1
|
Vasseur L, Barbault F, Monari A. Interaction between Yersinia pestis Ail Outer Membrane Protein and the C-Terminal Domain of Human Vitronectin. J Phys Chem B 2024; 128:3929-3936. [PMID: 38619541 DOI: 10.1021/acs.jpcb.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Yersinia pestis, the causative agent of plague, is capable of evading the human immune system response by recruiting the plasma circulating vitronectin proteins, which act as a shield and avoid its lysis. Vitronectin recruitment is mediated by its interaction with the bacterial transmembrane protein Ail, protruding from the Y. pestis outer membrane. By using all-atom long-scale molecular dynamic simulations of Ail embedded in a realistic model of the bacterial membrane, we have shown that vitronectin forms a stable complex, mediated by interactions between the disordered moieties of the two proteins. The main amino acids driving the complexation have also been evidenced, thus favoring the possible rational design of specific peptides which, by inhibiting vitronectin recruitment, could act as original antibacterial agents.
Collapse
Affiliation(s)
- Laurine Vasseur
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| | | | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
2
|
Galloway DR, Li J, Nguyen NX, Falkenberg FW, Henning L, Krile R, Chou YL, Herron JN, Hale JS, Williamson ED. Co-formulation of the rF1V plague vaccine with depot-formulated cytokines enhances immunogenicity and efficacy to elicit protective responses against aerosol challenge in mice. Front Immunol 2024; 15:1277526. [PMID: 38605961 PMCID: PMC11007139 DOI: 10.3389/fimmu.2024.1277526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
This study evaluated a depot-formulated cytokine-based adjuvant to improve the efficacy of the recombinant F1V (rF1V) plague vaccine and examined the protective response following aerosol challenge in a murine model. The results of this study showed that co-formulation of the Alhydrogel-adsorbed rF1V plague fusion vaccine with the depot-formulated cytokines recombinant human interleukin 2 (rhuIL-2) and/or recombinant murine granulocyte macrophage colony-stimulating factor (rmGM-CSF) significantly enhances immunogenicity and significant protection at lower antigen doses against a lethal aerosol challenge. These results provide additional support for the co-application of the depot-formulated IL-2 and/or GM-CSF cytokines to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Darrell R. Galloway
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Jiahui Li
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | | | - Lisa Henning
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Robert Krile
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - Ying-Liang Chou
- Battelle Biomedical Research Center, Columbus, OH, United States
| | - James N. Herron
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - E. Diane Williamson
- Chemical Biological Radiological Division, Defense Science and Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| |
Collapse
|
3
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
4
|
Galloway DR, Nguyen NX, Li J, Houston N, Gregersen G, Williamson ED, Falkenberg FW, Herron JN, Hale JS. The magnitude of the germinal center B cell and T follicular helper cell response predicts long-lasting antibody titers to plague vaccination. Front Immunol 2022; 13:1017385. [PMID: 36389793 PMCID: PMC9650111 DOI: 10.3389/fimmu.2022.1017385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
The development of a safe and effective vaccine against Yersinia pestis, the causative organism for plague disease, remains an important global health priority. Studies have demonstrated effective immune-based protection against plague challenge that is induced by plague antigen subunit vaccination in an aqueous alhydrogel formulation; however, whether these candidate vaccines in this formulation and presentation, induce long-lasting immunological memory in the form of durable cellular and antibody recall responses has not been fully demonstrated. In this study, we analyzed germinal center T follicular helper and germinal center B cell responses following F1V and F1 + V plague subunit immunization of mice with vaccines formulated in various adjuvants. Our data demonstrate that recombinant plague protein immunization formulated with IL-2/GM-CSF cytokines bound to alhydrogel adjuvant drive an increase in the magnitude of the germinal center T follicular helper and germinal center B cell responses following primary immunization, compared to vaccines formulated with Alhydrogel adjuvant alone. In contrast, plague protein subunit immunization combined with CpG ODN bound to alhydrogel increased the magnitude and duration of the germinal center Tfh and B cell responses following booster immunization. Importantly, enhanced germinal center Tfh and B cell responses correlated with long-lasting and high F1V-specific antibody titers and more robust antibody recall responses to F1V re-exposure. These findings indicate that vaccine formulations that drive enhancement of the germinal center Tfh and B cell responses are critical for inducing durable plague-specific humoral immunity.
