1
|
Strojan P, Jesenko T, Omerzel M, Jamsek C, Groselj A, Tratar UL, Markelc B, Gasljevic G, Ihan A, Smrekar F, Peterka M, Cemazar M, Sersa G. Phase I trial of phIL12 plasmid intratumoral gene electrotransfer in patients with basal cell carcinoma in head and neck region. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2025; 51:109574. [PMID: 39799833 DOI: 10.1016/j.ejso.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION In the treatment of cancer, immunomodulatory approaches are developed to support the organism in fighting cancer or to enhance the immunomodulatory effects of local ablative techniques. To this end, we conducted an interventional, open-label, single-arm Phase I trial to evaluate the safety and tolerability of intratumoral phIL12 plasmid DNA gene electrotransfer as primary objectives. METHODS The study was dose-escalating with 3 consecutive cohorts of 3 patients per phIL12 dose level (0.5 mg/ml, 1 mg/ml or 2 mg/ml) according to a matched 3 + 3 design. Recruitment of patients was staggered. The waiting period was 30 days after treatment of the previous patient, based on the expected duration of acute and subacute toxicity. RESULTS The results of this phase I clinical trial in basal cell carcinoma demonstrated the feasibility and safety of the phIL12 plasmid by gene electrotransfer. We were able to demonstrate that phIL12 gene electrotransfer induced local IL-12 production, which was accompanied with IFN-γ expression. Triggering of the immune response was demonstrated by increased infiltration of immune cells and some antitumor effect. Based on these data, we would recommend the use of a concentration of 2 mg/ml of the plasmid in future trials. CONCLUSION The trial lays the foundation for future Phase II clinical trials in which phIL12 gene electrotransfer is used in combination with local tumor-ablative approaches, such as electrochemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Primoz Strojan
- Institute of Oncology Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Tanja Jesenko
- Institute of Oncology Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | - Masa Omerzel
- Institute of Oncology Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Slovenia
| | - Crt Jamsek
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Slovenia
| | - Ales Groselj
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Slovenia
| | - Ursa Lampreht Tratar
- Institute of Oncology Ljubljana, Slovenia; Veterinary Faculty, University of Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Gorana Gasljevic
- Institute of Oncology Ljubljana, Slovenia; Medical Faculty, University of Maribor, Slovenia
| | - Alojz Ihan
- Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Matjaz Peterka
- COBIK-Centre of Excellence for Biosensors, Instrumentation and Process Control, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Slovenia.
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Slovenia.
| |
Collapse
|
2
|
Markelc B, Jesenko T, Kranjc Brezar S, Omerzel M, Lampreht Tratar U, Rencelj A, Matkovic U, Znidar K, Kos S, Levpuscek K, Pisljar Z, Kesar U, Komel T, Bozic T, Tuljak A, Hudej R, Peterka M, Kamensek U, Cör A, Gasljevic G, Nemec Svete A, Tozon N, Sersa G, Cemazar M. Non-clinical evaluation of pmIL12 gene therapy for approval of the phase I clinical study. Sci Rep 2024; 14:22288. [PMID: 39333733 PMCID: PMC11437156 DOI: 10.1038/s41598-024-73314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Immunotherapeutic drugs are promising medicines for cancer treatment. A potential candidate for immunotherapy is interleukin-12 (IL-12), a cytokine well known for its ability to mediate antitumor activity. We developed a plasmid encoding human IL-12 devoid of an antibiotic resistance gene (phIL12). For the approval of phase I clinical trials in basal cell carcinoma (BCC), the regulatory agency requires non-clinical in vivo testing of the pharmacodynamic, pharmacokinetic and toxicological properties of the plasmid. As human IL-12 is not biologically active in mice, a mouse ortholog of the plasmid phIL12 (pmIL12) was evaluated. The evaluation demonstrated the antitumor effectiveness of the protein accompanied by immune cell infiltration. The plasmid was distributed throughout the body, and the amount of plasmid diminished over time in all organs except the skin around the tumor. The therapy did not cause any detectable systemic toxicity. The results of the non-clinical evaluation demonstrated the safety and efficacy of the pmIL12/phIL12 GET, and on the basis of these results, approval was obtained for the initiation of a phase I clinical study in BCC.
Collapse
Affiliation(s)
- Bostjan Markelc
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tanja Jesenko
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Masa Omerzel
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ursa Lampreht Tratar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Andrej Rencelj
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | - Urska Matkovic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Spela Kos
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | - Kristina Levpuscek
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ziva Pisljar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ursa Kesar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6310, Izola, Slovenia
| | - Tim Bozic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
| | | | | | | | - Urska Kamensek
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Andrej Cör
- Orthopaedic Hospital Valdoltra, 6280, Ankaran, Slovenia
- Faculty of Health Sciences, University of Primorska, 6310, Izola, Slovenia
| | - Gorana Gasljevic
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Maribor, 2000, Maribor, Slovenia
| | | | - Natasa Tozon
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, 1000, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, 6310, Izola, Slovenia.
