variability in 4640 individuals from 88 different population samples across the globe by using a state-of-the-art method to characterize polymorphisms and haplotypes from high-coverage next-generation sequencing data. We also provide insights regarding the HLA-G genetic diversity and a resource for future studies evaluating HLA-G polymorphisms in different populations and association studies. Despite the great haplotype variability, we demonstrated that: (1) most of the HLA-G polymorphisms are in introns and regulatory sequences, and these are the sites with evidence of balancing selection, (2) linkage disequilibrium is high throughout the gene, extending up to HLA-A, (3) there are few proteins frequently observed in worldwide populations, with lack of variation in residues associated with major HLA-G biological properties (dimer formation, interaction with leukocyte receptors). These observations corroborate the role of HLA-G as an immune checkpoint molecule rather than as an antigen-presenting molecule. Understanding HLA-G variability across populations is relevant for disease association and functional studies.
Collapse
Affiliation(s)
- Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil.
- Department of Pathology, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, CEP: 18618970, Brazil.
| | - Bibiana S de Almeida
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil
- Laboratório Multiusuário de Estudos em Biologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Yara C N Muniz
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Nayane S B Silva
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Marília R S Passos
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, State of São Paulo, Brazil
| | - Abigail E Page
- Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Mark Dyble
- Departament of Anthropology, University College London (UCL), London, UK
| | - Daniel Smith
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - Gabriela Aguileta
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Bertranpetit
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea B Migliano
- Departament of Anthropology, Unversity of Zurich, Zurich, Switzerland
| | - Yeda A O Duarte
- Escola de Enfermagem e Faculdade de Saúde Pública, Universidade de São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Marília O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Jaqueline Wang
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Michel S Naslavsky
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, State of São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, State of São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, CEP: 14049-900, Brazil.
| |
Collapse
|
25
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
26
|
Jacovas VC, Michita RT, Bisso-Machado R, Reales G, Tarazona-Santos EM, Sandoval JR, Salazar-Granara A, Chies JAB, Bortolini MC. HLA-G 3'UTR haplotype frequencies in highland and lowland South Native American populations. Hum Immunol 2021; 83:27-38. [PMID: 34563386 DOI: 10.1016/j.humimm.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Human Leukocyte Antigen (HLA)-G participates in several biological processes, including reproduction, vascular remodeling, immune tolerance, and hypoxia response. HLA-G is a potential candidate gene for high altitude adaptation since its expression is modulated in both micro and macro environment under hypoxia and constant cellular stress. Besides the promoter region, the HLA-G 3'untranslated region (UTR) influences HLA-G expression patterns through several post-transcriptional mechanisms. Currently, the 3'UTR genetic diversity in terms of altitude adaptation of Native American populations is still unexplored, particularly at high altitude ecoregions. Here, we evaluated 288 Native Americans from 9 communities located in the Andes [highland (HL); ≥2,500 m (range = 2,838-4,433 m)] and 8 populations located in lowland (LL) regions [<2,500 m (range = 80-431 m); Amazonian tropical forest, Brazilian central plateau, and Chaco] of South America. In total, nine polymorphic sites and ten haplotypes were observed. The most frequent haplotypes (UTR-1, UTR-2, and UTR-3) accounted for ∼ 77% of haplotypes found in LL, while in the HL, the same haplotypes reach ∼ 93%. Also, a remarkable high frequency of putative ancestral UTR-5 haplotype was observed in LL (21.5%), while in HL UTR-2 reaches up to 47%. Further, UTR-2 frequency positively correlates with altitude-related variables, while a negative correlation for UTR-5 was observed. From an evolutionary perspective, we observed a tendency towards balancing selection in HL and LL populations thus suggesting that haplotypes of ancient and more derived alleles may have been co-opted for relatively recent adaptations such as those experienced by modern humans in the highland and lowland of South America. We also discuss how long-term balancing selection can be a reservoir of genetic variants that can be positively selected. Finally, our study provides some pieces of evidence that HLA-G 3'UTR haplotypes may have contributed to high altitude adaptation in the Andes.
