1
|
Yu F, Shi L, Wang Q, Xing X, Li Z, Hou L, Zhou Z, Wang Z, Xiao Y. The Association Between Thymidylate Synthase Gene Polymorphisms and the Risk of Ischemic Stroke in Chinese Han Population. Biochem Genet 2024; 62:468-484. [PMID: 37378701 PMCID: PMC10901929 DOI: 10.1007/s10528-023-10431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Family history of hypertension, smoking, diabetes and alcohol consumption and atherosclerotic plaque were identified as common risk factors in IS. We aimed at investigating the relationship between Thymidylate Synthase (TS) gene polymorphisms and ischemic stroke (IS).This case-control research selected and genotyped three single nucleotide polymorphisms (SNPs)of TS( rs699517, rs2790, and rs151264360) with Sanger sequencing in Chinese Han population. We also adopted logistic regression analysis in genetic models for calculating odds ratios and 95% confidence intervals. Genotype-Tissue Expression(GTEx) database analyzed the tissue-specific expression and TS polymorphisms. The ischemic stroke patients showed higher low-density lipoprotein cholesterol and total homocysteine (tHcy). It was found that patients with the TT genotype of rs699517 and GG genotype of rs2790 had larger degrees of tHcy than those with CC + CT genotypes and AA + AG genotypes, respectively. The genotype distribution of the three SNPs did not deviate from Hardy-Weinberg equilibrium (HWE). Haplotype analysis showed that T-G-del was the major haplotype in IS, and C-A-ins was the major haplotype in controls. GTEx database indicated that the rs699517 and rs2790 increased the expression of TS in healthy human and associated with TS expression level in a single tissue. In conclusion: This study has shown that TS rs699517 and rs2790 were significantly related to ischemic stroke patients.
Collapse
Affiliation(s)
- Fuhua Yu
- Department of Neurosurgery, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Medical University General Hospital, Neurological Institute, 154 Anshan Road, Tianjin, 300052, China
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Lei Shi
- Department of Neurology, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Qianru Wang
- Department of Pharmacy, Liaocheng Fourth People's Hospital. No, 47 Huayuan North Road, Dongchangfu District, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiaohui Xing
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Zhongchen Li
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Lei Hou
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China
| | - Zhengshan Zhou
- Department of Neurosurgery, People's Hospital of Chiping District, No.1057 Wenhua Road, Chiping District, Liaocheng, 252100, Shandong, People's Republic of China
| | - Zengguang Wang
- Department of Neurosurgery, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Medical University General Hospital, Neurological Institute, 154 Anshan Road, Tianjin, 300052, China.
| | - Yilei Xiao
- Department of Neurosurgery, Dongchangfu District, Liaocheng People's Hospital, No.67 Dongchang West Road, Liaocheng, 252000, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
3
|
Yang X, Wang P, Yan S, Wang G. Study on potential differentially expressed genes in stroke by bioinformatics analysis. Neurol Sci 2021; 43:1155-1166. [PMID: 34313877 PMCID: PMC8789718 DOI: 10.1007/s10072-021-05470-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Stroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.
Collapse
Affiliation(s)
- Xitong Yang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Pengyu Wang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shanquan Yan
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Guangming Wang
- Genetic Testing Center, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China.
| |
Collapse
|
4
|
Identification of MicroRNAs as potential biomarkers for detecting ischemic stroke. Genes Genomics 2021; 44:9-17. [PMID: 33818699 DOI: 10.1007/s13258-021-01060-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/31/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Increasing epidemic of ischemic stroke (IS) makes it urgent to understand the pathogenesis and regulatory mechanism, previous studies have described microRNAs (miRNAs) is part of the brain's response to ischemia. OBJECTIVE The aim of this study was to screen potential biomarkers for the prediction and novel treatment of IS. METHODS Differentially expressed miRNAs were screened from three newly diagnosed IS patients and three controls by RNA sequencing technology. Furthermore, target prediction databases were then used to analysis the target genes of different expressed miRNAs, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were used to identify the functions and the main biochemical and signal pathways of differentially expressed target genes. RESULTS Our results revealed that 27 miRNAs were differentially expressed in IS, among which, hsa-miR-659-5p was the most highly increased and was first found to be associated with IS. In addition, KEGG pathway analyses showed that differentially expressed miRNAs were mainly significantly enriched in lysosome pathway, cytokine-cytokine receptor interaction pathway, spliceosome pathway, base excision repair pathway. CONCLUSIONS miRNAs were involved in IS pathogenesis, and hsa-miR-659-5p, hsa-miR-151a-3p and hsa-miR-29c-5p as the three highest |log2FoldChange| regulation in this study, which may be the biomarkers of IS and need further study.