| |
Collapse
|
3
|
De Robertis M, Lampreht Tratar U, Signori E, Komel T, Čemažar M. Mouse Melanoma Model in Tumor Vaccines and Immunotherapy Research. Methods Mol Biol 2024; 2773:157-163. [PMID: 38236544 DOI: 10.1007/978-1-0716-3714-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Efficacy of novel cancer immunization protocols could be tested in cell line-derived xenograft tumor models (CDX), which are based on the implantation of human tumor cell lines into mice for the development of different tumors by numerous means, such as subcutaneous implantation and orthotopic, venial, or peritoneal injections. However, the disadvantages of this model are the biological alteration of the derived cells or the inability of the cell lines to accurately reflect the complexity of tumor heterogeneity. Therefore, syngeneic mouse models, which offer a relatively simple grafting technique, preservation of lineage hierarchy, and the ability to generate tumors in as little as 2-8 weeks, are being used to study potential future applications in medical treatment, particularly immunotherapies. Here, we describe a B16.F10 C57Bl/6 mouse melanoma model we selected for therapeutic studies employing IL-2 and IL-12 immunization protocols. Procedure of tumor cells inoculation and melanoma development in mice is described in detail, as first and necessary set-up for successful immunization experiments.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari 'A. Moro', Bari, Italy
| | - Urša Lampreht Tratar
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Isola, Slovenia.
| |
Collapse
|
4
|
Lisec B, Markelc B, Ursic Valentinuzzi K, Sersa G, Cemazar M. The effectiveness of calcium electroporation combined with gene electrotransfer of a plasmid encoding IL-12 is tumor type-dependent. Front Immunol 2023; 14:1189960. [PMID: 37304301 PMCID: PMC10247961 DOI: 10.3389/fimmu.2023.1189960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction In calcium electroporation (CaEP), electroporation enables the cellular uptake of supraphysiological concentrations of Ca2+, causing the induction of cell death. The effectiveness of CaEP has already been evaluated in clinical trials; however, confirmatory preclinical studies are still needed to further elucidate its effectiveness and underlying mechanisms. Here, we tested and compared its efficiency on two different tumor models to electrochemotherapy (ECT) and in combination with gene electrotransfer (GET) of a plasmid encoding interleukin-12 (IL-12). We hypothesized that IL-12 potentiates the antitumor effect of local ablative therapies as CaEP and ECT. Methods The effect of CaEP was tested in vitro as well as in vivo in murine melanoma B16-F10 and murine mammary carcinoma 4T1 in comparison to ECT with bleomycin. Specifically, the treatment efficacy of CaEP with increasing calcium concentrations alone or in combination with IL-12 GET in different treatment protocols was investigated. We closely examined the tumor microenvironment by immunofluorescence staining of immune cells, as well as blood vessels and proliferating cells. Results In vitro, CaEP and ECT with bleomycin reduced cell viability in a dose-dependent manner. We observed no differences in sensitivity between the two cell lines. A dose-dependent response was also observed in vivo; however, the efficacy was better in 4T1 tumors than in B16-F10 tumors. In 4T1 tumors, CaEP with 250 mM Ca resulted in more than 30 days of growth delay, which was comparable to ECT with bleomycin. In contrast, adjuvant peritumoral application of IL-12 GET after CaEP prolonged the survival of B16-F10, but not 4T1-bearing mice. Moreover, CaEP with peritumoral IL-12 GET modified tumor immune cell populations and tumor vasculature. Conclusions Mice bearing 4T1 tumors responded better to CaEP in vivo than mice bearing B16-F10 tumors, even though a similar response was observed in vitro. Namely, one of the most important factors might be involvement of the immune system. This was confirmed by the combination of CaEP or ECT with IL-12 GET, which further enhanced antitumor effectiveness. However, the potentiation of CaEP effectiveness was also highly dependent on tumor type; it was more pronounced in poorly immunogenic B16-F10 tumors compared to moderately immunogenic 4T1 tumors.
Collapse
Affiliation(s)
- Barbara Lisec
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
5
|
Remic T, Sersa G, Levpuscek K, Lampreht Tratar U, Ursic Valentinuzzi K, Cör A, Kamensek U. Tumor cell-based vaccine contributes to local tumor irradiation by eliciting a tumor model-dependent systemic immune response. Front Immunol 2022; 13:974912. [PMID: 36131926 PMCID: PMC9483914 DOI: 10.3389/fimmu.2022.974912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Multimodal treatment approaches, such as radio-immunotherapy, necessitate regimen optimization and the investigation of the interactions of different modalities. The aim of this study was two-fold. Firstly, to select the most effective combination of irradiation and the previously developed tumor cell-based vaccine and then to provide insight into the immune response to the selected combinatorial treatment. The study was performed in immunologically different murine tumor models: B16F10 melanoma and CT26 colorectal carcinoma. The most effective combinatorial treatment was selected by comparing three different IR regimens and three different vaccination regimens. We determined the local immune response by investigating immune cell infiltration at the vaccination site and in tumors. Lastly, we determined the systemic immune response by investigating the amount of tumor-specific effector lymphocytes in draining lymph nodes. The selected most effective combinatorial treatment was 5× 5 Gy in combination with concomitant single-dose vaccination (B16F10) or with concomitant multi-dose vaccination (CT26). The combinatorial treatment successfully elicited a local immune response at the vaccination site and in tumors in both tumor models. It also resulted in the highest amount of tumor-specific effector lymphocytes in draining lymph nodes in the B16F10, but not in the CT26 tumor-bearing mice. However, the amount of tumor-specific effector lymphocytes was intrinsically higher in the CT26 than in the B16F10 tumor model. Upon the selection of the most effective combinatorial treatment, we demonstrated that the vaccine elicits an immune response and contributes to the antitumor efficacy of tumor irradiation. However, this interaction is multi-faceted and appears to be dependent on the tumor immunogenicity.