Collapse
Affiliation(s)
- Darrell R. Galloway
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nguyen X. Nguyen
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Jiahui Li
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Houston
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - Gage Gregersen
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - E. Diane Williamson
- Chemical Biological Radiological Division, Defense Science and Technology Laboratory (DSTL) Porton Down, Salisbury, United Kingdom
| | | | - James N. Herron
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, United States
| | - J. Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Sah R, Reda A, Mehta R, Mohapatra RK, Dhama K. A situation analysis of the current plague outbreak in the Demographic Republic of Congo and counteracting strategies - Correspondence. Int J Surg 2022; 105:106885. [PMID: 36084808 DOI: 10.1016/j.ijsu.2022.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, 44600, Nepal; Harvard Medical School, Boston, MA, 02115, USA.
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, 11651, Egypt
| | - Rachana Mehta
- National Public Health Laboratory, Kathmandu, 44600, Nepal
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, 758002, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, India
| |
Collapse
|
6
|
Bai Y, Rizzo MR, Parise C, Maes S, Eisen RJ. A Novel Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Yersinia pestis. Front Microbiol 2022; 13:863142. [PMID: 35464914 PMCID: PMC9022072 DOI: 10.3389/fmicb.2022.863142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Rapid detection of Yersinia pestis, the causative agent of plague, is essential during field investigations to enable prompt control measures for prevention of the spread of the disease. Affordable, efficient, reliable, and simple detection assays are extremely useful, particularly in plague-endemic regions with limited resources. We developed a loop-mediated isothermal amplification (LAMP) assay that detects Y. pestis within 30 min by simply incubating at 65°C on a dry bath heater. The assay targeted the caf1A gene that is situated on the pMT1 plasmid using six specific primers. Y. pestis presence is visually detected based on the color change in the reactions. For comparison of the assay performance, a real-time LAMP with fluorescent dye detection was conducted on a real-time PCR instrument using the same six primers. Sensitivity assessment showed that the limit of detection (LOD) was 0.2 and 0.03 pg when performed on the dry bath heater and on the real-time PCR instrument, respectively. The assay was 100% specific, having no cross-reactivity with closely related Yersinia spp. and other bacterial species. We tested the LAMP assay on field-collected fleas and showed that it successfully detected Y. pestis with identical results to that of a previously published pentaplex real-time PCR assay. These findings suggest that the relatively inexpensive and simpler LAMP assay could be used to support field investigations, yielding comparable results to more expensive and complex PCR assays.
Collapse
Affiliation(s)
- Ying Bai
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Maria Rosales Rizzo
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Christina Parise
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Sarah Maes
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| |
Collapse
|
7
|
Cama J, Leszczynski R, Tang PK, Khalid A, Lok V, Dowson CG, Ebata A. To Push or To Pull? In a Post-COVID World, Supporting and Incentivizing Antimicrobial Drug Development Must Become a Governmental Priority. ACS Infect Dis 2021; 7:2029-2042. [PMID: 33606496 PMCID: PMC7931625 DOI: 10.1021/acsinfecdis.0c00681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The COVID-19 pandemic has refocused attention worldwide on the dangers of infectious diseases, in terms of both global health and the effects on the world economy. Even in high income countries, health systems have been found wanting in dealing with the new infectious agent. However, the even greater long-term danger of antimicrobial resistance in pathogenic bacteria and fungi is still under-appreciated, especially among the general public. Although antimicrobial drug development faces significant scientific challenges, the gravest challenge at the moment appears to be economic, where the lack of a viable market has led to a collapse in drug development pipelines. There is therefore a critical need for governments across the world to further incentivize the development of antimicrobials. Most incentive strategies over the past decade have focused on so-called "push" incentives that bridge the costs of antimicrobial research and development, but these have been insufficient for reviving the pipeline. In this Perspective, we analyze the current incentive strategies in place for antimicrobial drug development, and focus on "pull" incentives, which instead aim to improve revenue generation and thereby resolve the antimicrobial market failure challenge. We further analyze these incentives in a broader "One Health" context and stress the importance of developing and enforcing strict protocols to ensure appropriate manufacturing practices and responsible use. Our analysis reiterates the importance of international cooperation, coordination across antimicrobial research, and sustained funding in tackling this significant global challenge. A failure to invest wisely and continuously to incentivize antimicrobial pipelines will have catastrophic consequences for global health and wellbeing in the years to come.
