1
|
He X, Zhang S, Zou Z, Gao P, Yang L, Xiang B. Antiviral Effects of Avian Interferon-Stimulated Genes. Animals (Basel) 2024; 14:3062. [PMID: 39518785 PMCID: PMC11545081 DOI: 10.3390/ani14213062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Interferons (IFNs) stimulate the expression of numerous IFN-stimulating genes via the Janus kinase-signal transducers and activators of the transcription (JAK-STAT) signaling pathway, which plays an important role in the host defense against viral infections. In mammals, including humans and mice, a substantial number of IFN-stimulated genes (ISGs) have been identified, and their molecular mechanisms have been elucidated. It is important to note that avian species are phylogenetically distant from mammals, resulting in distinct IFN-induced ISGs that may have different functions. At present, only a limited number of avian ISGs have been identified. In this review, we summarized the identified avian ISGs and their antiviral activities. As gene-editing technology is widely used in avian breeding, the identification of avian ISGs and the elucidation of their molecular mechanism may provide important support for the breeding of avians for disease resistance.
Collapse
Affiliation(s)
- Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyuan Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ziheng Zou
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453000, China;
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (X.H.); (S.Z.); (Z.Z.); (L.Y.)
- Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Muthusamy M, Nagarajan M, Karuppusamy S, Ramasamy KT, Ramasamy A, Kalaivanan R, Thippicettipalayam Ramasamy GKM, Aranganoor Kannan T. "Unveiling the genetic symphony: Diversity and expression of chicken IFITM genes in Aseel and Kadaknath breeds". Heliyon 2024; 10:e37729. [PMID: 39315180 PMCID: PMC11417226 DOI: 10.1016/j.heliyon.2024.e37729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In this investigation, single nucleotide variants (SNVs) within the chicken interferon-inducible transmembrane protein (chIFITM) genes were explored in Aseel and Kadaknath breeds. Comparative analysis with the GRCg6a reference genome revealed 9 and 16 SNVs in the chIFITM locus for Aseel and Kadaknath breeds, respectively. When referencing the Genome Reference Consortium GRCg7b, Kadaknath exhibited 10 variants, contrasting with none in Aseel. Notably, 17, 8, 2, and 5 SNVs were identified in chIFITM1, chIFITM2, chIFITM3, and chIFITM5 genes, with chIFITM1 showing the highest polymorphism in Kadaknath, featuring 10 intronic variants, including three SNVs (rs16457112, rs16457111, and rs313341707) common to both breeds. Two synonymous exonic variants (g.1817767C > A and g.1819102C > T) were also noted in chIFITM1. Although chIFITM protein sequences were generally conserved, genetic variations clustered predominantly in UTR and intronic regions. Examination of immune response dynamics in live embryos uncovered notable variations in chIFITM gene expression across diverse organs and chicken breeds. Specifically, chIFITM1 mRNA was abundant in cecal tonsils for both breeds and bursa of Aseel (7.61 folds), but it was absent in the heart and lung tissues of both breeds. Conversely, chIFITM3 consistently exhibited heightened expression, particularly in bursa of Aseel (10.23 folds). Whereas mRNA of the chIFITM2 gene was found to be abundant in the heart of Kadaknath (11.03 folds) and lung of both breeds. Furthermore, the expression pattern of chIFITM5 diverged between the two breeds, the heart of Kadaknath chickens showed highest (10.45 folds). The study discovered that breed-specific genetic variants within these genes present a potential pathway for selection and breeding to improve disease resistance in chicken. The observed genetic variation among chicken populations highlights the critical importance of these variants in reinforcing virus resistance, exhibiting applicability across a wide range of breeds.
