1
|
Boh J, Šuligoj E, Mankoč Ramuš S, Petrovič D. The ABCA1 gene polymorphisms rs1800977 and rs2230806 are differentially associated with the risk for myocardial infarction in Slovenian subjects with type 2 diabetes mellitus. Gene 2024; 927:148705. [PMID: 38901534 DOI: 10.1016/j.gene.2024.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The adenosine triphosphate-binding cassette transporter A1 (ABCA1) is closely linked to various aspects of the regulation of whole-body cholesterol metabolism and atherosclerosis formation. The object of the study was to investigate the association between rs1800977 and rs2230806 polymorphisms in the ABCA1 gene and myocardial infarction (MI) in Slovenian subjects with type 2 diabetes mellitus (T2DM). METHODS 1590 T2DM patients (484 subjects with MI and 1106 controls) were included in this retrospective cross-sectional case-control study. After genotyping, Pearson χ2 test was used to compare the distribution of genotypes and alleles among the two groups. Logistic regression analysis adjusted for several risk factors for MI was performed. RESULTS Genotype distribution showed significant association with MI in T2DM subjects for both selected polymorphisms in ABCA1 gene (p = 0.009 for rs2230806 and p = 0.042 for rs1800977). After applying corrections for confounding variables like age, waist circumference, diastolic blood pressure, serum high-density lipoprotein levels, gender and smoking several genetic models still showed significant associations with MI (dominant model for rs2230806 and dominant, overdominant and co-dominant for rs1800977). CONCLUSION Our study showed that presence of the T allele of the rs2230806 ABCA1 gene is associated with higher risk of MI, while the A allele of the rs1800977 conferred protection against MI in Slovenian T2DM subjects.
Collapse
Affiliation(s)
- Jakob Boh
- Department of Cardiology, Izola General Hospital, Polje 40, 6310 Izola, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Ema Šuligoj
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia.
| | - Sara Mankoč Ramuš
- International Center for Cardiovascular Diseases MC Medicor, Polje 40, 6310 Izola, Slovenia.
| | - Daniel Petrovič
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Wang W, Wang S, Li Y, Zhu M, Xu Q, Luo B, Liu Y, Liu Y. Network pharmacology, molecular docking, and in vitro experimental verification of the mechanism of Guanxining in treating diabetic atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117792. [PMID: 38290612 DOI: 10.1016/j.jep.2024.117792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Sutong Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qian Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China; The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
3
|
Zhang Y, Wang R, Tan H, Wu K, Hu Y, Diao H, Wang D, Tang X, Leng M, Li X, Cai Z, Luo D, Shao X, Yan M, Chen Y, Rong X, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m 6A modification of SIRT3 mRNA. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116766. [PMID: 37343655 DOI: 10.1016/j.jep.2023.116766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu TiaoZhi (FTZ), a Chinese medicinal decoction, has continuously been used to treat metabolic syndrome. Atherosclerosis is the main pathological basis of cardiovascular disease. The N6 methyladenosine (m6A) modification is a highly dynamic and reversible process involving a variety of important biological processes. AIM OF THE STUDY Here, we investigated the therapeutic effects and mechanism of FTZ in diabetes-accelerated atherosclerosis. MATERIALS AND METHODS Doppler ultrasonography was used to examine the carotid intima-media thickness and plaque area in diabetic atherosclerosis patients. HFD mice were injected with streptozotocin to induce diabetes. HE and Oil red O staining were used to assess the effect of FTZ on lipid deposition. HUVECs were induced with HG/ox-LDL as a model of diabetic atherosclerosis. Furthermore, application of m6A methylation level kit, qRT-PCR, Western blot, tunel staining, reactive oxygen species staining and mPTP staining were performed to analyze the detailed mechanism. RESULTS Clinical trials of FTZ have shown obvious effect of lowering blood glucose and blood lipids. These effects were reversed after FTZ intervention. Compared with the control, lipid deposition decreased significantly after FTZ administration. FTZ reduced endothelial cell apoptosis. At the same time, we found that FTZ reversed the increase of methylation reader YTHDF2 caused by ox-LDL treatment. Subsequently, we discovered that YTHDF2 degraded SIRT3 mRNA, leading to endothelial cell apoptosis and oxidative stress. CONCLUSION FTZ attenuated diabetes-accelerated atherosclerosis by decreasing blood glucose and serum lipids levels, and increased endothelial cell antioxidant capacity, inhibited endothelial cell apoptosis via inhibiting YTHDF2-mediated m6A modification of SIRT3 mRNA, which reduced mRNA degradation.