Collapse
Affiliation(s)
- J. Cama
- Living
Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.
- College
of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.
- ,
| | - R. Leszczynski
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
| | - P. K. Tang
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- Faculty
of Life Sciences and Medicine, King’s
College London, Great
Maze Pond, London SE1 1UK, U.K.
| | - A. Khalid
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School
of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, U.K.
| | - V. Lok
- Polygeia,
Global Health Student Think Tank, London, U.K.https://www.polygeia.com/
- School of
Biological and Chemical Sciences, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - C. G. Dowson
- School
of Life Sciences, Gibbet Hill Campus, University
of Warwick, Coventry CV4 7AL, U.K.
- Antibiotic
Research U.K., Genesis 5, York Science Park, Heslington, York YO10 5DQ, U.K.
| | - A. Ebata
- Institute
of Development Studies, Library Road, Brighton BN1 9RE, U.K.
| |
Collapse
|
8
|
Singh R, Pal V, Kumar M, Tripathi NK, Goel AK. Development of a PCR-lateral flow assay for rapid detection of Yersinia pestis, the causative agent of plague. Acta Trop 2021; 220:105958. [PMID: 34004173 DOI: 10.1016/j.actatropica.2021.105958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022]
Abstract
Plague is a zoonotic disease caused by Yersinia pestis, a Gram-negative, rod shaped coccobacillus, which is primarily found in rodents and can be transmitted to humans through flea bite. The disease has three major clinical forms bubonic (by flea bite), pneumonic (by respiratory droplets) and septicemic plague. Y. pestis is classified as a category 'A' agent by NIAID, USA due to its high mortality and easy person to person dissemination. The conventional diagnostic methods available for Y. pestis show cross-reactivity with other enteropathogenic bacteria making its detection difficult. There is a need to develop sensitive and specific molecular assay for accurate detection of Y. pestis. PCR is well suited molecular biology tool for rapid diagnosis of plague but after completion of thermal cycling steps, it requires additional time to analyze amplified product using agarose gel electrophoresis. In the present study, PCR assay coupled with lateral flow strips has been developed for rapid detection of Y. pestis. Lateral flow strips give an alternative to gel electrophoresis and permit easy and rapid detection of PCR products. The PCR was performed with 5' 6-FAM and biotin tagged primers specific for Y. pestis, targeting yihN gene located on chromosome. The PCR product was analyzed using lateral flow strips which yielded result within 2-3 minutes. The analytical sensitivity of PCR-lateral flow (PCR-LF) assay was 1 pg genomic DNA of Y. pestis and 500 copies of target DNA sequence harboured in a recombinant plasmid. The assay could detect Y. pestis DNA extracted from spiked human blood samples containing ≥104 CFU per mL of bacteria. The assay was found to be specific and did not cross react with other closely related bacterial species. The developed assay was highly specific, sensitive and also did not require agarose gel electrophoresis for post amplification analysis.
Collapse
Affiliation(s)
- Rita Singh
- Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Vijai Pal
- Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Manoj Kumar
- Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - N K Tripathi
- Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| | - A K Goel
- Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
9
|
Hu L, Zhao Y, Yang Y, Zhang W, Guo H, Niu D. Molecular Identification, Transcriptome Sequencing and Functional Annotation of Pulex irritans. Acta Parasitol 2021; 66:605-614. [PMID: 33392956 DOI: 10.1007/s11686-020-00296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/03/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Pulex irritans are vectors of various zoonotic pathogens. However, molecular studies on P. irritans and flea-borne diseases are limited due to the lack of molecular data. This study aimed to conduct transcriptome sequencing, functional annotation, and pathogen analysis of P. irritans. METHODS Fleas collected from a dog were identified morphologically and molecularly. RNA was extracted for transcriptome sequencing and functional annotation. Open reading frames (ORFs) of unigenes were confirmed by employing bioinformatics strategies, and maximum likelihood (ML) trees were reconstructed based on the highly expressed genes of ejaculation globulin-specific 3-like protein, salivary protein, and actin for phylogenetic relationship analysis. RESULTS The obtained mitochondrial 16S rRNA gene sequences showed 99.71% of similarity with P. irritans obtained from GenBank database. Transcriptome sequencing generated 74,412 unigenes, of which 53,211 were functionally annotated. A total of 195 unigenes were assigned to fleas, of which 69 contained complete ORFs. Phylogenetic trees of both ejaculatory globulin and salivary protein genes demonstrated that P. irritans first clustered with Pulicidae sp., indicating the reliability of transcriptome data. It is noteworthy that 1070 unigenes were assigned to Hymenolepis microstoma and Dipylidium caninum, of which 62 contained complete ORFs. The phylogenetic tree of the actin gene showed that the unigenes had closer relationships with Echinococcus sp., suggesting the role of P. irritans as intermediate hosts of tapeworms. CONCLUSION The results of this study provide the possibility for functional exploration of important genes and lay foundations for the prevention and control of P. irritans and flea-borne diseases.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China
| | - Yae Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China.