Collapse
Affiliation(s)
- Malarmathi Muthusamy
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | - Murali Nagarajan
- Alambadi Cattle Breed Research Centre, Tamil Nadu Veterinary and Animal Sciences University, Dharmapuri, 635 111, India
| | - Sivakumar Karuppusamy
- Faculty of Food and Agriculture, The University of the West Indies, St Augustine, Trinidad and Tobago
| | | | - Amutha Ramasamy
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | - Ramya Kalaivanan
- Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Namakkal, 637 002, India
| | | | | |
Collapse
|
3
|
Ren H, Wang S, Xie Z, Wan L, Xie L, Luo S, Li M, Xie Z, Fan Q, Zeng T, Zhang Y, Zhang M, Huang J, Wei Y. Analysis of Chicken IFITM3 Gene Expression and Its Effect on Avian Reovirus Replication. Viruses 2024; 16:330. [PMID: 38543696 PMCID: PMC10974799 DOI: 10.3390/v16030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
Interferon-inducible transmembrane protein 3 (IFITM3) is an antiviral factor that plays an important role in the host innate immune response against viruses. Previous studies have shown that IFITM3 is upregulated in various tissues and organs after avian reovirus (ARV) infection, which suggests that IFITM3 may be involved in the antiviral response after ARV infection. In this study, the chicken IFITM3 gene was cloned and analyzed bioinformatically. Then, the role of chicken IFITM3 in ARV infection was further explored. The results showed that the molecular weight of the chicken IFITM3 protein was approximately 13 kDa. This protein was found to be localized mainly in the cytoplasm, and its protein structure contained the CD225 domain. The homology analysis and phylogenetic tree analysis showed that the IFITM3 genes of different species exhibited great variation during genetic evolution, and chicken IFITM3 shared the highest homology with that of Anas platyrhynchos and displayed relatively low homology with those of birds such as Anser cygnoides and Serinus canaria. An analysis of the distribution of chicken IFITM3 in tissues and organs revealed that the IFITM3 gene was expressed at its highest level in the intestine and in large quantities in immune organs, such as the bursa of Fabricius, thymus and spleen. Further studies showed that the overexpression of IFITM3 in chicken embryo fibroblasts (DF-1) could inhibit the replication of ARV, whereas the inhibition of IFITM3 expression in DF-1 cells promoted ARV replication. In addition, chicken IFITM3 may exert negative feedback regulatory effects on the expression of TBK1, IFN-γ and IRF1 during ARV infection, and it is speculated that IFITM3 may participate in the innate immune response after ARV infection by negatively regulating the expression of TBK1, IFN-γ and IRF1. The results of this study further enrich the understanding of the role and function of chicken IFITM3 in ARV infection and provide a theoretical basis for an in-depth understanding of the antiviral mechanism of host resistance to ARV infection.
Collapse
Affiliation(s)
- Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530000, China; (H.R.); (S.W.); (L.W.); (L.X.); (S.L.); (M.L.); (Z.X.); (Q.F.); (T.Z.); (Y.Z.); (M.Z.); (J.H.); (Y.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530000, China
| |
Collapse
|
4
|
Qiao S, Zhang W, Su Y, Jiang Y. Integrated bioinformatics analysis of IFITM1 as a prognostic biomarker and investigation of its immunological role in prostate adenocarcinoma. Front Oncol 2022; 12:1037535. [PMID: 36591519 PMCID: PMC9795034 DOI: 10.3389/fonc.2022.1037535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Prostate adenocarcinoma (PRAD) is a highly aggressive malignancy with high mortality and poor prognosis, and its potential mechanism remains unclear. Our study aimed to identify novel markers for the prognosis of PRAD using bioinformatics technology. Methods The GSE32571 dataset was downloaded from the GEO database, and analyzed via the limma R package to identify differentially expressed genes (DEGs) and differentially expressed immune score-related genes (DEISRGs). The immune-related genes (IRGs) were further obtained by overlapping DEISRGs and DEGs, and the core gene was identified via survival analysis. Furthermore, the expression level, prognostic value, and potential functions of the core gene were evaluated via multiple bioinformatics databases. Results A total of 301 IRGs were identified from the GSE32571 dataset, and IFITM1 was a down-regulated gene in several types of cancer, including PRAD. Besides, low expression of IFITM1 was associated with a poor prognosis in PRAD. GSEA indicated that the vital pathways of IFITM1-associated genes were mainly enriched in primary immunodeficiency, Th17 cell differentiation, Th1, and Th2 cell differentiation, natural killer cell-mediated cytotoxicity, myeloid dendritic cell activation, regulation of leukocyte activation, etc. Furthermore, IFITM1 was closely correlated with 22 types of tumor-infiltrating immune cells. Discussion IFITM1 was a prognostic biomarker for PRAD patients, and it can be acted as a potential immune therapy target in PRAD.