Collapse
Affiliation(s)
- Tinkara Remic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Levpuscek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Cör
- Department of Research, Valdoltra Orthopaedic Hospital, Ankaran, Slovenia
- Faculty of Education, University of Primorska, Koper, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Urska Kamensek,
| |
Collapse
|
6
|
In vitro and in vivo correlation of skin and cellular responses to nucleic acid delivery. Biomed Pharmacother 2022; 150:113088. [PMID: 35658241 PMCID: PMC10010056 DOI: 10.1016/j.biopha.2022.113088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Skin, the largest organ in the body, provides a passive physical barrier against infection and contains elements of the innate and adaptive immune systems. Skin consists of various cells, including keratinocytes, fibroblasts, endothelial cells and immune cells. This diversity of cell types could be important to gene therapies because DNA transfection could elicit different responses in different cell types. Previously, we observed the upregulation and activation of cytosolic DNA sensing pathways in several non-tumor and tumor cell types as well in tumors after the electroporation (electrotransfer) of plasmid DNA (pDNA). Based on this research and the innate immunogenicity of skin, we correlated the effects of pDNA electrotransfer to fibroblasts and keratinocytes to mouse skin using reverse transcription real-time PCR (RT-qPCR) and several types of protein quantification. After pDNA electrotransfer, the mRNAs of the putative DNA sensors DEAD (AspGlu-Ala-Asp) box polypeptide 60 (Ddx60), absent in melanoma 2 (Aim2), Z-DNA binding protein 1 (Zbp1), interferon activated gene 202 (Ifi202), and interferon-inducible protein 204 (Ifi204) were upregulated in keratinocytes, while Ddx60, Zbp1 and Ifi204 were upregulated in fibroblasts. Increased levels of the mRNAs and proteins of several cytokines and chemokines were detected and varied based on cell type. Mouse skin experiments in vivo confirmed our in vitro results with increased expression of putative DNA sensor mRNAs and of the mRNAs and proteins of several cytokines and chemokines. Finally, with immunofluorescent staining, we demonstrated that skin keratinocytes, fibroblasts and macrophages contribute to the immune response observed after pDNA electrotransfer.
Collapse
|
7
|
Maintenance and gene electrotransfer efficiency of antibiotic resistance gene-free plasmids encoding mouse, canine and human interleukin-12 orthologues. Heliyon 2022; 8:e08879. [PMID: 35265755 PMCID: PMC8899673 DOI: 10.1016/j.heliyon.2022.e08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Interleukin 12 (IL-12) is a cytokine used as a therapeutic molecule in cancer immunotherapy. Gene electrotransfer mediated delivery of IL-12 gene has reached clinical evaluation in the USA using a plasmid that in addition to IL-12 gene also carry an antibiotic resistance gene needed for its production in bacteria. In Europe however, European Medicines Agency recommends against the use of antibiotics during the production of clinical grade plasmids. We have prepared several antibiotic resistance gene-free plasmids using an antibiotic-free selection strategy called operator-repressor titration, including plasmids encoding mouse, canine and human IL-12 orthologues. The aim of this study was to evaluate the maintenance of these plasmids in bacterial culture and test their transfection efficiency using gene electrotransfer. Plasmid maintenance was evaluated by determining plasmid yields and topologies after subculturing transformed bacteria. Transfection efficiency was evaluated by determining the plasmid copy number, expression and cytotoxicity after gene electrotransfer to mouse, canine and human melanoma cells. The results demonstrated that our IL-12 plasmids without an antibiotic resistance gene are stably maintained in bacteria and provide sufficient IL-12 expression after in vitro gene electrotransfer; therefore, they have the potential to proceed to further in vivo evaluation studies.
Collapse
|
8
|
Zamponi M, Petrella R, Mollica PA. Picosecond Pulsed Electric Fields and Promise in Neurodegeneration Research. Bioelectricity 2021. [DOI: 10.1089/bioe.2021.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Martina Zamponi
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, Virginia, USA
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, USA
| | - Ross Petrella
- Joint Department of Biomedical Engineering at the University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| | - Peter A. Mollica
- School of Medical Diagnostic and Translational Sciences, Old Dominion University, Norfolk, Virginia, USA
- Molecular Diagnostics Laboratory, Sentara Norfolk General Hospital, Norfolk, Virginia, USA
| |
Collapse
|
9
|
da Luz JCDS, Antunes F, Clavijo-Salomon MA, Signori E, Tessarollo NG, Strauss BE. Clinical Applications and Immunological Aspects of Electroporation-Based Therapies. Vaccines (Basel) 2021; 9:727. [PMID: 34358144 PMCID: PMC8310106 DOI: 10.3390/vaccines9070727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology.