| | - Yanan Yang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China
| | - Wanyu Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China
| | - Hongsong Guo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China
| | - Dongling Niu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, China
| |
Collapse
|
10
|
Singh R, Pal V, Tripathi N, Goel A. Development of a pair of real-time loop mediated isothermal amplification assays for detection of Yersinia pestis, the causative agent of plague. Mol Cell Probes 2020; 54:101670. [DOI: 10.1016/j.mcp.2020.101670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
|
11
|
Yu H, Li C, Wang X, Duan J, Yang N, Xie L, Yuan Y, Li S, Bi C, Yang B, Li Y. Techniques and Strategies for Potential Protein Target Discovery and Active Pharmaceutical Molecule Screening in a Pandemic. J Proteome Res 2020; 19:4242-4258. [PMID: 32957788 PMCID: PMC7640955 DOI: 10.1021/acs.jproteome.0c00372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Viruses remain a major challenge in the fierce fight against diseases. There have been many pandemics caused by various viruses throughout the world over the years. Recently, the global outbreak of COVID-19 has had a catastrophic impact on human health and the world economy. Antiviral drug treatment has become another essential means to overcome pandemics in addition to vaccine development. How to quickly find effective drugs that can control the development of a pandemic is a hot issue that still needs to be resolved in medical research today. To accelerate the development of drugs, it is necessary to target the key target proteins in the development of the pandemic, screen active molecules, and develop reliable methods for the identification and characterization of target proteins based on the active ingredients of drugs. This article discusses key target proteins and their biological mechanisms in the progression of COVID-19 and other major epidemics. We propose a model based on these foundations, which includes identifying potential core targets, screening potential active molecules of core targets, and verifying active molecules. This article summarizes the related innovative technologies and methods. We hope to provide a reference for the screening of drugs related to pandemics and the development of new drugs.
Collapse
Affiliation(s)
| | | | | | - Jingyi Duan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Na Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yu Yuan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Shanze Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Chenghao Bi
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Bin Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
12
|
Hamzaoui BE, Zurita A, Cutillas C, Parola P. Fleas and flea-borne diseases of North Africa. Acta Trop 2020; 211:105627. [PMID: 32652054 DOI: 10.1016/j.actatropica.2020.105627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
North Africa has an interesting and rich wildlife including hematophagous arthropods, and specifically fleas, which constitute a large part of the North African fauna, and are recognised vectors of several zoonotic bacteria. Flea-borne organisms are widely distributed throughout the world in endemic disease foci, where components of the enzootic cycle are present. Furthermore, flea-borne diseases could re-emerge in epidemic form because of changes in the vector-host ecology due to environmental and human behaviour modifications. We need to know the real incidences of flea-borne diseases in the world due to this incidence could be much greater than are generally recognized by physicians and health authorities. As a result, diagnosis and treatment are often delayed by health care professionals who are unaware of the presence of these infections and thus do not take them into consideration when attempting to determine the cause of a patient's illness. In this context, this bibliographic review aims to summarise the main species of fleas present in North Africa, their geographical distribution, flea-borne diseases, and their possible re-emergence.
Collapse
Affiliation(s)
- Basma El Hamzaoui
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME; IHU Méditerranée Infection, Marseille, France.
| | - Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012 Seville, Spain.