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ruonan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Huiling Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Kaili Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yaju Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Mingyang Leng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zhenlu Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yingyu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Xie X. Steady solution and its stability of a mathematical model of diabetic atherosclerosis. JOURNAL OF BIOLOGICAL DYNAMICS 2023; 17:2257734. [PMID: 37711027 PMCID: PMC10576982 DOI: 10.1080/17513758.2023.2257734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Atherosclerosis is a leading cause of death worldwide. Making matters worse, nearly 463 million people have diabetes, which increases atherosclerosis-related inflammation. Diabetic patients are twice as likely to have a heart attack or stroke. In this paper, we consider a simplified mathematical model for diabetic atherosclerosis involving LDL, HDL, glucose, insulin, free radicals (ROS), β cells, macrophages and foam cells, which satisfy a system of partial differential equations with a free boundary, the interface between the blood flow and the plaque. We establish the existence of small radially symmetric stationary solutions to the model and study their stability. Our analysis shows that the plague will persist due to hyperglycemia even when LDL and HDL are in normal range, hence confirms that diabetes increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Xuming Xie
- Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
| |
Collapse
|
5
|
Arya P, Kumar P. Diosgenin: An ingress towards solving puzzle for diabetes treatment. J Food Biochem 2022; 46:e14390. [PMID: 36106684 DOI: 10.1111/jfbc.14390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/26/2022] [Indexed: 01/13/2023]
Abstract
The consumption and composition of food in daily life predict our health in long run. The relation of diabetes to sweets is quite popular. Diabetes hampers the glucose and insulin regulation in the human body by damaging pancreatic β cells. Diabetes has a strong potential towards altering cellular mechanisms of organs causing unlawful performance. Diabetes alters pathways like TLR4, AChE, NF-ĸB, LPL, and PPAR at different sites that affect the normal cellular machinery and cause damage to the local tissue and organ. The long-lasting effect of diabetes was observed in vascular, cardia, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. The increasing awareness of diabetes and its concern has awakened the common people more enthusiastically. Due to rising harm from diabetes, scientific researchers tend to have more eyes toward it. While searching for diabetes solutions, fenugreek diosgenin could pop up with some positive effects in curing the same. Diosgenin helps to lower the scathe of diabetes by modifying cellular pathways in favor of healthy bodily functions. Diosgenin altered the pathways for renewal of pancreatic β cells for better insulin secretion, initiate GLUT4, enhanced DHEA, modify ER-α-mediated PI3K/Akt pathways. Diosgenin can be an appropriate insult for diabetes in a much evolving way for a healthy lifestyle. PRACTICAL APPLICATIONS: Diabetes is one of the most death causing diseases in the medical world. Regrettably the cure of diabetes is yet to be found. Various scientific team working on the same to look after the most appropriate way for diabetes treatment. There is enormous growth of nutraceutical in the market claiming for cure of different metabolic disorders. Among various bioactive compound fenugreek's diosgenin could took a leap over other in curing and preventing the damage caused by diabetes to different organs. The role of diosgenin in curing various metabolic disorders is quite popular from some time. This article also emphasizes over beneficiary effect of diosgenin in curing the damages caused by diabetes by altering cellular metabolism processes. Hence diosgenin could be a better way for researchers to develop a method for diabetes treatment.
