1
|
Chen GH, Sia KC, Liu SW, Kao YC, Yang PC, Ho CH, Huang SC, Lee PY, Liang MZ, Chen L, Huang CC. Implantation of MSC spheroid-derived 3D decellularized ECM enriched with the MSC secretome ameliorates traumatic brain injury and promotes brain repair. Biomaterials 2025; 315:122941. [PMID: 39515193 DOI: 10.1016/j.biomaterials.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Traumatic brain injury (TBI) presents substantial clinical challenges, as existing treatments are unable to reverse damage or effectively promote brain tissue regeneration. Although implantable biomaterials have been proposed to support tissue repair by mitigating the adverse microenvironment in injured brains, many fail to replicate the complex composition and architecture of the native extracellular matrix (ECM), resulting in only limited therapeutic outcomes. This study introduces an innovative approach by developing a mesenchymal stem cell (MSC) spheroid-derived three-dimensional (3D) decellularized ECM (dECM) that is enriched with the MSC-derived matrisome and secretome, offering a promising solution for TBI treatment and brain tissue regeneration. Proteomic and cytokine array analyses revealed that 3D dECM retained a diverse array of MSC spheroid-derived matrisome proteins and secretome components, which are crucial for replicating the complexity of native ECM and the therapeutic capabilities of MSCs. These molecules were found to underlie the observed effects of 3D dECM on immunomodulation, proneuritogenesis, and proangiogenesis in our in vitro functional assays. Implantation of 3D dECM into TBI model mice effectively mitigated postinjury tissue damage and promoted brain repair, as evidenced by a reduced brain lesion volume, decreased cell apoptosis, alleviated neuroinflammation, reduced glial scar formation, and increased of neuroblast recruitment to the lesion site. These outcomes culminated in improved motor function recovery in animals, highlighting the multifaceted therapeutic potential of 3D dECM for TBI. In summary, our study elucidates the transformative potential of MSC spheroid-derived bioactive 3D dECM as an implantable biomaterial for effectively mitigating post-TBI neurological damage, paving the way for its broader therapeutic application.
Collapse
Affiliation(s)
- Grace H Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kee-Chin Sia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shao-Wen Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chi Kao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chia-Hsin Ho
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shih-Chen Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Peng-Ying Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
2
|
Sehic E, de Miguel-Gómez L. Standardizing decellularization protocols for optimized uterine tissue bioengineering. Regen Ther 2025; 28:183-190. [PMID: 39811067 PMCID: PMC11731971 DOI: 10.1016/j.reth.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Bioengineering is applied in different areas, including women's infertility management. Among other approaches, decellularized tissues are being used to treat uterine disorders causing infertility. Biomaterials made from decellularized tissue consist of tissue-specific extracellular matrix and, as acellular scaffolds, are thought to be immune inert. Hence, they are good grafting candidates to replace and regenerate excised damaged uterine tissue to cure infertility. However, decellularization approaches differ among species and research groups, posing challenges for comparison and standardization. The diversity in data reporting and studied properties of the resulting decellularized scaffold make it even more difficult, especially when the ultimate goal is clinical translation. Thus, this review aims to critically assess whole uterus decellularization studies, extracting and comparing their main results and conclusions. After carefully evaluating the reviewed studies, we noticed that the vast majority base the uterus decellularization success and resulting scaffold efficacy on the DNA removal efficacy, while other crucial aspects, including the extracellular matrix integrity or immunogenicity, are underestimated. Thus, this review further proposes practical points for what should be considered and how results can be reported in studies involving whole uterus decellularization to facilitate comparison between studies and translational progress.