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
13
|
Nicholson PJ. Johann Rudolf Feyerabend, The dance of death at Basel, 1806. Occup Med (Lond) 2020. [DOI: 10.1093/occmed/kqaa058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Barbieri R, Texier G, Keller C, Drancourt M. Soil salinity and aridity specify plague foci in the United States of America. Sci Rep 2020; 10:6186. [PMID: 32277139 PMCID: PMC7148359 DOI: 10.1038/s41598-020-63211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/26/2020] [Indexed: 11/09/2022] Open
Abstract
Plague is a deadly zoonosis that periodically reemerges as small outbreaks in geographically limited foci where the causative agent Yersinia pestis may reside in soil. We analyzed a dataset of 1.005 carefully documented plague cases that were georeferenced over 113 years in peer-reviewed literature in the contiguous United States. Plotting outbreaks by counties defined as plague foci on geographical maps, we observed a significant co-localization of plague outbreaks with high soil salinity measured by an electric conductivity of >4 dS/ m-1 and aridity measured by an aridity index <0.5. Thus, we identified aridity and soil salinity as significantly associated with ecological risk factors for relapsing plague in the contiguous United States. These results reveal two evolutive parameters that are partially associated with anthropic activities, complicating the epidemiology of plague in the contiguous United States. Exploiting aridity and soil salinity data may help in the surveillance of evolving plague foci in the contiguous United States.
Collapse
Affiliation(s)
- Rémi Barbieri
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.,Aix Marseille Univ., CNRS, EFS, ADES, Marseille, France
| | - Gaëtan Texier
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, dIHU-Méditerranée Infection, Marseille, France.,Centre d'épidémiologie et de santé publique des armées [CESPA], Marseille, France
| | - Catherine Keller
- Aix Marseille Univ., CNRS, IRD, INRAE, Coll. France, CEREGE, Aix-en-Provence, France
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
15
|
Abstract
Plague is a zoonotic disease caused by the bacterium Yersinia pestis and is transmitted through the bites of infected rodent fleas. Plague is well known for causing 3 major human pandemics that have killed millions of people since 541 A.D. The aim of this Review is to provide an overview of the epidemiology and ecology of plague in Zimbabwe with special emphasis on its introduction, its potential reservoirs and vectors, and possible causes of its persistence and cyclic outbreaks. To achieve this, we carried out a search and document reported plague outbreaks in Zimbabwe. In the country, human plague cases have been reported in Hwange, Nkayi, and Lupane since 1974. The highest number of cases occurred in 1994 in the Nkayi district of Matabeleland North Province with a total of 329 confirmed human cases and 28 deaths. Plague is encountered in 2 different foci in the country, sylvatic and rural. Risk factors for contracting plague in the country include man-to-rodent contact, cultivation, hunting, cattle herding, handling of infected materials, camping in forests, and anthropic invasion of new areas. Plague is now enzootic in Zimbabwe, and the most recent case was reported in 2012, hence its effective control requires up-to-date information on the epidemiology and ecology of the disease. This can be achieved through continuous monitoring and awareness programs in plague-prone areas.
Collapse
Affiliation(s)
- Amon Munyenyiwa
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
- University of Zimbabwe Lake Kariba Research Station, Kariba, Zimbabwe
| | - Moses Zimba
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Tamuka Nhiwatiwa
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| | - Maxwell Barson
- Department of Biological Sciences, University of Zimbabwe, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
16
|
Kislichkina AA, Platonov ME, Vagaiskaya AS, Bogun AG, Dentovskaya SV, Anisimov AP. Rational Taxonomy of Yersinia pestis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2019. [DOI: 10.3103/s0891416819020058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Gibbs ME, Lountos GT, Gumpena R, Waugh DS. Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague. Acta Crystallogr F Struct Biol Commun 2019; 75:608-615. [PMID: 31475928 PMCID: PMC6718147 DOI: 10.1107/s2053230x19011154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Å resolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.