Collapse
Affiliation(s)
- Prajya Arya
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| | - Pradyuman Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, India
| |
Collapse
|
6
|
Potential Mechanisms of Biejiajian Pill in the Treatment of Diabetic Atherosclerosis Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3296279. [PMID: 35990823 PMCID: PMC9391107 DOI: 10.1155/2022/3296279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Background Biejiajian pill (BJJP), a classical traditional Chinese formula, has been reported that it has an effective treatment for diabetic atherosclerosis in recent years, but its underlying mechanisms remain elusive. The study aimed to explore the potential mechanisms of BJJP on diabetic atherosclerosis by integrating network pharmacology, molecular docking, and molecular dynamics simulation. Methods The active components of BJJP were collected by TCMSP and TCMID, and then the potential targets were obtained from the SwissTargetPrediction database. The targets related to diabetic atherosclerosis were identified from the GeneCards and OMIM databases. The intersection of the potential targets regulated by active components of BJJP and the targets of diabetic atherosclerosis were common targets, which were visualized by the Venn diagram. The common targets were imported into the STRING database to construct a protein-protein interaction (PPI) network. The network of “Medicine-Compound-Target” was constructed with Cytoscape 3.7.1 software. GO functional enrichment analysis and KEGG pathway enrichment analysis were performed using the DAVID database and visualized through bioinformatics. The intersecting targets were input into Cytoscape 3.7.1 software, and the Network Analyzer tool was employed to screen out the key targets. Then molecular docking was used to verify the binding affinity between the active compounds and the key targets, and molecular dynamics simulation was used to investigate the stability of the binding models. Results A total of 81 active components, 186 targets of BJJP, and 4041 targets of diabetic atherosclerosis were obtained. Furthermore, 121 overlapping targets were identified. GO functional enrichment analysis revealed that these targets were correlated with the oxidation-reduction process, negative regulation of apoptotic process, inflammatory response, and other biological processes. The results of the KEGG pathway enrichment analysis showed that the common targets mainly participated in proteoglycans in cancer, PPAR signaling pathway, adherens junction, insulin resistance, HIF-1 signaling pathway, PI3K-Akt signaling pathway, etc. The results of molecular docking confirmed that the core active components in BJJP could bind well to the key targets. Results from molecular dynamics simulation showed that the binding energies of AKT1-Luteolin, MMP9-quercetin, and MMP9-luteolin complexes were −28.93 kJ·mol−1, −37.12 kJ·mol−1, and −62.91 kJ·mol−1, respectively. Conclusion The study revealed that BJJP is characterized as multicomponent, multitarget, and multipathway to treat diabetic atherosclerosis, which is helpful to provide ideas and a basis for pharmacological research and clinical application in the future.
Collapse
|
7
|
Zhao Y, Lin S, Chen K, Chen D, Lai J. Ultrasonic characteristics and influencing factors of atherosclerosis in diabetic patients. Am J Transl Res 2022; 14:3113-3120. [PMID: 35702108 PMCID: PMC9185038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The purpose of this research was to observe the characteristics of atherosclerosis in diabetic patients by ultrasound and analyze the factors influencing the development of atherosclerosis in these patients. METHODS Ninety diabetic patients treated in our hospital from January 2019 to December 2019 were enrolled in this retrospective analysis. The transcranial Doppler ultrasound (TCD) and carotid ultrasound were used to determine the presence of intracranial (stenosis) and extracranial (plaque) atherosclerosis. The differences in characteristics of different lesions and risk factors for the development of atherosclerosis were compared. RESULTS Ultrasound examination of the 90 enrolled patients showed that 5 (5.56%) had only intracranial artery stenosis, 30 (33.33%) had only extracranial atherosclerosis, 20 (22.22%) had intracranial artery stenosis combined with extracranial atherosclerosis, and 35 (38.89%) had no lesions. The intracranial stenosis rate (27.78%) was significantly higher than that of extracranial carotid stenosis or occlusion (2.22%) (P < 0.001). Logistic regression analysis revealed that the duration of diabetes mellitus and concomitant hypertension were independent risk factors for intracranial and extracranial atherosclerosis (P < 0.05). Compared with the control group, the study group showed reduced carotid plaque, decreased inflammatory response, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) as well as elevated high-density lipoprotein cholesterol (HDL-C) (P < 0.05). CONCLUSION Diabetic patients have a higher incidence of atherosclerosis, which is related to the duration of the diabetes mellitus and concomitant hypertension, so the monitoring of these patients needs to be strengthened. In addition, the administration of atorvastatin can better improve hyperlipidemia and slow down the development of atherosclerosis.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Shibin Lin