Collapse
Affiliation(s)
- Edina Sehic
- Department of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Lucía de Miguel-Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, 40530 Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| |
Collapse
|
3
|
Su S, Wang R, Bai J, Chen Z, Zhou F. Novel Decellularization Scheme for Preparing Acellular Fish Scale Scaffolds for Bone Tissue Engineering. ACS OMEGA 2025; 10:230-238. [PMID: 39829519 PMCID: PMC11740628 DOI: 10.1021/acsomega.4c05096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
In bone tissue engineering, a suitable scaffold is the key. Due to their similar composition to bone tissue, special structure, good mechanical properties, and osteogenic properties, acellular fish scale scaffolds are potential scaffolds for bone tissue engineering. At present, the fish scale decellularization scheme mostly uses a combination of sodium dodecyl sulfate and ethylenediamine tetraacetic acid (EDTA), but this method has problems. We optimized this method using a combined method of Triton X-100, EDTA, and nuclease. In this study, the optimal scheme was screened with respect to the decellularization effect, extracellular matrix composition and structure retention, mechanical properties, cell biocompatibility, and osteogenic differentiation ability. The results showed that the optimal scheme was as follows: the native fish scales were incubated in 0.1% EDTA for 24 h, and then the cellular components were removed with 1% Triton X-100 for 4 days, followed by nuclease digestion for 24 h. On that basis, we proposed a novel and more suitable fish scale decellularization scheme, and the acellular fish scale scaffold prepared by this decellularization scheme may have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shilong Su
- Department
of Orthopedics, Peking University Third
Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
- Engineering
Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
| | - Ruideng Wang
- Department
of Orthopedics, Peking University Third
Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
- Engineering
Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
| | - Jinwu Bai
- Department
of Orthopedics, Peking University Third
Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
- Engineering
Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
| | - Zhengyang Chen
- Department
of Orthopedics, Peking University Third
Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
- Engineering
Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
| | - Fang Zhou
- Department
of Orthopedics, Peking University Third
Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
- Engineering
Research Center of Bone and Joint Precision Medicine, Peking University Third Hospital, No. 49 North Garden Road, Haidian, 100191 Beijing, China
| |
Collapse
|
4
|
Di Filippo F, Brevini TAL, Pennarossa G, Gandolfi F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front Bioeng Biotechnol 2025; 12:1532107. [PMID: 39877269 PMCID: PMC11772495 DOI: 10.3389/fbioe.2024.1532107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced in vitro only in the mouse. The development of reliable 3D in vitro models able to mimic the architecture and the physiological microenvironment of the testis, represents a possible strategy to facilitate ex vivo haploid male gamete generation in domestic species. Here we describe the creation of bovine testicular bio-scaffolds and their successful repopulation in vitro with bovine testicular cells. In particular, bovine testes are subjected to three different decellularization protocols. Cellular compartment removal and extracellular matrix preservation are evaluated. The generated bio-scaffolds are then repopulated with bovine testicular fibroblasts. The results obtained demonstrate that the decellularization protocol involving the use of 0.3% sodium dodecyl sulfate (SDS) for 12 h efficiently eliminates native cells, while preserving intact ECM composition and microstructure. Its subsequent repopulation with bovine fibroblasts demonstrates successful cell homing, colonization and growth, consistent with the scaffold ability to sustain cell adherence and proliferation. Overall, the generated 3D bio-scaffolds may constitute a suitable artificial niche for ex vivo culture of testicular cells and may represent a possible strategy to reproduce spermatogenesis in vitro.
Collapse
Affiliation(s)
- Francesca Di Filippo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
dos Santos AC, de Andrade LMB, Candelária RAQ, de Carvalho JC, Valbão MCM, Barreto RDSN, de Faria MD, Buchaim RL, Buchaim DV, Miglino MA. From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering (Basel) 2025; 12:52. [PMID: 39851326 PMCID: PMC11759173 DOI: 10.3390/bioengineering12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas. In order to be classified as an ideal scaffold, it must be acellular, preserving its proteins and physical characteristics necessary for cell adhesion. This study aimed to develop a decellularization protocol for pig ear cartilage and evaluate the integrity of the ECM. Four tests were performed using different methods and protocols, with four pig ears from which the skin and subcutaneous tissue were removed, leaving only the cartilage. The most efficient protocol was the combination of trypsin with a sodium hydroxide solution (0.2 N) and SDS (1%) without altering the ECM conformation or the collagen architecture. In conclusion, it was observed that auricular cartilage is difficult to decellularize, influenced by material size, exposure time, and the composition of the solution. Freezing and thawing did not affect the procedure. The sample thickness significantly impacted the decellularization time.