Collapse
|
5
|
Parnell E, Shapiro LP, Voorn RA, Forrest MP, Jalloul HA, Loizzo DD, Penzes P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2020; 768:145306. [PMID: 33189799 DOI: 10.1016/j.gene.2020.145306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022]
Abstract
The synaptic regulator, kalirin, plays a key role in synaptic plasticity and formation of dendritic arbors and spines. Dysregulation of the KALRN gene has been linked to various neurological disorders, including autism spectrum disorder, Alzheimer's disease, schizophrenia, addiction and intellectual disabilities. Both genetic and molecular studies highlight the importance of normal KALRN expression for healthy neurodevelopment and function. This review aims to give an in-depth analysis of the structure and molecular mechanisms of kalirin function, particularly within the brain. These data are correlated to genetic evidence of patient mutations within KALRN and animal models of Kalrn that together give insight into the manner in which this gene may be involved in neurodevelopment and the etiology of disease. The emerging links to human disease from post-mortem, genome wide association (GWAS) and exome sequencing studies are examined to highlight the disease relevance of kalirin, particularly in neurodevelopmental diseases. Finally, we will discuss efforts to pharmacologically regulate kalirin protein activity and the implications of such endeavors for the treatment of human disease. As multiple disease states arise from deregulated synapse formation and altered KALRN expression and function, therapeutics may be developed to provide control over KALRN activity and thus synapse dysregulation. As such, a detailed understanding of how kalirin regulates neuronal development, and the manner in which kalirin dysfunction promotes neurological disease, may support KALRN as a valuable therapeutic avenue for future pharmacological intervention.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Lauren P Shapiro
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Roos A Voorn
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Hiba A Jalloul
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Daniel D Loizzo
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, 60611 IL, USA; Northwestern University Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Osazuwa-Peters OL, Waken RJ, Schwander KL, Sung YJ, de Vries PS, Hartz SM, Chasman DI, Morrison AC, Bierut LJ, Xiong C, de las Fuentes L, Rao DC. Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures. Genet Epidemiol 2020; 44:629-641. [PMID: 32227373 PMCID: PMC7717887 DOI: 10.1002/gepi.22292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/30/2019] [Accepted: 03/06/2020] [Indexed: 12/27/2022]
Abstract
Although multiple lifestyle exposures simultaneously impact blood pressure (BP) and cardiovascular health, most analysis so far has considered each single lifestyle exposure (e.g., smoking) at a time. Here, we exploit gene-multiple lifestyle exposure interactions to find novel BP loci. For each of 6,254 Framingham Heart Study participants, we computed lifestyle risk score (LRS) value by aggregating the risk of four lifestyle exposures (smoking, alcohol, education, and physical activity) on BP. Using the LRS, we performed genome-wide gene-environment interaction analysis in systolic and diastolic BP using the joint 2 degree of freedom (DF) and 1 DF interaction tests. We identified one genome-wide significant (p < 5 × 10-8 ) and 11 suggestive (p < 1 × 10-6 ) loci. Gene-environment analysis using single lifestyle exposures identified only one of the 12 loci. Nine of the 12 BP loci detected were novel. Loci detected by the LRS were located within or nearby genes with biologically plausible roles in the pathophysiology of hypertension, including KALRN, VIPR2, SNX1, and DAPK2. Our results suggest that simultaneous consideration of multiple lifestyle exposures in gene-environment interaction analysis can identify additional loci missed by single lifestyle approaches.
Collapse
Affiliation(s)
| | - R J Waken
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Karen L Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel I Chasman
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
- Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri
| | - D C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|