Collapse
Affiliation(s)
- Jean Carlos dos Santos da Luz
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Fernanda Antunes
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | | | - Emanuela Signori
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Nayara Gusmão Tessarollo
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| | - Bryan E. Strauss
- Viral Vector Laboratory, Cancer Institute of São Paulo, University of São Paulo, São Paulo 01246-000, Brazil; (J.C.d.S.d.L.); (F.A.); (N.G.T.)
| |
Collapse
|
10
|
Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, Pesole G, Signori E, Sersa G, Cemazar M. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry 2021; 141:107843. [PMID: 34139572 DOI: 10.1016/j.bioelechem.2021.107843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy has become an important approach for treating cancer, and electroporation represents a technology for introducing therapeutic genes into a cell. An example of cancer gene therapy relying on gene electrotransfer is the use of immunomodulatory cytokines, such as interleukin 2 (IL-2) and 12 (IL-12), which directly stimulate immune cells at the tumour site. The aim of our study was to determine the effects of gene electrotransfer with two plasmids encoding IL-2 and IL-12 in vitro and in vivo. Two different pulse protocols, known as EP1 (600 V/cm, 5 ms, 1 Hz, 8 pulses) and EP2 (1300 V/cm, 100 µs, 1 Hz, 8 pulses), were assessed in vitro for application in subsequent in vivo experiments. In the in vivo experiment, gene electrotransfer of pIL-2 and pIL-12 using the EP1 protocol was performed in B16.F10 murine melanoma. Combined treatment of tumours using pIL2 and pIL12 induced significant tumour growth delay and 71% complete tumour regression. Furthermore, in tumours coexpressing IL-2 and IL-12, increased accumulation of dendritic cells and M1 macrophages was obtained along with the activation of proinflammatory signals, resulting in CD4 + and CD8 + T-lymphocyte recruitment and immune memory development in the mice. In conclusion, we demonstrated high antitumour efficacy of combined IL-2 and IL-12 gene electrotransfer protocols in low-immunogenicity murine B16.F10 melanoma.
Collapse
Affiliation(s)
- T Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - S Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - M Mastrodonato
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Scillitani
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy; National Research Council-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology (CNR-IBIOM), Via Amendola 122 O, 70126, Bari, Italy
| | - E Signori
- National Research Council-Institute of Translational Pharmacology (CNR-IFT), Via Fosso del Cavaliere 100, Rome, Italy
| | - G Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - M Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
11
|
Ursic K, Kos S, Kamensek U, Cemazar M, Miceska S, Markelc B, Bucek S, Staresinic B, Kloboves Prevodnik V, Heller R, Sersa G. Potentiation of electrochemotherapy effectiveness by immunostimulation with IL-12 gene electrotransfer in mice is dependent on tumor immune status. J Control Release 2021; 332:623-635. [PMID: 33705828 DOI: 10.1016/j.jconrel.2021.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Electrochemotherapy (ECT) exhibits high therapeutic effectiveness in the clinic, achieving up to 80% local tumor control but without a systemic (abscopal) effect. Therefore, we designed a combination therapy consisting of ECT via intratumoral application of bleomycin, oxaliplatin or cisplatin with peritumoral gene electrotransfer of a plasmid encoding interleukin-12 (p. t. IL-12 GET). Our hypothesis was that p. t. IL-12 GET potentiates the effect of ECT on local and systemic levels and that the potentiation varies depending on tumor immune status. Therefore, the combination therapy was tested in three immunologically different murine tumor models. In poorly immunogenic B16F10 melanoma, IL-12 potentiated the antitumor effect of ECT with biologically equivalent low doses of cisplatin, oxaliplatin or bleomycin. The most pronounced potentiation was observed after ECT using cisplatin, resulting in a complete response rate of 38% and an abscopal effect. Compared to B16F10 melanoma, better responsiveness to ECT was observed in more immunogenic 4 T1 mammary carcinoma and CT26 colorectal carcinoma. In both models, p. t. IL-12 GET did not significantly improve the therapeutic outcome of ECT using any of the chemotherapeutic drugs. Collectively, the effectiveness of the combination therapy depends on tumor immune status. ECT was more effective in more immunogenic tumors, but GET exhibited greater contribution in less immunogenic tumors. Thus, the selection of the therapy, namely, either ECT alone or combination therapy with p. t. IL-12, should be predominantly based on tumor immune status.
Collapse
Affiliation(s)
- Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia.
| | - Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia.
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - Simona Miceska
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Simon Bucek
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Barbara Staresinic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia.
| | - Veronika Kloboves Prevodnik
- Department of Cytopathology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, FL-33612 Tampa, USA.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Calin VL, Mihailescu M, Tarba N, Sandu AM, Scarlat E, Moisescu MG, Savopol T. Digital holographic microscopy evaluation of dynamic cell response to electroporation. BIOMEDICAL OPTICS EXPRESS 2021; 12:2519-2530. [PMID: 33996245 PMCID: PMC8086444 DOI: 10.1364/boe.421959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 05/30/2023]
Abstract
Phase-derived parameters and time autocorrelation functions were used to analyze the behavior of murine B16 cells exposed to different amplitudes of electroporation pulses. Cells were observed using an off-axis digital holographic microscope equipped with a fast camera. Series of quantitative phase images of cells were reconstructed and further processed using MATLAB codes. Projected area, dry mass density, and entropy proved to be predictors for permeabilized cells that swell or collapse. Autocorrelation functions of phase fluctuations in different regions of the cell showed a good correlation with the local effectiveness of permeabilization.