Collapse
Affiliation(s)
- Ana Caroline dos Santos
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Livia Maria Barbosa de Andrade
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Raí André Querino Candelária
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Juliana Casanovas de Carvalho
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | | | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Marcelo Domingues de Faria
- Department of Animal Anatomy, Agricultural Sciences—Federal University of Vale do São Francisco (UNIVASF), Petrolina 56300-000, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Medical School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
6
|
Bashiri Z, Khosrowpour Z, Moghaddaszadeh A, Jafari D, Alizadeh S, Nasiri H, Parsaei H, Keshtkaran Z, Abdollahpour‐Alitappeh M, Bargrizaneh F, Rezaei B, Simorgh S, Gholipourmalekabadi M. Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. Eng Life Sci 2025; 25:e202400085. [PMID: 39801563 PMCID: PMC11717148 DOI: 10.1002/elsc.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Recent interest has been focused on extracellular matrix (ECM)-based scaffolds totreat critical-sized bone injuries. In this study, urea was used to decellularize and solubilize human placenta tissue. Then, different concentrations of ECM were composited with 8% alginate (Alg) and 12% silk fibroin (SF) for printing in order to produce a natural 3D construct that resembled bone tissue. The physical and biological features of the printed structures were evaluated entirely in vitro. Finally, a rat model was employed to examine the optimal 3D printed scaffold (5% ECM) as a bone transplant for the healing of cranial bone lesions. The present investigation demonstrated that decellularizing placental tissue fragments led to efficient removal of cell debris. In addition, a remarkable improvement in the printed scaffolds' mechanical and biological properties was observed by increasing the ECM concentration. The histology studies and real-time PCR results demonstrated the acceleration of bone regeneration in the bone lesions treated with 5%ECM-SF/Alg at 4 and 8 weeks after implantation. Overall, these results proved that the placental ECM-printed scaffolds could potentially construct biomimetic grafts to reconstruct significant bone defects and now promise to proceed with clinical studies.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Department of Anatomy, School of MedicineIran University of Medical SciencesTehranIran
- Omid Fertility & Infertility ClinicHamedanIran
| | - Zahra Khosrowpour
- Department of PediatricsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Davod Jafari
- Oncopathology Research CenterIran University of Medical SciencesTehranIran
| | | | - Hajar Nasiri
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
| | - Houman Parsaei
- Nervous System Stem Cells Research CenterSemnan University of Medical SciencesSemnanIran
| | - Zahra Keshtkaran
- Community Based Psychiatric Care Research Center, Department of Nursing, School of Nursing and MidwiferyShiraz University of Medical SciencesShirazIran
| | | | - Farshad Bargrizaneh
- Student Research Committee, School of Health Management and Information SciencesShiraz Universiy of Medical SciencesShirazIran
| | - Behzad Rezaei
- Department of Surgery, School of MedicineLarestan University of Medical SciencesLarestanIran
| | - Sara Simorgh
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CenterIran University of Medical SciencesTehranIran
- Department of Medical Biotechnology, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Sun M, LaSala VR, Giuglaris C, Blitzer D, Jackman S, Ustunel S, Rajesh K, Kalfa D. Cardiovascular patches applied in congenital cardiac surgery: Current materials and prospects. Bioeng Transl Med 2025; 10:e10706. [PMID: 39801761 PMCID: PMC11711229 DOI: 10.1002/btm2.10706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 01/16/2025] Open
Abstract
Congenital Heart Defects (CHDs) are the most common congenital anomalies, affecting between 4 and 75 per 1000 live births. Cardiovascular patches (CVPs) are frequently used as part of the surgical armamentarium to reconstruct cardiovascular structures to correct CHDs in pediatric patients. This review aims to evaluate the history of cardiovascular patches, currently available options, clinical applications, and important features of these patches. Performance and outcomes of different patch materials are assessed to provide reference points for clinicians. The target audience includes clinicians seeking data on clinical performance as they make choices between different patch products, as well as scientists and engineers working to develop patches or synthesize new patch materials.
