1
|
Alkan E, Davies G, Evans SL. Cognitive impairment in schizophrenia: relationships with cortical thickness in fronto-temporal regions, and dissociability from symptom severity. NPJ SCHIZOPHRENIA 2021; 7:20. [PMID: 33737508 PMCID: PMC7973472 DOI: 10.1038/s41537-021-00149-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022]
Abstract
Cognitive impairments are a core and persistent characteristic of schizophrenia with implications for daily functioning. These show only limited response to antipsychotic treatment and their neural basis is not well characterised. Previous studies point to relationships between cortical thickness and cognitive performance in fronto-temporal brain regions in schizophrenia patients (SZH). There is also evidence that these relationships might be independent of symptom severity, suggesting dissociable disease processes. We set out to explore these possibilities in a sample of 70 SZH and 72 age and gender-matched healthy controls (provided by the Center of Biomedical Research Excellence (COBRE)). Cortical thickness within fronto-temporal regions implicated by previous work was considered in relation to performance across various cognitive domains (from the MATRICS Cognitive Battery). Compared to controls, SZH had thinner cortices across most fronto-temporal regions and significantly lower performance on all cognitive domains. Robust relationships with cortical thickness were found: visual learning and attention performance correlated with bilateral superior and middle frontal thickness in SZH only. Correlations between attention performance and right transverse temporal thickness were also specific to SZH. Findings point to the importance of these regions for cognitive performance in SZH, possibly reflecting compensatory processes and/or aberrant connectivity. No links to symptom severity were observed in these regions, suggesting these relationships are dissociable from underlying psychotic symptomology. Findings enhance understanding of the brain structural underpinnings and possible aetiology of cognitive impairment in SZH.
Collapse
Affiliation(s)
- Erkan Alkan
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Geoff Davies
- Brighton & Sussex Medical School/Sussex Partnership NHS Foundation Trust, Sussex, UK
| | - Simon L Evans
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
2
|
Van Rheenen TE, Cropley V, Fagerlund B, Wannan C, Bruggemann J, Lenroot RK, Sundram S, Weickert CS, Weickert TW, Zalesky A, Bousman CA, Pantelis C. Cognitive reserve attenuates age-related cognitive decline in the context of putatively accelerated brain ageing in schizophrenia-spectrum disorders. Psychol Med 2020; 50:1475-1489. [PMID: 31274065 DOI: 10.1017/s0033291719001417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In schizophrenia, relative stability in the magnitude of cognitive deficits across age and illness duration is inconsistent with the evidence of accelerated deterioration in brain regions known to support these functions. These discrepant brain-cognition outcomes may be explained by variability in cognitive reserve (CR), which in neurological disorders has been shown to buffer against brain pathology and minimize its impact on cognitive or clinical indicators of illness. METHODS Age-related change in fluid reasoning, working memory and frontal brain volume, area and thickness were mapped using regression analysis in 214 individuals with schizophrenia or schizoaffective disorder and 168 healthy controls. In patients, these changes were modelled as a function of CR. RESULTS Patients showed exaggerated age-related decline in brain structure, but not fluid reasoning compared to controls. In the patient group, no moderation of age-related brain structural change by CR was evident. However, age-related cognitive change was moderated by CR, such that only patients with low CR showed evidence of exaggerated fluid reasoning decline that paralleled the exaggerated age-related deterioration of underpinning brain structures seen in all patients. CONCLUSIONS In schizophrenia-spectrum illness, CR may negate ageing effects on fluid reasoning by buffering against pathologically exaggerated structural brain deterioration through some form of compensation. CR may represent an important modifier that could explain inconsistencies in brain structure - cognition outcomes in the extant literature.