Collapse
Affiliation(s)
- Vanessa Cristina Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Tomoya Michita
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Human Molecular Genetics Laboratory, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo M Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - José Raul Sandoval
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Artur Bogo Chies
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
27
|
Liu Z, Tang Q, Qi T, Othmane B, Yang Z, Chen J, Hu J, Zu X. A Robust Hypoxia Risk Score Predicts the Clinical Outcomes and Tumor Microenvironment Immune Characters in Bladder Cancer. Front Immunol 2021; 12:725223. [PMID: 34484235 PMCID: PMC8415032 DOI: 10.3389/fimmu.2021.725223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Bladder cancer (BLCA) is one of the most common urinary malignancies with poor prognosis. There is an unmet need to develop novel robust tools to predict prognosis and treatment efficacy for BLCA. Methods The hypoxia-related genes were collected from the Molecular Signatures Database. The TCGA-BLCA cohort was downloaded from the Cancer Genome Atlas and then was randomly divided into training and internal validation sets. Two external validation cohorts were gathered from Gene Expression Omnibus. Also, another independent validation cohort (Xiangya cohort) was collected from our hospital. The Cox regression model with the LASSO algorithm was applied to develop the hypoxia risk score. Then, we correlated the hypoxia risk score with the clinical outcomes, the tumor microenvironment (TME) immune characteristics, and the efficacy prediction for several treatments, which included cancer immunotherapy, chemotherapy, radiotherapy, and targeted therapies. Results Hypoxia risk score was an independent prognostic factor. A high-risk score indicated an inflamed TME based on the evidence that hypoxia risk score positively correlated with the activities of several cancer immunity cycles and the infiltration levels of many tumor-infiltrating immune cells, such as CD8 + T cells, Dendritic cells, and NK cells. Consistently, the hypoxia risk score was positively related to the expression of several immune checkpoints, such as PD-L1, PD-1, CTLA-4, and LAG-3, as well as the T cell inflamed score. Furthermore, the hypoxia risk score positively correlated with the enrichment scores of most immunotherapy-positive gene signatures. Therefore, patients with higher risk score may be more sensitive to cancer immunotherapy. Meanwhile, the hypoxia risk score was positively related to the sensitivities of several chemotherapeutic drugs, including Cisplatin, Docetaxel, Paclitaxel, Bleomycin, Camptothecin, and Vinblastine. Similarly, the enrichment scores for radiotherapy-predicted pathways and EGFR ligands were higher in the high-risk score group. Conversely, the enrichment scores of several immunosuppressive oncogenic pathways were significantly higher in the low-risk score group, such as the WNT-β-catenin network, PPARG network, and FGFR3 network. Conclusions We developed and validated a new hypoxia risk score, which could predict the clinical outcomes and the TME immune characteristics of BLCA. In general, the hypoxia risk score may aid in the precision medicine for BLCA.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, The Second Affiliated Hospital, Guizhou Medical University, Kaili, China
| | - Qiao Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Tiezheng Qi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Belaydi Othmane
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
29
|
Cruz-Bermúdez A, Laza-Briviesca R, Casarrubios M, Sierra-Rodero B, Provencio M. The Role of Metabolism in Tumor Immune Evasion: Novel Approaches to Improve Immunotherapy. Biomedicines 2021; 9:361. [PMID: 33807260 PMCID: PMC8067102 DOI: 10.3390/biomedicines9040361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment exhibits altered metabolic properties as a consequence of the needs of tumor cells, the natural selection of the most adapted clones, and the selfish relationship with other cell types. Beyond its role in supporting uncontrolled tumor growth, through energy and building materials obtention, metabolism is a key element controlling tumor immune evasion. Immunotherapy has revolutionized the treatment of cancer, being the first line of treatment for multiple types of malignancies. However, many patients either do not benefit from immunotherapy or eventually relapse. In this review we overview the immunoediting process with a focus on the metabolism-related elements that are responsible for increased immune evasion, either through reduced immunogenicity or increased resistance of tumor cells to the apoptotic action of immune cells. Finally, we describe the main molecules to modulate these immune evasion processes through the control of the metabolic microenvironment as well as their clinical developmental status.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| | - Raquel Laza-Briviesca
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Marta Casarrubios
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Belén Sierra-Rodero
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
- PhD Programme in Molecular Biosciences, Faculty of Medicine Doctoral School, Universidad Autónoma de Madrid, 28222 Madrid, Spain
| | - Mariano Provencio
- Medical Oncology Department, Health Research Institute Puerta de Hierro–Segovia de Arana (IDIPHISA) & Puerta de Hierro Hospital, Manuel de Falla Street #1, 28222 Madrid, Spain; (R.L.-B.); (M.C.); (B.S.-R.)