Collapse
Affiliation(s)
- Violeta L. Calin
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, Doctoral School of Electrical Engineering, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Eugen Scarlat
- Digital Holography Imaging and Processing Laboratory, Physics Department, Faculty of Applied Sciences, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Mihaela G. Moisescu
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania
| |
Collapse
|
13
|
Bozic T, Sersa G, Kranjc Brezar S, Cemazar M, Markelc B. Gene electrotransfer of proinflammatory chemokines CCL5 and CCL17 as a novel approach of modifying cytokine expression profile in the tumor microenvironment. Bioelectrochemistry 2021; 140:107795. [PMID: 33789177 DOI: 10.1016/j.bioelechem.2021.107795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
The effectiveness of immunotherapy highly correlates with the degree and the type of infiltrated immune cells in the tumor tissue. Treatments based on modifying the immune cell infiltrate of the tumor microenvironment are thus gaining momentum. Therefore, the aim of our study was to investigate the effects of gene therapy with two proinflammatory chemokines CCL5 and CCL17 on inflammatory cytokine expression profile and immune cell infiltrate in two murine breast tumor models, 4T1 and E0771, and two murine colon tumor models, CT26 and MC38. In vitro, lipofection of plasmid DNA encoding CCL5 or CCL17 resulted in changes in the cytokine expression profile similar to control plasmid DNA, implying that the main driver of these changes was the entry of foreign DNA into the cell's cytosol. In vivo, gene electrotransfer resulted in high expression levels of both Ccl5 and Ccl17 transgenes in the 4T1 and CT26 tumor models. Besides a minor increase in the survival of the treated mice, the therapy also resulted in increased expression of Cxcl9 and Ifnγ, potent activators of the immune system, in CT26 tumors. However, this was not recapitulated in changes of TME, implying that a further refinement of the dosing schedule is needed.
Collapse
Affiliation(s)
- T Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - G Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - S Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia
| | - M Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| | - B Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, Zaharoff DA. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597. [PMID: 33178203 PMCID: PMC7593768 DOI: 10.3389/fimmu.2020.575597] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Interleukin-12 (IL-12) is a potent, pro-inflammatory type 1 cytokine that has long been studied as a potential immunotherapy for cancer. Unfortunately, IL-12's remarkable antitumor efficacy in preclinical models has yet to be replicated in humans. Early clinical trials in the mid-1990's showed that systemic delivery of IL-12 incurred dose-limiting toxicities. Nevertheless, IL-12's pleiotropic activity, i.e., its ability to engage multiple effector mechanisms and reverse tumor-induced immunosuppression, continues to entice cancer researchers. The development of strategies which maximize IL-12 delivery to the tumor microenvironment while minimizing systemic exposure are of increasing interest. Diverse IL-12 delivery systems, from immunocytokine fusions to polymeric nanoparticles, have demonstrated robust antitumor immunity with reduced adverse events in preclinical studies. Several localized IL-12 delivery approaches have recently reached the clinical stage with several more at the precipice of translation. Taken together, localized delivery systems are supporting an IL-12 renaissance which may finally allow this potent cytokine to fulfill its considerable clinical potential. This review begins with a brief historical account of cytokine monotherapies and describes how IL-12 went from promising new cure to ostracized black sheep following multiple on-study deaths. The bulk of this comprehensive review focuses on developments in diverse localized delivery strategies for IL-12-based cancer immunotherapies. Advantages and limitations of different delivery technologies are highlighted. Finally, perspectives on how IL-12-based immunotherapies may be utilized for widespread clinical application in the very near future are offered.
Collapse
Affiliation(s)
- Khue G Nguyen
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Maura R Vrabel
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Siena M Mantooth
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jared J Hopkins
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Ethan S Wagner
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Taylor A Gabaldon
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - David A Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Nemec A, Milevoj N, Lampreht Tratar U, Serša G, Čemažar M, Tozon N. Electroporation-Based Treatments in Small Animal Veterinary Oral and Maxillofacial Oncology. Front Vet Sci 2020; 7:575911. [PMID: 33134356 PMCID: PMC7550461 DOI: 10.3389/fvets.2020.575911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Electroporation is a method of inducing an increase in permeability of the cell membrane through the application of an electric field and can be used as a delivery method for introducing molecules of interest (e.g., chemotherapeutics or plasmid DNA) into cells. Electroporation-based treatments (i.e., electrochemotherapy, gene electrotransfer, and their combinations) have been shown to be safe and effective in veterinary oncology, but they are currently mostly recommended for the treatment of those solid tumors for which clients have declined surgery and/or radiotherapy. Published data show that electroporation-based treatments are also safe, simple, fast and cost-effective treatment alternatives for selected oral and maxillofacial tumors, especially small squamous cell carcinoma and malignant melanoma tumors not involving the bone in dogs. In these patients, a good local response to treatment is expected to result in increased survival time with good quality of life. Despite emerging evidence of the clinical efficacy of electroporation-based treatments for oral and maxillofacial tumors, further investigation is needed to optimize treatment protocols, improve clinical data reporting and better understand the mechanisms of patients' response to the treatment.