Collapse
|
5
|
Ferret Interferon (IFN)-Inducible Transmembrane Proteins Are Upregulated by both IFN-α and Influenza Virus Infection. J Virol 2021; 95:e0011121. [PMID: 33952646 DOI: 10.1128/jvi.00111-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current fears of a future influenza pandemic have resulted in an increased emphasis on the development and testing of novel therapeutic strategies against the virus. Fundamental to this is the ferret model of influenza infection, which is critical in examining pathogenesis and treatment. Nevertheless, a precise evaluation of the efficacy of any treatment strategy in ferrets is reliant on understanding the immune response in this model. Interferon-inducible transmembrane proteins (IFITMs) are interferon-stimulated proteins shown to be critically important in the host immune response against viral infections. These proteins confer intrinsic innate immunity to pH-dependent viruses such as influenza viruses and can inhibit cytosolic entry of such viruses to limit the severity of infection following interferon upregulation. Mutations in IFITM genes in humans have been identified as key risk factors for worsened disease progression, particularly in the case of avian influenza viruses such as H7N9. While the IFITM genes of humans and mice have been well characterized, no studies have been conducted to classify the IFITM locus and interferon-driven upregulation of IFITMs in ferrets. Here, we show the architecture of the ferret IFITM locus and its synteny to the IFITM locus of other mammalian and avian species. Furthermore, we show that ferret IFITM1, -2, and -3 are functionally responsive to both interferon-α (IFN-α) and influenza virus stimulation. Thus, we show that ferret IFITMs exhibit interferon-stimulated properties similar to those shown in other species, furthering our knowledge of the innate immune response in the ferret model of human influenza virus infections. IMPORTANCE IFITM proteins can prevent the entry of several pH-dependent viruses, including high-consequence viruses such as HIV, influenza viruses, and SARS-coronaviruses. Mutations in these genes have been associated with worsened disease outcomes with mutations in their IFITM genes, highlighting these genes as potential disease risk factors. Ferrets provide a valuable tool to model infectious diseases; however, there is a critical shortage of information regarding their interferon-stimulated genes. We identified the putative ferret IFITM genes and mapped their complete gene locus. Thus, our study fills a critical gap in knowledge and supports the further use of the ferret model to explore the importance of IFITMs in these important diseases.
Collapse
|
6
|
Xu JZ, Gong C, Xie ZF, Zhao H. Development of an Oncogenic Driver Alteration Associated Immune-Related Prognostic Model for Stage I-II Lung Adenocarcinoma. Front Oncol 2021; 10:593022. [PMID: 33585210 PMCID: PMC7876383 DOI: 10.3389/fonc.2020.593022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) needs to be stratified for its heterogeneity. Oncogenic driver alterations such as EGFR mutation, ALK translocation, ROS1 translocation, and BRAF mutation predict response to treatment for LUAD. Since oncogenic driver alterations may modulate immune response in tumor microenvironment that may influence prognosis in LUAD, the effects of EGFR, ALK, ROS1, and BRAF alterations on tumor microenvironment remain unclear. Immune-related prognostic model associated with oncogenic driver alterations is needed. In this study, we performed the Cox-proportional Hazards Analysis based on the L1-penalized (LASSO) Analysis to establish an immune-related prognostic model (IPM) in stage I-II LUAD patients, which was based on 3 immune-related genes (PDE4B, RIPK2, and IFITM1) significantly enriched in patients without EGFR, ALK, ROS1, and BRAF alterations in The Cancer Genome Atlas (TCGA) database. Then, patients were categorized into high-risk and low-risk groups individually according to the IPM defined risk score. The predicting ability of the IPM was validated in GSE31210 and GSE26939 downloaded from the Gene Expression Omnibus (GEO) database. High-risk was significantly associated with lower overall survival (OS) rates in 3 independent stage I-II LUAD cohorts (all P < 0.05). Moreover, the IPM defined risk independently predicted OS for patients in TCGA stage I-II LUAD cohort (P = 0.011). High-risk group had significantly higher proportions of macrophages M1 and activated mast cells but lower proportions of memory B cells, resting CD4 memory T cells and resting mast cells than low-risk group (all P < 0.05). In addition, the high-risk group had a significantly lower expression of CTLA-4, PDCD1, HAVCR2, and TIGIT than the low-risk group (all P < 0.05). In summary, we established a novel IPM that could provide new biomarkers for risk stratification of stage I-II LUAD patients.