Collapse
Affiliation(s)
- Morgan E. Gibbs
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
18
|
Bramanti B, Dean KR, Walløe L, Chr. Stenseth N. The Third Plague Pandemic in Europe. Proc Biol Sci 2019; 286:20182429. [PMID: 30991930 PMCID: PMC6501942 DOI: 10.1098/rspb.2018.2429] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Plague has a long history on the European continent, with evidence of the disease dating back to the Stone Age. Plague epidemics in Europe during the First and Second Pandemics, including the Black Death, are infamous for their widespread mortality and lasting social and economic impact. Yet, Europe still experienced plague outbreaks during the Third Pandemic, which began in China and spread globally at the end of the nineteenth century. The digitization of international records of notifiable diseases, including plague, has enabled us to retrace the introductions of the disease to Europe from the earliest reported cases in 1899, to its disappearance in the 1940s. Using supplemental literature, we summarize the potential sources of plague in Europe and the transmission of the disease, including the role of rats. Finally, we discuss the international efforts aimed at prevention and intervention measures, namely improved hygiene and sanitation, that ultimately led to the disappearance of plague in Europe.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Katharine R. Dean
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Lars Walløe
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Bragazzi NL, Mahroum N. Google Trends Predicts Present and Future Plague Cases During the Plague Outbreak in Madagascar: Infodemiological Study. JMIR Public Health Surveill 2019; 5:e13142. [PMID: 30763255 PMCID: PMC6429048 DOI: 10.2196/13142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Plague is a highly infectious zoonotic disease caused by the bacillus Yersinia pestis. Three major forms of the disease are known: bubonic, septicemic, and pneumonic plague. Though highly related to the past, plague still represents a global public health concern. Cases of plague continue to be reported worldwide. In recent months, pneumonic plague cases have been reported in Madagascar. However, despite such a long-standing and rich history, it is rather difficult to get a comprehensive overview of the general situation. Within the framework of electronic health (eHealth), in which people increasingly search the internet looking for health-related material, new information and communication technologies could enable researchers to get a wealth of data, which could complement traditional surveillance of infectious diseases. OBJECTIVE In this study, we aimed to assess public reaction regarding the recent plague outbreak in Madagascar by quantitatively characterizing the public's interest. METHODS We captured public interest using Google Trends (GT) and correlated it to epidemiological real-world data in terms of incidence rate and spread pattern. RESULTS Statistically significant positive correlations were found between GT search data and confirmed (R2=0.549), suspected (R2=0.265), and probable (R2=0.518) cases. From a geospatial standpoint, plague-related GT queries were concentrated in Toamasina (100%), Toliara (68%), and Antananarivo (65%). Concerning the forecasting models, the 1-day lag model was selected as the best regression model. CONCLUSIONS An earlier digital Web search reaction could potentially contribute to better management of outbreaks, for example, by designing ad hoc interventions that could contain the infection both locally and at the international level, reducing its spread.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences, Postgraduate School of Public Health, University of Genoa, Genoa, Italy
| | - Naim Mahroum
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Rabaan AA, Al-Ahmed SH, Alsuliman SA, Aldrazi FA, Alfouzan WA, Haque S. The rise of pneumonic plague in Madagascar: current plague outbreak breaks usual seasonal mould. J Med Microbiol 2019; 68:292-302. [PMID: 30632956 DOI: 10.1099/jmm.0.000915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Madagascar has just emerged from the grip of an acute urban pneumonic plague outbreak, which began in August 2017, before the usual plague season of October-April and outside the traditional plague foci in the northern and central highlands. The World Health Organization reported a total of 2417 confirmed, probable and suspected cases, including 209 deaths between 1 August and 26 November 2017. The severity and scope of this outbreak, which has affected those in higher socioeconomic groups as well as those living in poverty, along with factors including the potential for use of multi-drug-resistant strains of plague in bioterrorism, highlights the ongoing threat posed by this ancient disease. Factors likely to have contributed to transmission include human behaviour, including burial practices and movement of people, poor urban planning leading to overcrowding and ready transmission by airborne droplets, climatic factors and genomic subtypes. The outbreak demonstrates the importance of identifying targeted pneumonic plague therapies and of developing vaccines that can be administered in planned programmes in developing countries such as Madagascar where plague is endemic. The dominance of pneumonic plague in this outbreak suggests that we need to focus more urgently on the danger of person-to-person transmission, as well as the problem of transmission of plague from zoonotic sources.