Collapse
Affiliation(s)
- Mingze Sun
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | | | - Caroline Giuglaris
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- UMR 168 Laboratoire Physique des Cellules et CancerInstitut Curie, PSL Research University, Sorbonne Université, CNRSParisFrance
| | - David Blitzer
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sophia Jackman
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Senay Ustunel
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Kavya Rajesh
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - David Kalfa
- Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac SurgeryNew‐York Presbyterian—Morgan Stanley Children's Hospital, Columbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
8
|
Berry-Kilgour C, Oey I, Cabral J, Dowd G, Wise L. Decellularized Green and Brown Macroalgae as Cellulose Matrices for Tissue Engineering. J Funct Biomater 2024; 15:390. [PMID: 39728190 DOI: 10.3390/jfb15120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Scaffolds resembling the extracellular matrix (ECM) provide structural support for cells in the engineering of tissue constructs. Various material sources and fabrication techniques have been employed in scaffold production. Cellulose-based matrices are of interest due to their abundant supply, hydrophilicity, mechanical strength, and biological inertness. Terrestrial and marine plants offer diverse morphologies that can replicate the ECM of various tissues and be isolated through decellularization protocols. In this study, three marine macroalgae species-namely Durvillaea poha, Ulva lactuca, and Ecklonia radiata-were selected for their morphological variation. Low-intensity, chemical treatments were developed for each species to maintain native cellulose structures within the matrices while facilitating the clearance of DNA and pigment. Scaffolds generated from each seaweed species were non-toxic for human dermal fibroblasts but only the fibrous inner layer of those derived from E. radiata supported cell attachment and maturation over the seven days of culture. These findings demonstrate the potential of E. radiata-derived cellulose scaffolds for skin tissue engineering and highlight the influence of macroalgae ECM structures on decellularization efficiency, cellulose matrix properties, and scaffold utility.
Collapse
Affiliation(s)
- Caitlin Berry-Kilgour
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Jaydee Cabral
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Georgina Dowd
- The New Zealand Institute for Plant and Food Research Limited, Nelson 7043, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
de Paulo CB, Miglino MA, Castelucci P. Perspectives on the extracellular matrix in inflammatory bowel disease and bowel decellularization protocols. World J Exp Med 2024; 14:97179. [PMID: 39713079 PMCID: PMC11551702 DOI: 10.5493/wjem.v14.i4.97179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 10/31/2024] Open
Abstract
The extracellular matrix (ECM) is a non-cellular three-dimensional structure present in all tissues that is essential for the intestinal maintenance, function and structure, as well as for providing physical support for tissue integrity and elasticity. ECM enables the regulation of various processes involved in tissue homeostasis, being vital for healing, growth, migration and cell differentiation. Structurally, ECM is composed of water, polysaccharides and proteins, such as collagen fibers and proteoglycans, which are specifically arranged for each tissue. In pathological scenarios, such as inflammatory bowel disease (IBD), the deposition and remodeling of the ECM can be altered in relation to the homeostatic composition. IBD, such as Ulcerative colitis and Crohn's disease, can be differentiated according to ECM alterations, such as circulating levels of collagen, laminin and vimentin neoepitopes. In this context, ECM presents particularities in both physiological and pathological processes, however, exploring methods of tissue decellularization is emerging as a promising frontier for new therapeutic interventions and clinical protocols, promoting the development of new approaches to intestinal diseases.