| |
Collapse
|
30
|
De Martino M, Daviaud C, Vanpouille-Box C. Radiotherapy: An immune response modifier for immuno-oncology. Semin Immunol 2021; 52:101474. [PMID: 33741223 DOI: 10.1016/j.smim.2021.101474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022]
Abstract
The ability of radiotherapy to enhance antigenicity and adjuvanticity of an irradiated tumor has stimulated the interest for its combination with immuno-oncology agents. However, radiotherapy often generates multiple layers of host responses which likely depends on the tumor biology, the immune cell infiltration and the induction of immunosuppressive signals post radiotherapy. Consequently, translation of preclinical findings to the clinic is more convoluted than anticipated which underscore the need to decipher molecular and cellular mechanisms elicited by radiotherapy. Here we review pro-inflammatory and immunosuppressive mechanisms triggered by radiotherapy that impact the outcome of antigen specific T cell killing and discuss how radiation-induced immunostimulatory mechanisms can be exploited to reactivate the host's immune system, especially in the context of immunotherapy.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, 1300 York Avenue, Box 169, New York, NY, 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Wang B, Zhao Q, Zhang Y, Liu Z, Zheng Z, Liu S, Meng L, Xin Y, Jiang X. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:24. [PMID: 33422072 PMCID: PMC7796640 DOI: 10.1186/s13046-020-01820-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022]
Abstract
With the success of immune checkpoint inhibitors (ICIs), significant progress has been made in the field of cancer immunotherapy. Despite the long-lasting outcomes in responders, the majority of patients with cancer still do not benefit from this revolutionary therapy. Increasing evidence suggests that one of the major barriers limiting the efficacy of immunotherapy seems to coalesce with the hypoxic tumor microenvironment (TME), which is an intrinsic property of all solid tumors. In addition to its impact on shaping tumor invasion and metastasis, the hypoxic TME plays an essential role in inducing immune suppression and resistance though fostering diverse changes in stromal cell biology. Therefore, targeting hypoxia may provide a means to enhance the efficacy of immunotherapy. In this review, the potential impact of hypoxia within the TME, in terms of key immune cell populations, and the contribution to immune suppression are discussed. In addition, we outline how hypoxia can be manipulated to tailor the immune response and provide a promising combinational therapeutic strategy to improve immunotherapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
32
|
You L, Wu W, Wang X, Fang L, Adam V, Nepovimova E, Wu Q, Kuca K. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev 2020; 41:1622-1643. [PMID: 33305856 DOI: 10.1002/med.21771] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) plays an indispensable role in the hypoxic tumor microenvironment. Hypoxia and HIF-1 are involved in multiple aspects of tumor progression, such as metastasis, angiogenesis, and immune evasion. In innate and adaptive immune systems, malignant tumor cells avoid their recognition and destruction by HIF-1. Tumor immune evasion allows cancer cells to proliferate and metastasize and is associated with immunotherapy failure and chemoresistance. In the hypoxic tumor microenvironment, HIF-1 signaling suppresses the innate and adaptive immune systems to evade immune attack by inducing the expression of immunosuppressive factors and immune checkpoint molecules, including vascular endothelial growth factor, prostaglandin E2 , and programmed death-ligand 1/programmed death-1. Moreover, HIF-1 blocks tumor-associated antigen presentation via major histocompatibility complex class I chain-related/natural killer group 2, member D signaling. Tumor-associated autophagy and the release of tumor-derived exosomes contribute to HIF-1-mediated immune evasion. This review focuses on recent findings on the potential mechanism(s) underlying the effect of hypoxia and HIF-1 signaling on tumor immune evasion in the hypoxic tumor microenvironment. The effects of HIF-1 on immune checkpoint molecules, immunosuppressive molecules, autophagy, and exosomes have been described. Additionally, the potential role of HIF-1 in the regulation of tumor-derived exosomes, as well as the roles of HIF-1 and exosomes in tumor evasion, are discussed. This study will contribute to our understanding of HIF-1-mediated tumor immune evasion, leading to the development of effective HIF-1-targeting drugs and immunotherapies.