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Kailiang Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Die Chen
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| | - Jineng Lai
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University Haikou 570102, Hainan Province, China
| |
Collapse
|
8
|
Yuan JY, Fu Y, Feng ZH, Sang F, Shao MY, Li LL. Potential Mechanisms and Effects of Chinese Medicines in Treatment of Diabetic Atherosclerosis by Modulating NLRP3 Inflammasome: A Narrative Review. Chin J Integr Med 2022; 28:753-761. [PMID: 35507299 DOI: 10.1007/s11655-022-3513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2021] [Indexed: 01/03/2023]
Abstract
Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) is an intracellular sensor that detects endogenous danger signals and environmental irritants to assemble into the NLRP3 inflammasome. Activation of the NLRP3 inflammasome leads to the secretion of the proinflammatory cytokines interleutkin (IL)-1β and IL-18 and induces pyroptosis. Recent studies have shown that the NLRP3 inflammasome participates in the initiation and progression of diabetic atherosclerosis through pathological mechanisms such as β-cell dysfunction, insulin resistance, endothelial cell dysfunction, monocyte adhesion and infiltration, and smooth muscle cell proliferation and migration. In diabetic atherosclerosis, Chinese medicine has been proven effective for the inflammatory response mediated by the NLRP3 inflammasome. This review summarizes the latest progress on the NLRP3 inflammasome in the pathogenesis and potential Chinese medicine treatment of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Jia-Yao Yuan
- School of First Clinical, Henan University of Chinese Medicine, Zhengzhou, 450000, China
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu Fu
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Zhi-Hai Feng
- Department of Endocrinology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Feng Sang
- Department of Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine of Henan Province, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Ming-Yi Shao
- Department of Gastroenterology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Lei-Lei Li
- School of First Clinical, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| |
Collapse
|
9
|
Xie X. WELL-POSEDNESS OF A MATHEMATICAL MODEL OF DIABETIC ATHEROSCLEROSIS. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2022; 505:125606. [PMID: 34483362 PMCID: PMC8415469 DOI: 10.1016/j.jmaa.2021.125606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Atherosclerosis is a leading cause of death in the United States and worldwide; it emerges as a result of multiple dynamical cell processes including hemodynamics, endothelial damage, innate immunity and sterol biochemistry. Making matters worse, nearly 21 million Americans have diabetes, a disease where patients' cells cannot efficiently take in dietary sugar, causing it to build up in the blood. In part because diabetes increases atherosclerosis-related inflammation, diabetic patients are twice as likely to have a heart attack or stroke. Past work has shown that hyperglycemia and insulin resistance alter function of multiple cell types, including endothelium, smooth muscle cells and platelets, indicating the extent of vascular disarray in this disease. Although the pathophysiology of diabetic vascular disease is generally understood, there is no mathematical model to date that includes the effect of diabetes on plaque growth. In this paper, we propose a mathematical model for diabetic atherosclerosis; the model is given by a system of partial differential equations with a free boundary. We establish local existence and uniqueness of solution to the model. The methodology is to use Hanzawa transformation to reduce the free boundary to a fixed boundary and reduce the system of partial differential equations to an abstract evolution equation in Banach spaces, and apply the theory of analytic semigroup.