Collapse
Affiliation(s)
- Caroline Bures de Paulo
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 05508-270, São Paulo, Brazil
| | - Maria Angelica Miglino
- Laboratório de Medicina Regenerativa, Universidade de Marilia, Marilia 00000, São Paulo, Brazil
| | | |
Collapse
|
10
|
Kim JP, Heo SC, Lee DH, Bae JS, Shin YK, Son SH, Park IY, Kim HW, Lee JH, Kim KW. Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study. J Orthop Surg Res 2024; 19:859. [PMID: 39702298 DOI: 10.1186/s13018-024-05343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery. METHODS Sixty-five male Lewis rats were divided into five groups of 13, each with a 10-mm sciatic nerve gap. Group I received an autograft, whereas Groups II and III received allografts pretreated with cryopreservation and cold preservation, respectively. Groups IV and V were also implanted with cryo- and cold-preserved allografts, but were treated with a low dose of FK506. Motor regeneration was assessed at 20 weeks by the measurement of ankle contracture, compound muscle action potential, maximal isometric tetanic force, wet muscle weight of the tibialis anterior, peroneal nerve histomorphometry, and immunohistochemistry of the reconstructed sciatic nerve. RESULTS Similar motor recovery was observed between the autografts and both types of allografts. The groups treated with FK506 showed improved recovery, particularly in terms of ankle angle and tibialis anterior muscle weight. Histomorphometry revealed a superior myelinated fiber area and nerve ratio in the cold-preserved allograft group, while Group II displayed a less well-organized morphology. CONCLUSION This study demonstrates that cold- or cryopreserved nerve allografts represent effective alternatives to autografts for peripheral nerve reconstruction, with low-dose FK506 enhancing motor recovery without necessitating immunosuppression. LEVEL OF EVIDENCE I Basic Science Level I.
Collapse
Affiliation(s)
- Jong Pil Kim
- Department of Orthopaedic Surgery, Naeunpil Hospital, Cheonan, Republic of Korea
| | - Soon Chul Heo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dae Hee Lee
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Jun Sang Bae
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - Young Kwang Shin
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Su Hyeok Son
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Il Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.
| |
Collapse
|
11
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2024; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
13
|
Dilek ÖF, Sevim KZ, Dilek ON. Acellular dermal matrices in reconstructive surgery; history, current implications and future perspectives for surgeons. World J Clin Cases 2024; 12:6791-6807. [PMID: 39687641 PMCID: PMC11525903 DOI: 10.12998/wjcc.v12.i35.6791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/24/2024] Open
Abstract
Large-scale defects of body in the reconstructive surgical practice, and the helplessness of their repair with autologous tissues, have been an important factor in the development of artificial biological products for the temporary, definitive, or staged repair of these defects. A major advance in the field of plastic and other reconstructive surgery in this regard has been the introduction and successful use of acellular dermal matrices (ADMs). In recent years, not only the type of tissue from which ADMs are produced, product range, diversity and areas of use have increased, but their use in reconstructive fields, especially in post oncologic breast surgery, has become highly regarded and this has favored ADMs to be a potential cornerstone in specific and well-defined surgical fields in future. It is essential that reconstructive surgeons become familiar with some of the ADM's as well as the advantages and limitations to their use. This review not only provides basic science and clinical evidence of the current use of ADMs in wide range of surgical fields but also targets to keep them as an important backdrop in the armamentarium of reconstructive surgeons. Brief considerations of possible future directions for ADMs are also conducted in the end.
Collapse
Affiliation(s)
- Ömer F Dilek
- Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul 34396, Türkiye
| | - Kamuran Z Sevim
- Department of Plastic and Reconstructive Surgery, University of Health Sciences, Şişli Hamidiye Etfal Training and Research Hospital, İstanbul 34396, Türkiye
| | - Osman N Dilek
- Department of Surgery, İzmir Katip Celebi University, School of Medicine, İzmir 35150, Türkiye
| |
Collapse
|
14
|