Collapse
Affiliation(s)
- Li You
- College of Life Science, Yangtze University, Jingzhou, China
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
34
|
Phung CD, Tran TH, Pham LM, Nguyen HT, Jeong JH, Yong CS, Kim JO. Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 2020; 324:413-429. [PMID: 32461115 DOI: 10.1016/j.jconrel.2020.05.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia is a common feature of the tumor microenvironment, which is characterized by tissue oxygen deficiency due to an aggressive proliferation of cancer cells. Hypoxia activates hypoxia-inducible factor-dependent signaling, which in turn regulates metabolic reprogramming, immune suppression, resistance to apoptosis, angiogenesis, metastasis, and invasion to secondary sites. In this review, we provide an overview of the use of nanotechnology to harmonize intra-tumoral oxygen or suppress hypoxia-related signaling for an improved efficacy of cancer treatment. The biological background was followed by conducting a literature review on the (1) nanoparticles responsible for enhancing oxygen levels within the tumor, (2) nanoparticles sensitizing hypoxia, (3) nanoparticles suppressing hypoxia-inducing factor, (4) nanoparticles that relieve tumor hypoxia for enhancement of chemotherapy, photodynamic therapy, and immunotherapy, either individually or in combination. Lastly, the heterogeneity of cancer and limitations of nanotechnology are discussed to facilitate translational therapeutic treatment.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam
| | - Le Minh Pham
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- Department of Industrial & Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Deahak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
35
|
Ziliotto M, Rodrigues RM, Chies JAB. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med Hypotheses 2020; 140:109664. [PMID: 32155542 DOI: 10.1016/j.mehy.2020.109664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
One of the most striking characteristics of human beings is the incredible capacity to adapt to different environments. This capacity allowed humans to spread all over our planet, occupying habitats as diverse as deserts, tropical forests or tundra regions. Interactions with the environment, climate, food and water availability shaped our evolution and define our survival. Essential to human life, oxygen availability also controls human dispersion and adaptation. For example, low oxygen availability can lead to physiological adaptations in populations living in highlands. Moreover, the consequences of differential oxygen availability (or even exposure to hypoxia) are evident in process as fine-tuned controlled as gene regulation. Physiological responses to fluctuations in oxygen availability are crucial already from the early days of life, since the human fetal environment is characterized by hypoxia. Hypoxia-Inducible Factors (HIFs) act as major regulators of pathways involved in glycolysis, erythropoiesis, angiogenesis, cell proliferation and stem cells function. Here we explore the physiological consequences of hypoxia in the human organism. In this sense, and considering the existence of HIF sequences in promoter regions of genes important to immune regulation, we hypothesize that exposure to induced hypoxia through the use of hypobaric chambers can be used as a complementary therapy to control chronic inflammation in several diseases characterized by systemic inflammatory conditions. Among these inflammatory conditions we highlight autoimmune diseases and chronic inflammation in HIV infected individuals under antiretroviral treatment. Several experiments, including arthritis animal models, the evaluation of athletes that already use hypobaric chambers to induce erythropoiesis, and the potential consequences of hypoxia as an immunotolerogenic inducer in the HIV infection context are approached and discussed here.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raul Marques Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
36
|
Hirbod-Mobarakeh A, Shabani M, Keshavarz-Fathi M, Delavari F, Amirzargar AA, Nikbin B, Kutikhin A, Rezaei N. Immunogenetics of Cancer. CANCER IMMUNOLOGY 2020:417-478. [DOI: 10.1007/978-3-030-30845-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges. Cells 2019; 8:cells8091083. [PMID: 31540045 PMCID: PMC6770817 DOI: 10.3390/cells8091083] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Initially believed to be a disease of deregulated cellular and genetic expression, cancer is now also considered a disease of the tumor microenvironment. Over the past two decades, significant and rapid progress has been made to understand the complexity of the tumor microenvironment and its contribution to shaping the response to various anti-cancer therapies, including immunotherapy. Nevertheless, it has become clear that the tumor microenvironment is one of the main hallmarks of cancer. Therefore, a major challenge is to identify key druggable factors and pathways in the tumor microenvironment that can be manipulated to improve the efficacy of current cancer therapies. Among the different tumor microenvironmental factors, this review will focus on hypoxia as a key process that evolved in the tumor microenvironment. We will briefly describe our current understanding of the molecular mechanisms by which hypoxia negatively affects tumor immunity and shapes the anti-tumor immune response. We believe that such understanding will provide insight into the therapeutic value of targeting hypoxia and assist in the design of innovative combination approaches to improve the efficacy of current cancer therapies, including immunotherapy.
