1
|
Hiller E, Hörz V, Sting R. Corynebacterium pseudotuberculosis: Whole genome sequencing reveals unforeseen and relevant genetic diversity in this pathogen. PLoS One 2024; 19:e0309282. [PMID: 39186721 PMCID: PMC11346948 DOI: 10.1371/journal.pone.0309282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Corynebacterium pseudotuberculosis (CPS) is an important bacterial animal pathogen. CPS causes chronic, debilitating and currently incurable infectious diseases affecting a wide range of livestock and wild herbivores including camelids worldwide. Belonging to the Corynebacterium diphtheriae complex, this pathogen can also infect humans. The classical characterization of CPS is typically based on the testing of nitrate reductase activity, separating the two biovars Equi and Ovis. However, more refined resolutions are required to unravel routes of infection. This was realized in our study by generating and analyzing whole genome sequencing (WGS) data. Using newly created core genome multilocus sequence typing (cgMLST) profiles we were the first to discover isolates grouping in a cluster adjacent to clusters formed by CPS biovar Equi isolates. This novel cluster includes CPS isolates from alpacas, llamas, camels and dromedaries, which are characterized by a lack of nitrate reductase activity as encountered in biovar Ovis. This is of special interest for molecular epidemiology. Nevertheless, these isolates bear the genes of the nitrate locus, which are characteristic of biovar Equi isolates. However, sequence analysis of the genes narG and narH of the nitrate locus revealed indels leading to frameshifts and inactivity of the enzymes involved in nitrate reduction. Interestingly, one CPS isolate originating from another lama with an insertion in the MFS transporter (narT) is adjacent to a cluster formed by ovine CPS isolates biovar Equi. Based on this knowledge, the combination of biochemical and PCR based molecular biological nitrate reductase detection can be used for a fast and uncomplicated classification of isolates in routine diagnostics in order to check the origin of camelid CPS isolates. Further analysis revealed that partial sequencing of the ABC transporter substrate binding protein (CP258_RS07935) is a powerful tool to assign the biovars and the novel genomovar.
Collapse
Affiliation(s)
- Ekkehard Hiller
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Verena Hörz
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
| | - Reinhard Sting
- Chemical and Veterinary Analysis Agency Stuttgart, Fellbach, Germany
- Consiliary Laboratory for Corynebacterium Pseudotuberculosis, Fellbach, Germany
| |
Collapse
|
2
|
Huang Q, Zhang H, Zhang L, Xu B. Bacterial microbiota in different types of processed meat products: diversity, adaptation, and co-occurrence. Crit Rev Food Sci Nutr 2023; 65:287-302. [PMID: 37905560 DOI: 10.1080/10408398.2023.2272770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
As a double-edged sword, some bacterial microbes can improve the quality and shelf life of meat products, but others mainly responsible for deterioration of the safety and quality of meat products. This review aims to present a landscape of the bacterial microbiota in different types of processed meat products. After demonstrating a panoramic view of the bacterial genera in meat products, the diversity of bacterial microbiota was evaluated in two dimensions, namely different types of processed meat products and different meats. Then, the influence of environmental factors on bacterial communities was evaluated according to the storage temperature, packaging conditions, and sterilization methods. Furthermore, microbes are not independent. To explore interactions among those genera, co-occurrence patterns were examined. In these respects, this review highlighted the recent advances in fundamental principles that underlie the environmental adaption tricks and why some species tend to occur together frequently, such as metabolic cross-feeding, co-aggregate at microscale, and the intercellular signaling system. Further investigations are required to unveil the underlying molecular mechanisms that govern microbial community systems, ultimately contributing to developing new strategies to harness beneficial microorganisms and control harmful microorganisms.