Stern I, Barrera V, Randles M, Rooney P. Advances in preparation of acellular human dermis for tissue banking and transplantation. Cell Tissue Bank 2024; 26:3. [PMID: 39653869 PMCID: PMC11628444 DOI: 10.1007/s10561-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Non-healing wounds cost the National Health Service over £5.6 billion annually in wound management. Skin allografts are used to treat non-healing wounds, ulcers and burns, offering the best protection against infection. In order to allow host cells to repopulate and to avoid immunogenicity, cell components are removed through decellularisation. Decellularisation of human dermis has so far been performed in NHS Blood and Transplant using a combination of two enzymes (RNase T1 and the recombinant human DNase Pulmozyme)®. This study aims at validating a new method to remove DNA from donated dermis via the use of a single enzyme, Benzonase, known for its effectiveness of DNA digestion. Skin samples were decellularised by removing the epidermis, lysing of dermal cells, removal of cellular fragments by a detergent wash and removal of nucleic acids by a nuclease incubation with either Benzonase or Pulmozyme + RNase T1. DNA quantification with PicoGreen, as well as histology on wax-embedded biopsies, stained with DAPI and haemotoxylin and eosin, were performed. In vitro toxicity test on human osteosarcoma immortalised cells and skin fibroblasts, and biomechanical (tensile) testing, were also performed. The effectiveness of DNA digestion with the new methodology was comparable to previous procedure. Mean DNA removal percentage following decellularisation with Pulmozyme + RNase was 99.9% (3.83 ng/mg). Mean DNA removal percentage with Benzonase was 99.8% (9.97 ng/mg). Histology staining showed complete decellularisation following either method. Benzonase was proven to be non-toxic to both cell lines used, and a one-way Anova test showed no significant difference in neither stress nor strain between acellular dermal matrix decellularised with either Benzonase or Pulmozyme + RNase T1. Benzonase was able to effectively decellularise dermis after prior removal of epidermis. It performed just as well as the combination of Pulmozyme + RNase T1, but represents significant advantages in terms of cost effectiveness, procurement and storage; Benzonase has been successfully used in the decellularisation of other tissues, thus would be better for Tissue Banking use. Switching to this combined DNase/RNase can have far-reaching consequences in the production of acellular human dermal matrix by NHSBT and in the treatment of patients requiring it.
Collapse
Affiliation(s)
- Irit Stern
- NHS Blood and Transplant, Tissue Services, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK.
| | - Valentina Barrera
- NHS Blood and Transplant, Tissue Services R&D, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK
| | - Michael Randles
- Faculty of Medicine and Life Sciences, Chester Medical School, University of Chester, Chester, UK
| | - Paul Rooney
- NHS Blood and Transplant, Tissue Services R&D, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK
| |
Collapse
|
15
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
16
|
Choi S, Lee MJ, Kim M, Bae Y, Park JU, Cho SW. Durable Muscle Extracellular Matrix Engineered with Adhesive Phenolic Moieties for Effective Skeletal Muscle Regeneration in Muscle Atrophy. Adv Healthc Mater 2024; 13:e2401826. [PMID: 39420690 DOI: 10.1002/adhm.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Muscle atrophy detrimentally impacts health and exacerbates physical disability, leading to increased mortality. In particular, sarcopenia, aging-related degenerative muscle loss, necessitates urgent remedies. Current approaches for treating muscle atrophy include exercise and nutrition, while drug exploration remains in its early stages. Cell therapy, focusing on satellite cells, faces significant challenge due to poor engraftment, safety issue, and high cost. Cell-free approach using extracellular matrix (ECM) shows a regenerative potential, but a lack of mechanical and adhesive properties hinders prolonged efficacy of ECM therapy. Here, durable muscle ECM (MEM) hydrogels for muscle atrophy by fortifying MEM with adhesive phenolic moieties including catechol and pyrogallol are demonstrated. The resultant phenolic MEM hydrogels exhibit enhanced mechanical and adhesive properties and provide sustained muscle-like microenvironments to address muscle atrophy. No local and systemic toxicities are observed after phenolic MEM injection into tibialis anterior muscle. Notably, these engineered MEM hydrogels, devoid of cells or drugs, induce tissue rejuvenation by promoting muscle protein synthesis and facilitating functional muscle recovery in mouse models of disuse- and age-induced atrophy. This study introduces cell-free, ECM-based therapeutics with translational potential for muscle atrophy by reversing muscle loss and restoring function.