Collapse
Affiliation(s)
- Xuming Xie
- Department of Mathematics, Morgan State University, Baltimore, MD 21251
| |
Collapse
|
10
|
Potential Role of Melatonin as an Adjuvant for Atherosclerotic Carotid Arterial Stenosis. Molecules 2021; 26:molecules26040811. [PMID: 33557283 PMCID: PMC7914857 DOI: 10.3390/molecules26040811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
Carotid artery stenosis (CAS) is an atherosclerotic disease characterized by a narrowing of the artery lumen and a high risk of ischemic stroke. Risk factors of atherosclerosis, including smoking, hypertension, hyperglycemia, hyperlipidemia, aging, and disrupted circadian rhythm, may potentiate atherosclerosis in the carotid artery and further reduce the arterial lumen. Ischemic stroke due to severe CAS and cerebral ischemic/reperfusion (I/R) injury after the revascularization of CAS also adversely affect clinical outcomes. Melatonin is a pluripotent agent with potent anti-inflammatory, anti-oxidative, and neuroprotective properties. Although there is a shortage of direct clinical evidence demonstrating the benefits of melatonin in CAS patients, previous studies have shown that melatonin may be beneficial for patients with CAS in terms of reducing endothelial damage, stabilizing arterial plaque, mitigating the harm from CAS-related ischemic stroke and cerebral I/R injury, and alleviating the adverse effects of the related risk factors. Additional pre-clinical and clinical are required to confirm this speculation.
Collapse
|
11
|
Guo Z, Zhao Z, Yang C, Song C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl Res 2020; 226:83-95. [PMID: 32659442 DOI: 10.1016/j.trsl.2020.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a cell-based therapy in many diseases including atherosclerosis (AS) due to their capability of immunomodulation and tissue regeneration. However, the pathway for MSCs' antiatherosclerotic activity remains to be elucidated. Here, we test the hypothesis that microRNA-221 (miR-221) from MSC-derived extracellular vesicles (EVs) alleviates AS. Male ApoE-/- mice were fed a high-fat diet for 12 weeks to induce AS, and were then treated with human bone marrow mesenchymal stem cell-derived EVs by tail vein injection. The expression pattern of miR-221 and N-acetyltransferase-1 (NAT1) in AS mice was characterized by quantitative RNA analysis and their interaction was identified by dual-luciferase reporter gene assay. In other studies, human arterial smooth muscle cells treated with oxidized low-density lipoprotein-were co-cultured with MSC-released EVs to evaluate the EV-mediated transfer of miR-221. NAT1 was highly expressed in atherosclerotic lesions. Adenovirus-mediated NAT1 knockdown resulted in a reduced lipid deposition in AS mice. Human bone marrow mesenchymal stem cell -derived EVs carrying miR-221 were internalized by human arterial smooth muscle cells and transferred their miR-221 contents to downregulate the target gene NAT1. Injection of miR-221-containing EVs inhibited lipid deposition in AS mice, in part by downregulating NAT1. The present study provides evidence that miR-221 shuttled by MSC-derived EVs can inhibit atherosclerotic plaque formation in AS model mice, suggesting that miR-221 may serve as a target for improving MSC-based therapeutic strategy against AS.
Collapse
Affiliation(s)
- Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Zhuo Zhao
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Chuang Yang
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China.
| |
Collapse
|
12
|
Liu D, Song J, Ji X, Liu Z, Li T, Hu B. PRDM16 Upregulation Induced by MicroRNA-448 Inhibition Alleviates Atherosclerosis via the TGF-β Signaling Pathway Inactivation. Front Physiol 2020; 11:846. [PMID: 32848826 PMCID: PMC7431868 DOI: 10.3389/fphys.2020.00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The dysregulated expression of microRNAs (miRs) has been associated with pathological and physiological processes of atherosclerosis (AS). In addition, PR domain-containing 16 (PRDM16), a transcriptional mediator of brown fat cell identity and smooth muscle cell activities, may be involved in the hypercholesterolemia during development of AS. The bioinformatic analysis identified a regulatory miR-448 of PRDM16. Hence, the current study aimed to explore