Collapse
Affiliation(s)
- Qianli Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huijuan Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Meng W, Chen S, Huang L, Yang J, Zhang W, Zhong Z, Zhou Z, Liu H, Fu H, He T, Peng G. Isolation, characterization, and pathogenicity assessment of Corynebacterium pseudotuberculosis biovar equi strains from alpacas ( Vicugna pacos) in China. Front Microbiol 2023; 14:1206187. [PMID: 37465023 PMCID: PMC10350510 DOI: 10.3389/fmicb.2023.1206187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Corynebacterium pseudotuberculosis is a zoonotic pathogen that causes lymphadenitis in humans, livestock, and wildlife. In this study, C. pseudotuberculosis biovar equi strains were isolated from three alpacas. Antibiotic susceptibility tests and pathogenicity tests were also conducted. Moreover, one strain was sequenced using DNBSEQ and Oxford Nanopore technology. The three strains exhibited resistance to aztreonam, fosfomycin, and nitrofurantoin. The median lethal doses (LD50) of strains G1, S2 and BA3 in experimentally infected mice was 1.66 × 105 CFU, 3.78 × 105 CFU and 3.78 × 105 CFU, respectively. The sequencing of strain G1 resulted in the assembly of a chromosomal scaffold comprising 2,379,166 bp with a G + C content of 52.06%. Genome analysis of strain G1 revealed the presence of 48 virulence genes and 5 antibiotic resistance genes (ARGs). Comparative genomic analysis demonstrates a high degree of genetic similarity among C. pseudotuberculosis strains, in contrast to other Corynebacterium species, with a clear delineation between strains belonging to the two biovars (ovis and equi). The data of the present study contribute to a better understanding of the properties of C. pseudotuberculosis biovar equi strains and the potential risk they pose to alpacas and other livestock, as well as the necessity of ongoing surveillance and monitoring of infectious diseases in animals.
Collapse
Affiliation(s)
- Wanyu Meng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shanyu Chen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinpeng Yang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqing Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tingmei He
- Sichuan Wolong National Natural Reserve Administration, Wenchuan, Sichuan, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
The Microbial Community in the Abscess Underneath the Skin of Goats. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The abscess underneath the skin is a common disease, which seriously affects the quality and yield of goat breeding. The main pathogens that cause abscesses are well understood, but the microbial community yet remains relatively unexplored. To determine the population and diversity of the microorganisms in the abscess underneath the skin of goats, in this work, 5 pus samples randomly collected from different goat farms (Jiangsu Province, China) were subjected to metagenomics sequencing and bioinformatics analysis. The test data show that the microbial communities of each sample contain about 79~82 kinds of microorganisms. Interestingly, each sample contained similar microbial species, including 53~59 kinds of bacteria, 5~6 fungi, 3 viruses, and 16~18 parasites. The top 5 dominant bacteria are Staphylococcus aureus, Lactococcus garvieae, Helicobacter pylori, Streptococcus pneumoniae, and Klebsiella pneumoniae, with an average abundance value of 29.88 %, 8.2%, 6.16%, 3.5%, and 3.26%, respectively. The remaining microbial abundances ranged from 0.01% to 3%. Although each of these frequent microorganisms is a tiny part of the total community, they constitute a major portion of individual reads (~1/2). In the conclusion, Staphylococcus aureus is the most dominant but nonunique bacterium responsible for the abscess underneath the skin of the goat, and the microbial community in the subcutaneous abscess is highly diverse. Bacterial coinfection should play an important role.
Collapse
|
5
|
Alfryyan N, Kordy MGM, Abdel-Gabbar M, Soliman HA, Shaban M. Characterization of the biosynthesized intracellular and extracellular plasmonic silver nanoparticles using Bacillus cereus and their catalytic reduction of methylene blue. Sci Rep 2022; 12:12495. [PMID: 35864132 PMCID: PMC9304349 DOI: 10.1038/s41598-022-16029-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) has been studied in detail using two different approaches. For the first time, Bacillus cereus is used for one-pot biosynthesis of capsulated Ag NPs, using both intracellular and extracellular approaches. To discriminate between the produced nanostructures by these two approaches, their structures, nanomorphologies, optical properties, hydrodynamic sizes and zeta potentials are studied using different techniques. Fourier-transform infrared spectroscopy was used to identify the bioactive components responsible for the reduction of Ag+ ions into Ag and the growth of stable Ag NPs. Scanning and transmission electron microscopy images displayed spherical and polygon nanomorphology for the intracellular and extracellular biosynthesized Ag NPs. For intracellular and extracellular biosynthesized Ag NPs, a face-centred cubic structure was observed, with average crystallite sizes of 45.4 and 90.8 nm, respectively. In comparison to the noncatalytic reduction test, the catalytic activities of intracellular and extracellular biosynthesized Ag NPs were explored for the reduction of highly concentrated MB dye solution. Extracellular Ag NPs achieved 100% MB reduction efficacy after around 80 min, compared to 50.6% and 24.1% in the presence and absence of intracellular Ag NPs, respectively. The rate of MB reduction was boosted by 22 times with the extracellular catalyst, and by 3 times with the intracellular catalyst. Therefore, the extracellular production process of Ag NPs utilizing Bacillus cereus bacteria might be applied in the industry as a cost-effective way for eliminating the toxic MB dye.