Collapse
|
38
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
39
|
Schallmoser A, Raab M, Karn T, Königsberger S, Schmidt E, Breitenbach-Koller H, Sänger N. Quantitative analysis of the sHLA-G protein in seminal plasma. Am J Reprod Immunol 2019; 82:e13152. [PMID: 31132194 DOI: 10.1111/aji.13152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies revealed that maternal and embryonic contributions impact on HLA-G protein expression and might contribute to pregnancy success or failure. The main objective of this study was to examine the paternal levels of the immunoregulatory soluble human leukocyte antigen-G (sHLA-G) protein in seminal plasma and testicular biopsy samples during artificial reproductive technique (ART) treatment and to investigate possible correlations with other semen parameters, age, and pregnancy outcome of the female partner. METHODS Soluble HLA-G levels of 106 seminal plasma samples and eight testicular biopsy samples were determined using a commercial sHLA-G Enzyme-linked immunosorbent assay (ELISA) kit. RESULTS We observed a significant negative correlation of male age with total sHLA-G amount (P 0.023, R -0.221) and semen volume (P = 0.047, R -0.193). Testicular biopsy samples were analyzed and tested positively with sHLA-G ELISA. Levels of sHLA-G in seminal plasma samples from men with normozoospermia did not deviate significantly from those with reduced semen quality. No significant difference of sHLA-G levels in seminal plasma and pregnancy outcome of the female partner was detected. Our data showed that age of men with normozoospermia was significantly lower when the female partner conceived after ART treatment (P = 0.016, Mann-Whitney U test). CONCLUSION High sHLA-G levels in seminal plasma of the male partner appear not to be required for pregnancy but might contribute among other factors to the success of establishing and maintaining pregnancy through long-term priming of the female uterine milieu.
Collapse
Affiliation(s)
- Andreas Schallmoser
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Monika Raab
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Thomas Karn
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | | | | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Li Y, Patel SP, Roszik J, Qin Y. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment: New Approaches for Combinational Immunotherapy. Front Immunol 2018; 9:1591. [PMID: 30061885 PMCID: PMC6054965 DOI: 10.3389/fimmu.2018.01591] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is not only a prominent contributor to the heterogeneity of solid tumors but also a crucial stressor in the microenvironment to drive adaptations for tumors to evade immunosurveillance. Herein, we discuss the potential role of hypoxia within the microenvironment contributing to immune resistance and immune suppression of tumor cells. We outline recent discoveries of hypoxia-driven adaptive mechanisms that diminish immune cell response via skewing the expression of important immune checkpoint molecules (e.g., cluster of differentiation 47, programmed death ligand 1, and human leukocyte antigen G), altered metabolism and metabolites, and pH regulation. Importantly, inhibition of hypoxic stress-relevant pathways can collectively enhance T-cell-mediated tumor cell killing. Furthermore, we discuss how manipulation of hypoxia stress may pose a promising new strategy for a combinational therapeutic intervention to enhance immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Yiliang Li
- Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Sapna Pradyuman Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yong Qin
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
41
|
Tong WW, Tong GH, Liu Y. Cancer stem cells and hypoxia-inducible factors (Review). Int J Oncol 2018; 53:469-476. [PMID: 29845228 DOI: 10.3892/ijo.2018.4417] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a subpopulation of tumor cells that exhibit properties similar to those of normal stem cells. Oxygen is an important regulator of cellular metabolism; hypoxia-inducible factors (HIFs) mediate metabolic switches in cells in hypoxic environments. Hypoxia clearly has the potential to exert a significant effect on the maintenance and evolution of CSCs. Both HIF‑1α and HIF‑2α may contribute to the regulation of cellular adaptation to hypoxia and resistance to cancer therapies. This review provides an overview of the roles of HIFs in CSCs. HIF‑1α and HIF‑2α have significant prognostic and predictive value in the clinic and the concept of personalized medicine should be applied in designing clinical trials for HIF inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guang-Hui Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|