Collapse
Affiliation(s)
- Tamsyn E Van Rheenen
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Cassandra Wannan
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Jason Bruggemann
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Rhoshel K Lenroot
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Suresh Sundram
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Australia
- Mental Health Program, Monash Health, Clayton, Victoria, Australia
| | - Cynthia Shannon Weickert
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York13210, USA
| | - Thomas W Weickert
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- School of Psychiatry, University of New South Wales, New South Wales, Australia
- Neuroscience Research Australia, New South Wales, Australia
| | - Andrew Zalesky
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, VIC, Australia
| | - Chad A Bousman
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Christos Pantelis
- Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, VIC, Australia
| |
Collapse
|
3
|
Doostdar N, Kim E, Grayson B, Harte MK, Neill JC, Vernon AC. Global brain volume reductions in a sub-chronic phencyclidine animal model for schizophrenia and their relationship to recognition memory. J Psychopharmacol 2019; 33:1274-1287. [PMID: 31060435 DOI: 10.1177/0269881119844196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive deficits and structural brain changes co-occur in patients with schizophrenia. Improving our understanding of the relationship between these is important to develop improved therapeutic strategies. Back-translation of these findings into rodent models for schizophrenia offers a potential means to achieve this goal. AIMS The purpose of this study was to determine the extent of structural brain changes and how these relate to cognitive behaviour in a sub-chronic phencyclidine rat model. METHODS Performance in the novel object recognition task was examined in female Lister Hooded rats at one and six weeks after sub-chronic phencyclidine (2 mg/kg intra-peritoneal, n=15) and saline controls (1 ml/kg intra-peritoneal, n=15). Locomotor activity following acute phencyclidine challenge was also measured. Brain volume changes were assessed in the same animals using ex vivo structural magnetic resonance imaging and computational neuroanatomical analysis at six weeks. RESULTS Female sub-chronic phencyclidine-treated Lister Hooded rats spent significantly less time exploring novel objects (p<0.05) at both time-points and had significantly greater locomotor activity response to an acute phencyclidine challenge (p<0.01) at 3-4 weeks of washout. At six weeks, sub-chronic phencyclidine-treated Lister Hooded rats displayed significant global brain volume reductions (p<0.05; q<0.05), without apparent regional specificity. Relative volumes of the perirhinal cortex however were positively correlated with novel object exploration time only in sub-chronic phencyclidine rats at this time-point. CONCLUSION A sustained sub-chronic phencyclidine-induced cognitive deficit in novel object recognition is accompanied by global brain volume reductions in female Lister Hooded rats. The relative volumes of the perirhinal cortex however are positively correlated with novel object exploration, indicating some functional relevance.
Collapse
Affiliation(s)
- Nazanin Doostdar
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eugene Kim
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Grayson
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
4
|
Hanford LC, Pinnock F, Hall GB, Heinrichs RW. Cortical thickness correlates of cognitive performance in cognitively-matched individuals with and without schizophrenia. Brain Cogn 2019; 132:129-137. [PMID: 31005042 DOI: 10.1016/j.bandc.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/03/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022]
Abstract
Schizophrenia is characterized by psychosis and, in most cases, cognitive impairment. It is unclear, however, whether these elements of the disorder represent distinct or related disease processes. Accordingly, this study investigated 3-way interactions between group, cognition and cortical thickness in cognitively-matched patients with schizophrenia and healthy control groups. Patients and healthy controls were group-matched on demographics and a broadly-based index of cognitive performance. T1-weighted images were processed using Freesurfer. Variable selection techniques were applied to determine which regions best predicted 3-way interaction effects. Independent variables included age, sex, IQ, and 87 regional cortical thickness values strongly associated with group or cognition. Antipsychotic treatment effects were also investigated. Twenty regions were selected by the best fitting model. The top 6 regions included the left pre- and post-central, left superior frontal and temporal and right rostral and caudal middle frontal cortices. No antipsychotic treatment effects were seen. Cortical thinning in schizophrenia exists even in the absence of cognitive impairment. Our findings support the separation of psychosis and cognitive impairment as independent disease processes, with distinct relations with cortical thickness in prefrontal cortical areas. Parsing out these two disease processes will increase understanding of heterogeneity in schizophrenia and may modify treatment targets.
Collapse
Affiliation(s)
- Lindsay C Hanford
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Farena Pinnock
- Department of Psychology, York University, Toronto, ONT, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ONT, Canada
| | | |
Collapse
|
5
|
Barry EF, Vanes LD, Andrews DS, Patel K, Horne CM, Mouchlianitis E, Hellyer PJ, Shergill SS. Mapping cortical surface features in treatment resistant schizophrenia with in vivo structural MRI. Psychiatry Res 2019; 274:335-344. [PMID: 30851596 DOI: 10.1016/j.psychres.2019.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
Abstract
Decreases in cortical volume (CV), thickness (CT) and surface area (SA) have been reported in individuals with schizophrenia by in vivo MRI studies. However, there are few studies that examine these cortical measures as potential biomarkers of treatment resistance (TR) and treatment response (NTR) in schizophrenia. This study used structural MRI to examine differences in CV, CT, and SA in 42 adults with schizophrenia (TR = 21, NTR = 21) and 23 healthy controls (HC) to test the hypothesis that individuals with TR schizophrenia have significantly greater reductions in these cortical measures compared to individuals with NTR schizophrenia. We found that individuals with TR schizophrenia showed significant reductions in CV and CT compared to individuals with NTR schizophrenia in right frontal and precentral regions, right parietal and occipital cortex, left temporal cortex and bilateral cingulate cortex. In line with previous literature, the temporal lobe and cingulate gyrus in both patient groups showed significant reductions of all three measures when compared to healthy controls. Taken together these results suggest that regional changes in CV and CT may index mechanisms specific to TR schizophrenia and potentially identify patients with TR schizophrenia for earlier treatment.
Collapse
Affiliation(s)
- Erica F Barry
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Lucy D Vanes
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Derek S Andrews
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Krisna Patel
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Charlotte M Horne
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Elias Mouchlianitis
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Peter J Hellyer
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sukhi S Shergill
- Cognition Schizophrenia and Imaging Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|