Collapse
Affiliation(s)
- Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yunsu Bae
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
17
|
Alibeigian Y, Kalantari N, Ebrahimi Sadrabadi A, Kamali A, Raminfard S, Baghaban Eslaminejad M, Hosseini S. Incorporation of calcium phosphate cement into decellularized extracellular matrix enhances its bone regenerative properties. Colloids Surf B Biointerfaces 2024; 244:114175. [PMID: 39216442 DOI: 10.1016/j.colsurfb.2024.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels are engineered constructs that are widely-used in the field of regenerative medicine. However, the development of ECM-based hydrogels for bone tissue engineering requires enhancement in its osteogenic properties. For this purpose, we initially employed bone-derived dECM hydrogel (dECM-Hy) in combination with calcium phosphate cement (CPC) paste to improve the biological and structural properties of the dECM hydrogel. A decellularization protocol for bovine bone was developed to prepare dECM-Hy, and the mechanically-tuned dECM/CPC-Hy was built based on both rheological and mechanical characteristics. The dECM/CPC-Hy displayed a double swelling ratio and compressive strength. An interconnected structure with distinct hydroxyapatite crystals was evident in dECM/CPC-Hy. The expression levels of Alp, Runx2 and Ocn genes were upregulated in dECM/CPC-Hy compared to the dECM-Hy. A 14-day follow-up of the rats receiving subcutaneous implanted dECM-Hy, dECM/CPC-Hy and mesenchymal stem cells (MSCs)-embedded (dECM/CPC/MSCs-Hy) showed no toxicity, inflammatory factor expression or pathological changes. Radiography and computed tomography (CT) of the calvarial defects revealed new bone formation and elevated number of osteoblasts-osteocytes and osteons in dECM/CPC-Hy and dECM/CPC/MSCs-Hy compared to the control groups. These findings indicate that the dECM/CPC-Hy has substantial potential for bone tissue engineering.
Collapse
Affiliation(s)
- Yalda Alibeigian
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Niloofar Kalantari
- University of Science and Culture, Faculty of Science & Advanced Technologies in Biology, Tehran, Islamic Republic of Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Amir Kamali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran
| | - Samira Raminfard
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran; Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
18
|
Sun B, Zhang Z, Yu Y, Xia F, Ma Y, Ding X, Han X, Wang T, Zhou X, Zhao J. Comparative study of physicochemical properties on corneal stromal lenticules following four decellularization methods. Exp Eye Res 2024; 249:110148. [PMID: 39537007 DOI: 10.1016/j.exer.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
This study compares the physicochemical properties of corneal stromal lenticules following decellularization via four methods. Human corneal stromal lenticules, derived from small incision lenticule extraction surgery, underwent decellularization with sodium dodecyl sulfate (SDS), Triton X-100 (Tx) combined with SDS, trypsin-ethylenediaminetetraacetic acid (TE), or NaCl combined with deoxyribonuclease (DNase), respectively. Lenticule DNA and glycosaminoglycan (GAG) content, immunofluorescence staining of cell nuclei and collagen, transparency, biomechanics, histological structure, and immunogenicity were examined in each group and compared with fresh lenticules. All decellularized groups exhibited effective cell removal, with no significant decrease in GAG content (all P > 0.05). DNA content decreased in all decellularization groups (all P < 0.01), most notably in the SDS and Tx + SDS groups. Additionally, collagen I and IV fluorescence intensity was reduced in the TE group only (P < 0.0001). Histological staining revealed close similarity in collagen arrangement between the Tx + SDS group and fresh lenticules. Collagen fiber density increased while spacing and diameter decreased in all decellularized groups (all P < 0.05), with partial collagen degradation detected in the TE group. Light transmittance remained above 60% in the visible light spectrum in all groups. The Young's modulus or elastic modulus did not decrease significantly among decellularized lenticules (all P > 0.05). Human leukocyte antigen (HLA)-DR, HLA-ABC, and CD45 expression decreased in the Tx + SDS and NaCl + DNase groups (all P < 0.001). Although all four decellularization methods showed varying decellularization efficacy, Tx + SDS effectively removed cells without damaging corneal morphology, extracellular matrix, or biomechanics, indicating its potential for lenticule storage, transplantation, and bio-scaffold fabrication.