Collapse
Affiliation(s)
- Jian-Zhao Xu
- Geriatrics Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chen Gong
- Geriatrics Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zheng-Fu Xie
- Geriatrics Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Zhao
- Geriatrics Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Zhang Y, Huang Y, Wang L, Huang L, Zheng J, Huang X, Qin Q. Grouper interferon-induced transmembrane protein 3 (IFITM3) inhibits the infectivity of iridovirus and nodavirus by restricting viral entry. FISH & SHELLFISH IMMUNOLOGY 2020; 104:172-181. [PMID: 32531330 PMCID: PMC7283088 DOI: 10.1016/j.fsi.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 05/02/2023]
Abstract
Interferon-induced transmembrane proteins (IFITMs) have been identified as important host restriction factors in mammals for the control of infection by multiple viruses. However, the antiviral functions of IFITMs against fish viruses remain largely uncertain. In this study, the IFITM3 homolog from orange spotted grouper (EcIFITM3) was cloned and its roles in grouper virus infection were investigated. The full-length cDNA of EcIFITM3 was 737 bp, which was composed of a 16 bp 5'-UTR, a 274 bp 3'-UTR, and a 447 bp ORF. EcIFITM3 encodes a 148-amino-acid polypeptide, which contains five domains, i.e., the N-terminal domain (aa 1-65), TM1 (aa 66-90), the cytoplasmic domain (aa 91-110), TM2 (aa 111-140), and the C-terminal domain (aa 141-148), and shares 78% and 47% identity with IFITM3 of gilthead seabream (Sparus aurata) and human (Homo sapiens), respectively. EcIFITM3 mRNA was detected in 12 tissues of healthy groupers, with the highest expression levels in the head kidney. Additionally, the in vitro mRNA levels of EcIFITM3 were significantly upregulated by infection with Singapore grouper iridovirus (SGIV) or red spotted grouper nervous necrosis virus (RGNNV), or treatment with polyinosinic-polycytidylic acid (poly I:C) or lipopolysaccharide (LPS). Subcellular localization analysis showed that EcIFITM3 was mainly distributed in the cell membrane of grouper cells. In vitro, the ectopic expression of EcIFITM3 inhibited SGIV and RGNNV infection, as demonstrated by the reduced severity of the cytopathic effect, decreased virus production, and low levels of viral mRNA and proteins. Consistently, knockdown of EcIFITM3 by small interfering RNAs (siRNAs) enhanced SGIV and RGNNV replication. EcIFITM3 overexpression and knockdown experiments both suggested that EcIFITM3 inhibits the infection of SGIV and RGNNV by restricting virus entry.
Collapse
Affiliation(s)
- Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
8
|
Abstract
The disease caused by duck Tembusu virus (DTMUV) is characterized by severe egg-drop in laying ducks. Currently, the disease has spread to most duck-raising areas in China, leading to great economic losses in the duck industry. In the recent years, DTMUV has raised some concerns, because of its expanding host range and increasing pathogenicity, as well as the potential threat to public health. Innate immunity is crucial for defending against invading pathogens in the early stages of infection. Recently, studies on the interaction between DTMUV and host innate immune response have made great progress. In the review, we provide an overview of DTMUV and summarize current advances in our understanding of the interaction between DTMUV and innate immunity, including the host innate immune responses to DTMUV infection through pattern recognition receptors (PRRs), signaling transducer molecules, interferon-stimulated genes (ISGs), and the immune evasion strategies employed by DTMUV. The aim of the review is to gain an in-depth understanding of DTMUV pathogenesis to facilitate future studies.
Collapse
|
9
|
Kim YC, Jeong MJ, Jeong BH. Genetic characteristics and polymorphisms in the chicken interferon-induced transmembrane protein (IFITM3) gene. Vet Res Commun 2019; 43:203-214. [PMID: 31410631 PMCID: PMC7089262 DOI: 10.1007/s11259-019-09762-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
The interferon-induced transmembrane protein 3 (IFITM3) gene is classified as a small interferon-stimulated gene and is associated with a broad spectrum of antiviral functions against several fatal enveloped viruses, including influenza A viruses (IAVs). The rs12252 single nucleotide polymorphism (SNP) of the IFITM3 gene in humans was associated with susceptibility to H1N1 influenza in a 2009 pandemic. In addition, overexpression of the IFITM3 protein potently inhibits the highly pathogenic avian influenza H5N1 virus in ducks and chickens. Although chickens are a major host of influenza viruses and the IFITM3 gene participates in the host antiviral system, studies on chicken IFITM3 gene are very rare. To investigate the genetic characteristics of the chicken IFITM3 gene, we performed direct sequencing and alignment in 108 Dekalb White and 72 Ross breeds. We also investigated the genotype and haplotype frequencies and linkage disequilibrium of the IFITM3 gene polymorphisms and evaluated whether the non-synonymous SNPs are deleterious. We found significantly different genotype, allele and haplotypes frequencies between two chicken breeds, Dekalb White and Ross. Furthermore, we compared and analyzed the promoter structure of the chicken IFITM3 gene with that of several species. We found that birds have a long C-terminal domain and inverted topology of the IFITM3 protein compared to mammals. We also identified fourteen genetic polymorphisms in the chicken IFITM3 gene. L100 M and N125H were predicted as ‘probably damaging’ and L100 M can alter the length of its conserved intracellular loop (CIL). Furthermore, chickens, but not mammals, contain CpG islands (CGIs) in this promoter region.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54531, Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea.,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54531, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk, 54531, Republic of Korea. .,Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Jeonbuk, 54531, Republic of Korea.
| |
Collapse
|
10
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|