Collapse
Affiliation(s)
- Ali A Rabaan
- 1Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Shamsah H Al-Ahmed
- 2Specialty Paediatric Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Shahab A Alsuliman
- 3Internal Medicine and Infectious Disease Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Fatimah A Aldrazi
- 4Infection Control Department, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Wadha A Alfouzan
- 5Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Shafiul Haque
- 6Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
21
|
Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms 2018; 7:microorganisms7010002. [PMID: 30577606 PMCID: PMC6351954 DOI: 10.3390/microorganisms7010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant bacterial infections are a serious threat to global public health. Changes in treatment modalities and prudent use of antibiotics can assist in reducing the threat, but new approaches are also required for untreatable cases. The use of predatory bacteria, such as Bdellovibriobacteriovorus, is among the novel approaches being considered as possible therapeutics for antibiotic resistant and/or unidentified bacterial infections. Previous studies have examined the feasibility of using predatory bacteria to reduce colony-forming units (CFUs) in the lungs of rats exposed to lethal doses of Klebsiella pneumoniae; here we apply the approach to the Tier 1 select agent Yersinia pestis, and show that three doses of B. bacteriovorus introduced every six hours reduces the number of CFUs of Y. pestis in the lungs of inoculated mice by 86% after 24 h of infection. These experiments further demonstrate that predatory bacteria may serve to combat Gram negative bacterial infections, including those considered potential bioweapon agents, in the future.
Collapse
|
22
|
Fenollar F, Mediannikov O. Emerging infectious diseases in Africa in the 21st century. New Microbes New Infect 2018; 26:S10-S18. [PMID: 30402238 PMCID: PMC6205565 DOI: 10.1016/j.nmni.2018.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022] Open
Abstract
Many infectious diseases have emerged or reemerged in Africa in the 21st century. Some of them are associated with newly discovered microorganisms such as Rickettsia felis and Tropheryma whipplei; others are known, historical diseases such as plague and cholera. In addition are diseases related to previously known microorganisms which recently have been involved for the first time in massive outbreaks with worldwide impacts (such as Ebola virus, Zika virus and Chikungunya virus). Research on emerging infectious diseases needs to be identified as a priority.
Collapse
Affiliation(s)
| | - O Mediannikov
- IRD, AP-HM, MEPHI, Aix-Marseille Université, IRD, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Galy A, Loubet P, Peiffer-Smadja N, Yazdanpanah Y. [The plague: An overview and hot topics]. Rev Med Interne 2018; 39:863-868. [PMID: 29628173 DOI: 10.1016/j.revmed.2018.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
Abstract
Plague is a bacterial zoonosis caused by Yersinia pestis, usually found in fleas and small rodents that constitute the reservoir of the disease. It is transmitted to humans by flea bite, contact with rodents or inhalation of infected droplets. There are three clinical forms: bubonic plague, pulmonary plague and septicemic plague. The usual presentation is a flu-like syndrome possibly accompanied by an inflammatory lymphadenopathy which appears after 1 to 7days of incubation. Bubonic plague has a case fatality rate of about 50% while other forms of plague are almost always fatal without treatment. Diagnosis can be confirmed by usual bacteriological techniques (Gram examination, culture) but also by serological examination, use of rapid diagnostic tests or PCR. Although aminoglycosides are traditionally regarded as the most effective treatment, fluoroquinolones or cyclins are currently recommended in France. Plague is one of the re-emerging diseases according to the WHO and Madagascar suffered in 2017 the most important plague epidemic of the 21st century with more than 2000 cases and 200 deaths. Peru and the Democratic Republic of Congo are also considered endemic areas. Public health measures and a relentless fight against poverty are the cornerstone of the control of the disease. Vaccine improvement in endemic areas may also play an important role.
Collapse
Affiliation(s)
- A Galy
- Service de maladie infectieuses et tropicales, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France; IAME, UMR 1137, Inserm, université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France.
| | - P Loubet
- Service de maladie infectieuses et tropicales, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France; IAME, UMR 1137, Inserm, université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - N Peiffer-Smadja
- Service de maladie infectieuses et tropicales, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France; IAME, UMR 1137, Inserm, université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| | - Y Yazdanpanah
- Service de maladie infectieuses et tropicales, hôpital Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France; IAME, UMR 1137, Inserm, université Paris Diderot, Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
24
|
Affiliation(s)
| | - Maria Amélia A Grácio
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|