Collapse
Affiliation(s)
- Nada Alfryyan
- Department of Physics, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mohamed G M Kordy
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box: 170, Al-Madinah Al-Munawarah, 42351, Saudi Arabia
| |
Collapse
|
6
|
Li Y, Wang Y, Liu J. Genomic Insights Into the Interspecific Diversity and Evolution of Mobiluncus, a Pathogen Associated With Bacterial Vaginosis. Front Microbiol 2022; 13:939406. [PMID: 35865929 PMCID: PMC9294530 DOI: 10.3389/fmicb.2022.939406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal infection and has been associated with increased risk for a wide array of health issues. BV is linked with a variety of heterogeneous pathogenic anaerobic bacteria, among which Mobiluncus is strongly associated with BV diagnosis. However, their genetic features, pathogenicity, interspecific diversity, and evolutionary characters have not been illustrated at genomic level. The current study performed phylogenomic and comparative genomic analyses of Mobiluncus. Phylogenomic analyses revealed remarkable phylogenetic distinctions among different species. Compared with M. curtisii, M. mulieris had a larger genome and pangenome size with more insertion sequences but less CRISPR-Cas systems. In addition, these two species were diverse in profile of virulence factors, but harbored similar antibiotic resistance genes. Statistically different functional genome profiles between strains from the two species were determined, as well as correlations of some functional genes/pathways with putative pathogenicity. We also showed that high levels of horizontal gene transfer might be an important strategy for species diversification and pathogenicity. Collectively, this study provides the first genome sequence level description of Mobiluncus, and may shed light on its virulence/pathogenicity, functional diversification, and evolutionary dynamics. Our study could facilitate the further investigations of this important pathogen, and might improve the future treatment of BV.
Collapse
|
7
|
Didkowska A, Żmuda P, Kwiecień E, Rzewuska M, Klich D, Krajewska-Wędzina M, Witkowski L, Żychska M, Kaczmarkowska A, Orłowska B, Anusz K. Microbiological assessment of sheep lymph nodes with lymphadenitis found during post-mortem examination of slaughtered sheep: implications for veterinary-sanitary meat control. Acta Vet Scand 2020; 62:48. [PMID: 32887621 PMCID: PMC7472580 DOI: 10.1186/s13028-020-00547-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/29/2020] [Indexed: 11/12/2022] Open
Abstract
Background Microbiological examination of lesions found in slaughtered animals during meat inspection is an important part of public health protection as such lesions may be due to zoonotic agents that can be transmitted by meat. Examination of inflamed lymph nodes also plays a particular important role, as lymphadenitis may reflect a more widespread infection. Such lesions in sheep are mainly caused by pyogenic bacteria but also mycobacteria are occasionally found. Meat inspection data from 2017 to 2018 from southern Poland, especially from the Małopolska region, indicate that purulent or caseous lymphadenitis involving the mediastinal and tracheobronchial lymph nodes (MTLNs) is a common finding. The primary aim of the current study was to determine the aetiology of these lesions. Furthermore, it was investigated how presence of lesions was correlated with age and grazing strategy of affected sheep. Results Post-mortem examination revealed purulent or caseous lymphadenitis in the MTLNs of 49 out of 284 animals (17.3%). Subsequent microbiological examination revealed the presence of Corynebacterium pseudotuberculosis (34.7%), Streptococcus dysgalactiae subsp. equisimilis (34.7%), Staphylococcus aureus (8.2%), Enterococcus spp. (2.0%), Trueperella pyogenes (2.0%), and β-haemolytic strains of Escherichia coli (2.0%). Mycobacterium spp. and Rhodococcus equi were not detected. In older sheep, the probability of the presence of purulent or caseous lymphadenitis was higher than in younger, and the risk was increasing by 1.5% with each month of life. Sheep grazing locally had 4.5-times greater risk of having purulent or caseous lymphadenitis than individuals summer grazing in the mountains. Conclusion The most common aetiological agents of purulent or caseous lymphadenitis in the MTLNs of sheep in the Małopolska region were C. pseudotuberculosis and S. dysgalactiae subsp. equisimilis. Particular attention during post-mortem examination should be paid to the carcasses of older sheep and sheep grazing on permanent pastures, as they seem more prone to develop purulent or caseous lymphadenitis.