whether miR-448 influenced the activities of aortic smooth muscle cell (ASMCs) in AS. We validated that miR-448 was highly expressed in peripheral blood of patients with AS and aortic smooth muscle of AS model mice. Whereas, PRDM16 was downregulated in the aortic smooth muscle of AS model mice. PRDM16 overexpression was observed to inhibit oxidative stress injury and cell proliferation, and promote apoptosis of ASMCs. Mechanistic studies revealed that miR-448 targeted PRDM16 and negatively regulated the PRDM16 expression, while PRDM16 blocked the TGF-β signaling pathway. Furthermore, Downregulated miR-448 alleviated oxidative stress injury, and attenuated ASMC cell proliferation, migration and enhanced cell apoptosis through upregulation of PRDM16. Taken together, silencing of miR-448 upregulates PRDM16 and inactivates the TGF-β signaling pathway, thereby impeding development of AS by repressing the proliferation, migration and invasion of ASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
14
|
Liu M, Song Y, Han Z. Study on the effect of LncRNA AK094457 on OX-LDL induced vascular smooth muscle cells. Am J Transl Res 2019; 11:5623-5633. [PMID: 31632534 PMCID: PMC6789286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Atherosclerosis as the common disease has aroused many attentions worldwide. Gene target therapy has become the promising filed for atherosclerosis treatment. Herein, LncRNA AK094457 as a new promising therapy target is investigated in OX-LDL induced vascular smooth muscle cells. The Results showed that LncRNA AK094457 downregulated by shRNA-AK094457-1 have inhibiting effects on proliferation, migration, ROS level and inflammation level in OX-LDL induced vascular smooth muscle cells (VSMCs). In addition, the down regulation of lncRNA suppressed expressions of relevant proteins that are involved in TLR4/MyD88 signal pathway and enhanced expressions of relevant proteins in Nrf2/HO-1 pathway. Taken together, Down regulation of lncRNA AK094457 against effects induced by OXL-LDL in atherosclerosis via Nrf2/HO-1 and TLR4/MyD88 signal pathway is a promising avenue for atherosclerosis treatment.
Collapse
Affiliation(s)
- Mei Liu
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin 300000, China
| | - Yiqun Song
- Department of North Emergency Hospital, First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin 300000, China
| | - Zhongyuan Han
- Department of Cardiology, The Second People’s Hospital of NantongNantong 226002, Jiangsu, China
| |
Collapse
|
15
|
Wu CY, Zhou ZF, Wang B, Ke ZP, Ge ZC, Zhang XJ. MicroRNA-328 ameliorates oxidized low-density lipoprotein-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. J Cell Biochem 2019; 120:1643-1650. [PMID: 30324654 DOI: 10.1002/jcb.27469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
Atherosclerosis has been recognized as a chronic inflammatory disease, which can harden the vessel wall and narrow the arteries. MicroRNAs exhibit crucial roles in various diseases including atherosclerosis. However, so far, the role of miR-328 in atherosclerosis remains barely explored. Therefore, our study concentrated on the potential role of miR-328 in vascular endothelial cell injury during atherosclerosis. In our current study, we observed that oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) apoptosis and inhibited cell viability dose-dependently and time-dependently. In addition, indicated dosage of ox-LDL obviously triggered HUVECs inflammation and oxidative stress process. Then, it was found that miR-328 in HUVECs was reduced by ox-LDL. HUVECs apoptosis was greatly repressed and cell survival was significantly upregulated by overexpression of miR-328. Furthermore, mimics of miR-328 rescued cell inflammation and oxidative stress process induced by ox-LDL. Oppositely, inhibitors of miR-328 strongly promoted ox-LDL-induced endothelial cells injury in HUVECs. By using bioinformatics analysis, high-mobility group box-1 (HMGB1) was predicted as a downstream target of miR-328. HMGB1 has been reported to be involved in atherosclerosis development. The correlation between miR-328 and HMGB1 was validated in our current study. Taken these together, it was implied that miR-328 ameliorated ox-LDL-induced endothelial cells injury through targeting HMGB1 in atherosclerosis.