Collapse
Affiliation(s)
- Ana Nemec
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Milevoj
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Gregor Serša
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Čemažar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Nataša Tozon
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Maglietti F, Tellado M, De Robertis M, Michinski S, Fernández J, Signori E, Marshall G. Electroporation as the Immunotherapy Strategy for Cancer in Veterinary Medicine: State of the Art in Latin America. Vaccines (Basel) 2020; 8:E537. [PMID: 32957424 PMCID: PMC7564659 DOI: 10.3390/vaccines8030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Electroporation is a technology that increases cell membrane permeability by the application of electric pulses. Electrochemotherapy (ECT), the best-known application of electroporation, is a very effective local treatment for tumors of any histology in human and veterinary medicine. It induces a local yet robust immune response that is responsible for its high effectiveness. Gene electrotransfer (GET), used in research to produce a systemic immune response against cancer, is another electroporation-based treatment that is very appealing for its effectiveness, low cost, and simplicity. In this review, we present the immune effect of electroporation-based treatments and analyze the results of the vast majority of the published papers related to immune response enhancement by gene electrotransfer in companion animals with spontaneous tumors. In addition, we present a brief history of the initial steps and the state of the art of the electroporation-based treatments in Latin America. They have the potential to become an essential form of immunotherapy in the region. This review gives insight into the subject and helps to choose promising research lines for future work; it also helps to select the adequate treatment parameters for performing a successful application of this technology.
Collapse
Affiliation(s)
- Felipe Maglietti
- Instituto Universitario del Hospital Italiano de Buenos Aires, CONICET, Buenos Aires 1199, Argentina
| | - Matías Tellado
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Mariangela De Robertis
- CNR-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology, 70126 Bari, Italy;
- Department of Bioscience, Biotechnology, and Biopharmaceutics, University of Bari, 70126 Bari, Italy
| | - Sebastián Michinski
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| | - Juan Fernández
- VetOncologia, Veterinary Oncology Clinic, Buenos Aires 1408, Argentina; (M.T.); (J.F.)
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Guillermo Marshall
- Instituto de Física del Plasma, DF, FCEyN, UBA-CONICET, Buenos Aires 1428, Argentina; (S.M.); (G.M.)
| |
Collapse
|
17
|
Yuan C, Liu Y, Wang T, Sun M, Chen X. Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4774-4798. [DOI: 10.1021/acsbiomaterials.0c00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Mengjie Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, P.R. China
| |
Collapse
|
18
|
Intratumoral Gene Electrotransfer of Plasmid DNA Encoding shRNA against Melanoma Cell Adhesion Molecule Radiosensitizes Tumors by Antivascular Effects and Activation of an Immune Response. Vaccines (Basel) 2020; 8:vaccines8010135. [PMID: 32204304 PMCID: PMC7157247 DOI: 10.3390/vaccines8010135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, radiotherapy was combined with the gene electrotransfer (GET) of plasmid encoding shRNA against melanoma cell adhesion molecule (pMCAM) with dual action, which was a vascular-targeted effect mediated by the silencing of MCAM and an immunological effect mediated by the presence of plasmid DNA in the cytosol-activating DNA sensors. The effects and underlying mechanisms of therapy were evaluated in more immunogenic B16F10 melanoma and less immunogenic TS/A carcinoma. The silencing of MCAM potentiated the effect of irradiation (IR) in both tumor models. Combined therapy resulted in 81% complete responses (CR) in melanoma and 27% CR in carcinoma. Moreover, after the secondary challenge of cured mice, 59% of mice were resistant to challenge with melanoma cells, and none were resistant to carcinoma. Combined therapy reduced the number of blood vessels; induced hypoxia, apoptosis, and necrosis; and reduced cell proliferation in both tumor models. In addition, the significant increase of infiltrating immune cells was observed in both tumor models but more so in melanoma, where the expression of IL-12 and TNF-α was determined as well. Our results indicate that the combined therapy exerts both antiangiogenic and immune responses that contribute to the antitumor effect. However, tumor immunological status is crucial for a sufficient immune system contribution to the overall antitumor effect.
Collapse
|
19
|
Remic T, Sersa G, Ursic K, Cemazar M, Kamensek U. Development of Tumor Cell-Based Vaccine with IL-12 Gene Electrotransfer as Adjuvant. Vaccines (Basel) 2020; 8:vaccines8010111. [PMID: 32121641 PMCID: PMC7157224 DOI: 10.3390/vaccines8010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Tumor cell-based vaccines use tumor cells as a source of tumor-associated antigens. In our study, we aimed to develop and test a tumor vaccine composed of tumor cells killed by irradiation combined with in vivo interleukin-12 gene electrotransfer as an adjuvant. Vaccination was performed in the skin of B16-F10 malignant melanoma or CT26 colorectal carcinoma tumor-bearing mice, distant from the tumor site and combined with concurrent tumor irradiation. Vaccination was also performed before tumor inoculation in both tumor models and tumor outgrowth was followed. The antitumor efficacy of vaccination in combination with tumor irradiation or preventative vaccination varied between the tumor models. A synergistic effect between vaccination and irradiation was observed in the B16-F10, but not in the CT26 tumor model. In contrast, up to 56% of mice were protected from tumor outgrowth in the CT26 tumor model and none were protected in the B16-F10 tumor model. The results suggest a greater contribution of the therapeutic vaccination to tumor irradiation in a less immunogenic B16-F10 tumor model, in contrast to preventative vaccination, which has shown greater efficacy in a more immunogenic CT26 tumor model. Upon further optimization of the vaccination and irradiation regimen, our vaccine could present an alternative tumor cell-based vaccine.