Collapse
|
8
|
Kwon JH, Park HJ, Lee YY, Cho KS. Evaluation of denitrification performance and bacterial community of a sequencing batch reactor under intermittent aeration. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:179-192. [PMID: 31656118 DOI: 10.1080/10934529.2019.1681220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Effects of operational parameters (initial nitrite concentration, initial nitrate concentration, carbon source, and COD/N ratio) on denitrification performance was evaluated using a sequencing batch reactor (SBR) under intermittent aeration. Complete denitrification was observed without N2O accumulation when the initial nitrite concentration was 100-500 mg-N·L-1. When the initial nitrate concentration was 75-300 mg-N·L-1, 95-96% of NO3--N was completely reduced to N2 gas. Acetate was the most effective sole carbon source for the complete denitrification of the SBR under intermittent aeration, and 99% of NO3--N was reduced to N2 gas. The optimum COD/N ratio was 8-12 for the complete denitrification, while NO2- accumulation was observed at low COD/N ratios of 1 and 2. In this study, N2O accumulation was not observed during the denitrification process regardless of operational condition. Paracoccus (15-68%), a representative aerobic denitrifying bacterium, was dominant in the SBR during the denitrification process, and the intermittent aeration condition could affect the abundance of Paracoccus in this study.
Collapse
Affiliation(s)
- Ji Hyeon Kwon
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Hyung-Joo Park
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Genomic Analysis of Pseudomonas sp. Strain SCT, an Iodate-Reducing Bacterium Isolated from Marine Sediment, Reveals a Possible Use for Bioremediation. G3-GENES GENOMES GENETICS 2019; 9:1321-1329. [PMID: 30910818 PMCID: PMC6505155 DOI: 10.1534/g3.118.200978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Strain SCT is an iodate-reducing bacterium isolated from marine sediment in Kanagawa Prefecture, Japan. In this study, we determined the draft genome sequence of strain SCT and compared it to complete genome sequences of other closely related bacteria, including Pseudomonas stutzeri. A phylogeny inferred from concatenation of core genes revealed that strain SCT was closely related to marine isolates of P. stutzeri. Genes present in the SCT genome but absent from the other analyzed P. stutzeri genomes comprised clusters corresponding to putative prophage regions and possible operons. They included pil genes, which encode type IV pili for natural transformation; the mer operon, which encodes resistance systems for mercury; and the pst operon, which encodes a Pi-specific transport system for phosphate uptake. We found that strain SCT had more prophage-like genes than the other P. stutzeri strains and that the majority (70%) of them were SCT strain-specific. These genes, encoded on distinct prophage regions, may have been acquired after branching from a common ancestor following independent phage transfer events. Thus, the genome sequence of Pseudomonas sp. strain SCT can provide detailed insights into its metabolic potential and the evolution of genetic elements associated with its unique phenotype.
Collapse
|
10
|
Viana MVC, Sahm A, Góes Neto A, Figueiredo HCP, Wattam AR, Azevedo V. Rapidly evolving changes and gene loss associated with host switching in Corynebacterium pseudotuberculosis. PLoS One 2018; 13:e0207304. [PMID: 30419061 PMCID: PMC6231662 DOI: 10.1371/journal.pone.0207304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/28/2018] [Indexed: 02/01/2023] Open
Abstract
Phylogenomics and genome scale positive selection analyses were performed on 29 Corynebacterium pseudotuberculosis genomes that were isolated from different hosts, including representatives of the Ovis and Equi biovars. A total of 27 genes were identified as undergoing adaptive changes. An analysis of the clades within this species and these biovars, the genes specific to each branch, and the genes responding to selective pressure show clear differences, indicating that adaptation and specialization is occurring in different clades. These changes are often correlated with the isolation host but could indicate responses to some undetermined factor in the respective niches. The fact that some of these more-rapidly evolving genes have homology to known virulence factors, antimicrobial resistance genes and drug targets shows that this type of analysis could be used to identify novel targets, and that these could be used as a way to control this pathogen.
Collapse
Affiliation(s)
| | - Arne Sahm
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Aristóteles Góes Neto
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Cesar Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Dazas M, Badell E, Carmi-Leroy A, Criscuolo A, Brisse S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int J Syst Evol Microbiol 2018; 68:3826-3831. [PMID: 30355399 DOI: 10.1099/ijsem.0.003069] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clinical isolates belonging to Corynebacterium diphtheriae biovar Belfanti were characterized by genomic sequencing and biochemical and chemotaxonomic analyses. Phylogenetic analyses indicated that biovar Belfanti represents a branch that is clearly demarcated from C. diphtheriae strains of biovars Mitis and Gravis. The average nucleotide identity of isolates of biovar Belfanti with C. diphtheriae type strain NCTC 11397T (biovar Gravis) was 94.85 %. The inability to reduce nitrate differentiated biovar Belfanti from other strains of C. diphtheriae. On the basis of these results, we propose the name Corynebacterium belfantii sp. nov. for the group of strains previously considered as C. diphtheriaebiovar Belfanti. The type strain of C. belfantii is FRC0043T (=CIP 111412T=DSM 105776T). Strains of C. belfantii were isolated mostly from human respiratory samples.