Collapse
Affiliation(s)
- Chun-Yang Wu
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Zhao-Feng Zhou
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Bin Wang
- Department of Cardiology, Yancheng Hospital Affiliated to Southeast University School of Medicine, Yancheng, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhong-Chun Ge
- Department of Cardiology, People's Hospital of Xuyi, Xuyi, China
| | - Xian-Jin Zhang
- Department of Intensive Care Unit, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
16
|
Zhao Y, An X, Liu J, Liu S, Xu W, Yu X, Yu J. The improvement of oxidative stress by two proprietary herbal medicines in type 2 diabetes. Complement Ther Med 2018; 40:120-125. [PMID: 30219436 DOI: 10.1016/j.ctim.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the impact to oxidative stress, atherosclerosis and macrovascular disease by two proprietary herbal medicines including Ginkgo Leaf Tablets and Liuwei Dihuang Pills in type 2 diabetes. METHODS The recruited 140 type 2 diabetes were randomly divided into the treatment group and control group which were both received basic diabetic management including anti-hyperglycemia, anti-hypertension, life style adjustment and health education etc. Additionally, the treatment group was given both Ginkgo Leaf Tablets and Liuwei Dihuang Pills while the control group was given placebos of Ginkgo Leaf Tablets and Liuwei Dihuang Pills. The relative clinical indexes about macrovascular events occurrence, atherosclerosis degree(IMT levels), oxidative stress in vivo(plasma carboxymethyl lysine(CML) and 8-isoprostane(8-IsoP) levels), plasma glucose, plasma lipid, blood pressure, other drugs usage situations and so on of two groups before and after consecutive 36-month treatment were accurately collected and statistically analyzed. RESULTS There were no significant differences of cardiovascular disease, cerebrovascular disease, IMT levels, plasma CML and 8-IsoP levels between the two groups before treatment. After 36-month treatment, the plasma CML and 8-IsoP levels of treatment group were both significantly lower than control group (CML: 312.4 ± 90.4 ng/ml versus 463.5 ± 97.2 ng/ml, P < 0.0001; 8-IsoP: 23.7 ± 9.5 pg/ml versus 62.6 ± 16.1 pg/ml, P < 0.0001) although this improvement was not shared with IMT and macrovascular events. CONCLUSION Ginkgo Leaf Tablets and Liuwei Dihuang Pills are beneficial to oxidative stress which plays important role in diabetic atherosclerosis and macrovascular complications. The preventive and therapeutic values of herbal medicines will be proved in further diabetic complication researches.
Collapse
Affiliation(s)
- Yue Zhao
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Xiaofei An
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Jingshun Liu
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Su Liu
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Weilong Xu
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Xu Yu
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| | - Jiangyi Yu
- The Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, China.
| |
Collapse
|
17
|
Qian C, Guo H, Chen X, Shi A, Li S, Wang X, Pan J, Fang C. Association of PD-1 and PD-L1 Genetic Polymorphyisms with Type 1 Diabetes Susceptibility. J Diabetes Res 2018; 2018:1614683. [PMID: 30534571 PMCID: PMC6252202 DOI: 10.1155/2018/1614683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
AIMS The programmed death- (PD-) 1/PD-1 ligand (PD-L) pathway plays an important role in regulating T cell activation and maintaining peripheral tolerance. Accumulated studies showed that PD-1/PD-L1 pathway was involved in the development of type 1 diabetes (T1DM). Since the genetic background of type 1 diabetes differs greatly among the different population, we aim to investigate the association of genetic polymorphisms in PD-1 and PD-L1 with T1DM susceptibility in Chinese population. METHODS In total, 166 T1DM patients and 100 healthy controls were enrolled into the study. Genomic DNA was extracted from 4 mL peripheral blood samples collected from each subject. Genotyping of 8 selected SNPs of PD-1 and PD-L1 was carried out by the pyrosequencing PSQ 24 System using PyroMark Gold reagents (QIAGEN). RESULTS SNP rs4143815 in PD-L1 was significantly associated with T1DM. People carrying the C allele of rs4143815 suffering less risk of T1DM and T1DM patients with G/G genotype showed higher levels of autoantibody (AAB) positive incidence compared with C allele carriers. No significant associations were found in other SNPs. CONCLUSIONS Our results indicate that rs4143815 of PD-L1 is significantly associated with T1DM and may serve as a new biomarker to predict the T1DM susceptibility.
Collapse
Affiliation(s)
- Chenyue Qian
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Heming Guo
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohong Chen
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Aiming Shi
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Sicheng Li
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xin Wang
- Department of Endocrinology, Jiangsu Province Hospital of TCM, 155 Hanzhonglu, Jiangsu Nanjing 210029, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|