Collapse
Affiliation(s)
- Tinkara Remic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Correspondence:
| |
Collapse
|
20
|
Kos S, Lopes A, Preat V, Cemazar M, Lampreht Tratar U, Ucakar B, Vanvarenberg K, Sersa G, Vandermeulen G. Intradermal DNA vaccination combined with dual CTLA-4 and PD-1 blockade provides robust tumor immunity in murine melanoma. PLoS One 2019; 14:e0217762. [PMID: 31150505 PMCID: PMC6544376 DOI: 10.1371/journal.pone.0217762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
We aimed to explore whether the combination of intradermal DNA vaccination, to boost immune response against melanoma antigens, and immune checkpoint blockade, to alleviate immunosuppression, improves antitumor effectiveness in a murine B16F10 melanoma tumor model. Compared to single treatments, a combination of intradermal DNA vaccination (ovalbumin or gp100 plasmid adjuvanted with IL12 plasmid) and immune checkpoint CTLA-4/PD-1 blockade resulted in a significant delay in tumor growth and prolonged survival of treated mice. Strong activation of the immune response induced by combined treatment resulted in a significant antigen-specific immune response, with elevated production of antigen-specific IgG antibodies and increased intratumoral CD8+ infiltration. These results indicate a potential application of the combined DNA vaccination and immune checkpoint blockade, specifically, to enhance the efficacy of DNA vaccines and to overcome the resistance to immune checkpoint inhibitors in certain cancer types.
Collapse
Affiliation(s)
- Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Alessandra Lopes
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Veronique Preat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail: (GS); (VP)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (GS); (VP)
| | - Gaelle Vandermeulen
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
21
|
Skrombolas D, Sullivan M, Frelinger JG. Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9. J Interferon Cytokine Res 2019; 39:233-245. [PMID: 30848689 DOI: 10.1089/jir.2018.0129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin-12 (IL-12) is a pleiotropic cytokine that has profound effects on many aspects of cell-mediated responses and can enhance antitumor responses in experimental models. IL-12 has been tested clinically, however, side-effects have limited its use. We are developing an attenuated form of IL-12 whose biological activity could be restricted to sites of tumors by taking advantage of overexpressed tumor proteases that can activate the cytokine. We constructed a panel of fusion proteins (FPs) consisting of IL-12 joined to a specific inhibitor connected by a protease cleavage sequence (cs). We first identified a panel of single-chain Fragment variable (scFv) that bind to 3 independent epitopes on IL-12 and then incorporated them into separate IL-12 FPs containing either a matrix metalloproteinase (MMP) cs or a scrambled (scram) control cs. The intact IL-12 FPs showed attenuation in IL-12 activity compared to free IL-12 in 2 separate in vitro functional assays; proliferation of CTLL-2 and interferon-gamma (IFN-γ) induction by spleen cells. Furthermore, the FP containing the MMPcs showed an increase in biological activity of IL-12 in vitro when cleaved by MMP9. This FP strategy could be applied to other immunomodulators and potentially reduce unwanted side-effects observed with systemic delivery thus improving cytokine immunotherapy strategies.
Collapse
Affiliation(s)
- Denise Skrombolas
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Mark Sullivan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - John G Frelinger
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
22
|
Pasquet L, Chabot S, Bellard E, Markelc B, Rols MP, Reynes JP, Tiraby G, Couillaud F, Teissie J, Golzio M. Safe and efficient novel approach for non-invasive gene electrotransfer to skin. Sci Rep 2018; 8:16833. [PMID: 30443028 PMCID: PMC6237991 DOI: 10.1038/s41598-018-34968-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Gene transfer into cells or tissue by application of electric pulses (i.e. gene electrotransfer (GET)) is a non-viral gene delivery method that is becoming increasingly attractive for clinical applications. In order to make GET progress to wide clinical usage its efficacy needs to be improved and the safety of the method has to be confirmed. Therefore, the aim of our study was to increase GET efficacy in skin, by optimizing electric pulse parameters and the design of electrodes. We evaluated the safety of our novel approach by assaying the thermal stress effect of GET conditions and the biodistribution of a cytokine expressing plasmid. Transfection efficacy of different pulse parameters was determined using two reporter genes encoding for the green fluorescent protein (GFP) and the tdTomato fluorescent protein, respectively. GET was performed using non-invasive contact electrodes immediately after intradermal injection of plasmid DNA into mouse skin. Fluorescence imaging of transfected skin showed that a sophistication in the pulse parameters could be selected to get greater transfection efficacy in comparison to the standard ones. Delivery of electric pulses only mildly induced expression of the heat shock protein Hsp70 in a luminescent reporting transgenic mouse model, demonstrating that there were no drastic stress effects. The plasmid was not detected in other organs and was found only at the site of treatment for a limited period of time. In conclusion, we set up a novel approach for GET combining new electric field parameters with high voltage short pulses and medium voltage long pulses using contact electrodes, to obtain a high expression of both fluorescent reporter and therapeutic genes while showing full safety in living animals.