Collapse
Affiliation(s)
- Melody Dazas
- 1Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens & National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| | - Edgar Badell
- 1Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens & National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| | - Annick Carmi-Leroy
- 1Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens & National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| | - Alexis Criscuolo
- 2Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - Sylvain Brisse
- 1Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens & National Reference Center for the Corynebacteria of the diphtheriae complex, Paris, France
| |
Collapse
|
12
|
Santos AS, Ramos RT, Silva A, Hirata R, Mattos-Guaraldi AL, Meyer R, Azevedo V, Felicori L, Pacheco LGC. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics 2018; 18:593-610. [PMID: 29752561 DOI: 10.1007/s10142-018-0610-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Collapse
Affiliation(s)
- André S Santos
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Rommel T Ramos
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Raphael Hirata
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Ana L Mattos-Guaraldi
- Faculty of Medical Sciences, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Roberto Meyer
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Vasco Azevedo
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Liza Felicori
- Bioinformatics Post-Graduate Program, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luis G C Pacheco
- Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| |
Collapse
|
13
|
Almeida S, Dorneles EMS, Diniz C, Abreu V, Sousa C, Alves J, Carneiro A, Bagano P, Spier S, Barh D, Lage AP, Figueiredo H, Azevedo V. Quadruplex PCR assay for identification of Corynebacterium pseudotuberculosis differentiating biovar Ovis and Equi. BMC Vet Res 2017; 13:290. [PMID: 28946887 PMCID: PMC5613524 DOI: 10.1186/s12917-017-1210-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/14/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Corynebacterium pseudotuberculosis is classified into two biovars, nitrate-negative biovar Ovis which is the etiologic agent of caseous lymphadenitis in small ruminants and nitrate-positive biovar Equi, which causes abscesses and ulcerative lymphangitis in equines. The aim of this study was to develop a quadruplex PCR assay that would allow simultaneous detection and biovar-typing of C. pseudotuberculosis. METHODS In the present study, genomes of C. pseudotuberculosis strains were used to identify the genes involved in the nitrate reduction pathway to improve a species identification three-primer multiplex PCR assay. The nitrate reductase gene (narG) was included in the PCR assay along with the 16S, rpoB and pld genes to enhance the diagnosis of the multiplex PCR at biovar level. RESULTS A novel quadruplex PCR assay for C. pseudotuberculosis species and biovar identification was developed. The results of the quadruplex PCR of 348 strains, 346 previously well-characterized clinical isolates of C. pseudotuberculosis from different hosts (goats, sheep, horse, cattle, buffalo, llamas and humans), the vaccine strain 1002 and the type strain ATCC 19410T, were compared to the results of nitrate reductase identification by biochemical test. The McNemar's Chi-squared test used to compare the two methods used for C. pseudotuberculosis biovar identification showed no significant difference (P = 0.75) [95% CI for odds ratio (0.16-6.14)] between the quadruplex PCR and the nitrate biochemical test. Concordant results were observed for 97.13% (338 / 348) of the tested strains and the kappa value was 0.94 [95% CI (0.90-0.98)]. CONCLUSIONS The ability of the quadruplex assay to discriminate between C. pseudotuberculosis biovar Ovis and Equi strains enhances its usefulness in the clinical microbiology laboratory.
Collapse
Affiliation(s)
- Sintia Almeida
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Elaine M. S. Dorneles
- Escola de Veterinária, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Carlos Diniz
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
- Departamento de Medicina Veterinária, Federal University of Lavras, Lavras, MG Brazil
| | - Vinícius Abreu
- Centro de Energia Nuclear na Agricultura, University of Sao Paulo, Piracicaba, SP Brazil
| | - Cassiana Sousa
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Jorianne Alves
- Instituto de Ciências Biológicas, Federal University of Para, Belém, PA Brazil
| | - Adriana Carneiro
- Instituto de Ciências Biológicas, Federal University of Para, Belém, PA Brazil
| | - Priscilla Bagano
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Sharon Spier
- Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA USA
| | - Debmalya Barh
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB India
| | - Andrey P. Lage
- Escola de Veterinária, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Henrique Figueiredo
- Aquacen - National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, MG Brazil
| |
Collapse
|