Collapse
Affiliation(s)
- Lise Pasquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Sophie Chabot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France
| | - Jean-Paul Reynes
- Invivogen Cayla SAS, 5 rue Jean Rodier, Zone industrielle de Montaudran, 31400, Toulouse, France
| | - Gérard Tiraby
- Invivogen Cayla SAS, 5 rue Jean Rodier, Zone industrielle de Montaudran, 31400, Toulouse, France
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Thérapies innovantes en Oncologie (IMOTION) EA 7435, Université de Bordeaux, Bordeaux, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, 205 Route de Narbonne, Toulouse, F-31077, France.
| |
Collapse
|
23
|
Lampreht Tratar U, Kos S, Kamensek U, Ota M, Tozon N, Sersa G, Cemazar M. Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model. Cancer Gene Ther 2018; 25:260-273. [PMID: 29593358 DOI: 10.1038/s41417-018-0014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
The electrotransfer of interleukin-12 (IL-12) has been demonstrated as an efficient and safe treatment for tumors in veterinary oncology. However, the plasmids used encode human or feline IL-12 and harbor the gene for antibiotic resistance. Therefore, our aim was to construct plasmids encoding canine IL-12 without the antibiotic resistance genes driven by two different promoters: constitutive and fibroblast-specific. The results obtained in vitro in different cell lines showed that following gene electrotransfer, the newly constructed plasmids had cytotoxicity and expression profiles comparable to plasmids with antibiotic resistance genes. Additionally, in vivo studies showed a statistically significant prolonged tumor growth delay of CMeC-1 tumors compared to control vehicle-treated mice after intratumoral gene electrotransfer. Besides the higher gene expression obtained by plasmids with constitutive promoters, the main difference between both plasmids was in the distribution of the transgene expression. Namely, after gene electrotransfer, plasmids with constitutive promoters showed an increase of serum IL-12, whereas the gene expression of IL-12, encoded by plasmids with fibroblast-specific promoters, was restricted to the tumor. Furthermore, after the gene electrotransfer of plasmids with constitutive promoters, granzyme B-positive cells were detected in the tumor and spleen, indicating a systemic effect of the therapy. Therefore, plasmids with different promoters present valuable tools for focused therapy with local or systemic effects. The results of the present study demonstrated that plasmids encoding canine IL-12 under constitutive and fibroblast-specific promoters without the gene for antibiotic resistance provide feasible tools for controlled gene delivery that could be used for the treatment of client-owned dogs.
Collapse
Affiliation(s)
- Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Maja Ota
- Department of Pathology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Natasa Tozon
- Clinic for Surgery and Small Animals, University of Ljubljana, Veterinary Faculty, Cesta v mestni log 47, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, Polje 42, Izola, 6310, Slovenia.
| |
Collapse
|
24
|
Kamensek U, Tesic N, Sersa G, Cemazar M. Clinically Usable Interleukin 12 Plasmid without an Antibiotic Resistance Gene: Functionality and Toxicity Study in Murine Melanoma Model. Cancers (Basel) 2018; 10:cancers10030060. [PMID: 29495490 PMCID: PMC5876635 DOI: 10.3390/cancers10030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/12/2018] [Accepted: 02/24/2018] [Indexed: 12/22/2022] Open
Abstract
Plasmids, which are currently used in interleukin 12 (IL-12) gene electrotransfer (GET) clinical trials in the USA, contain antibiotic resistance genes and are thus, according to the safety recommendation of the European Medicines Agency (EMA), not suitable for clinical trials in the EU. In the current study, our aim was to prepare an IL-12 plasmid without an antibiotic resistance gene and test its functionality and toxicity after GET in a preclinical B16F10 mouse melanoma model. The antibiotic resistance-free plasmid encoding the human IL-12 fusion gene linked to the p21 promoter, i.e., p21-hIL-12-ORT, was constructed using operator-repressor titration (ORT) technology. Next, the expression profile of the plasmid after GET was determined in B16F10 cells and tumors. Additionally, blood chemistry, hematological and histological changes, and antitumor response were evaluated after GET of the plasmid in melanoma tumors. The results demonstrated a good expression and safety profile of the p21-hIL-12-ORT GET and indications of efficacy. We hope that the obtained results will help to accelerate the transfer of this promising treatment from preclinical studies to clinical application in the EU.
Collapse
Affiliation(s)
- Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Natasa Tesic
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Isola, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Isola, Slovenia.
| |
Collapse
|
25
|
Kamensek U, Cemazar M, Lampreht Tratar U, Ursic K, Sersa G. Antitumor in situ vaccination effect of TNFα and IL-12 plasmid DNA electrotransfer in a murine melanoma model. Cancer Immunol Immunother 2018; 67:785-795. [PMID: 29468364 PMCID: PMC5928174 DOI: 10.1007/s00262-018-2133-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Gene electrotransfer (GET) is one of the most efficient non-viral gene therapy approaches for the localized transfer of multiple genes into tumors in vivo; therefore, it is especially promising for delivering different cytokines that are toxic if administered systemically. In this study, we used concomitant intratumoral GET of two cytokines: tumor necrosis factor alpha (TNFα), a potent cytotoxic cytokine to induce in situ vaccination, and interleukin 12 (IL-12), an immunostimulatory cytokine to boost the primed local immune response into a systemic one. After performing GET in murine melanoma tumors, both TNFα and IL-12 mRNA levels were significantly increased, which resulted in a pronounced delay in tumor growth of 27 days and a prolonged survival time of mice. An antitumor immune response was confirmed by extensive infiltration of immune cells in the tumor site, and expansion of the effector immune cells in the sentinel lymph nodes. Furthermore, the effect of in situ vaccination was indicated by the presence of vitiligo localized to the treatment area and resistance of the mice to secondary challenge with tumor cells. Intratumoral GET of two cytokines, one for in situ vaccination and one for an immune boost, proved feasible and effective in eliciting a potent and durable antitumor response; therefore, further studies of this approach are warranted.
Collapse
Affiliation(s)
- Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| |
Collapse
|