Collapse
Affiliation(s)
- Bingqing Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Zhe Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Yanze Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Fei Xia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Yong Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xuan Ding
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xiaosong Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Ti Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China.
| | - Jing Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, Shanghai, 200031, China.
| |
Collapse
|
19
|
Jiwangga D, Mahyudin F, Mastutik G, Lazuwardi RA. Meta-analysis of in vitro methods on tracheal decellularization. Artif Organs 2024. [PMID: 39560201 DOI: 10.1111/aor.14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/17/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Tracheal decellularization is one of the main processes to provide tracheal substitutes for tracheal replacement. Recently, studies have been held for agents and combinations of processes for tracheal decellularization with different outcomes. This study aimed to evaluate the efficacy of tracheal decellularization by the immunogenic cellular elements using residual deoxyribonucleic acid (DNA) contents (ng/mg) and the preservation of biomechanical integrity by glycosaminoglycan (GAG) content (μg/mg), modulus tensile strength (MPa), ultimate tensile strength (MPa), and stress loading of 50% deformation (N). METHODS We conducted a meta-analysis based on PRISMA criteria. Data from experimental studies in MEDLINE, Scopus, and ScienceDirect from inception to August 21, 2023, were sought and computed using RevMan 5.4. The outcomes of tracheal decellularization were evaluated through effect size estimates based on pooled Standardized Mean Difference (SMD) with 95% CI. RESULTS Tracheal decellularization has significantly reduced the DNA and GAG content after the process (SMD: -11.77, 95% CI [-13.92, -8.62], p < 0.00001; SMD: -6.70, 95% CI [-9.55, -3.85], p < 0.00001). No significant outcomes were observed in modulus and ultimate tensile strength result (SMD: -0.14, 95% CI [-0.64, 0.36], p = 0.58; SMD: 0.11, 95% CI [-0.57, 0.80], p = 0.75). The stress loading of 50% deformation was observed to significantly lower (SMD: -1.61, 95% CI [-2.49, -0.72], p = 0.0004). CONCLUSION Tracheal decellularization has been proven to effectively remove immunogenic cells. However, extracellular matrix integrity and biomechanical properties vary among different decellularization techniques, indicating a need for further refinement to achieve better preservation.
Collapse
Affiliation(s)
- Dhihintia Jiwangga
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and Traumatology, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Gondo Mastutik
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
20
|
Kuniakova M, Novakova ZV, Haspinger D, Niestrawska JA, Klein M, Galfiova P, Kovac J, Palkovic M, Danisovic L, Hammer N, Ziaran S. Effects of Two Decellularization Protocols on the Mechanical Behavior and Structural Properties of the Human Urethra. Int J Mol Sci 2024; 25:12361. [PMID: 39596425 PMCID: PMC11594372 DOI: 10.3390/ijms252212361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This study evaluates the effects of two decellularization protocols, enzyme-detergent (ED) and detergent-detergent (DD), on the structural and biomechanical properties of human urethral tissue. Urethral samples from 18 individuals were divided into ED (n = 7) and DD (n = 11) groups, with native samples (n = 3) serving as controls. Histological and ultrastructural analyses confirmed that both protocols effectively removed cellular content while preserving essential extracellular matrix (ECM) elements, such as collagen and elastic fibers. Immunohistochemical staining for collagen IV and fibronectin revealed no significant differences between decellularized and native tissues, indicating intact ECM structure. Biomechanical testing demonstrated that DD-treated tissues had significantly lower Cauchy stress (1494.8 ± 518.4 kPa) when compared to native tissues (2439.7 ± 578.7 kPa, p = 0.013), while ED-treated tissues were similar to both groups. Both decellularized groups exhibited reduced stretch at failure and elastic modulus compared to native tissues. Cytotoxicity assays using adipose-derived stem cells demonstrated no signs of toxicity in either protocol. Overall, both ED and DD protocols effectively preserved the urethral ECM structure and mechanical properties, making them suitable for potential use in tissue-engineered grafts and for biobanking purposes. Further research is needed to refine and optimize decellularization methods to improve scaffold recellularization and ensure clinical safety and efficacy.
Collapse
Affiliation(s)
- Marcela Kuniakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (Z.V.N.); (J.K.)
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (Z.V.N.); (J.K.)
| | - Daniel Haspinger
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria; (D.H.); (J.A.N.); (N.H.)
| | - Justyna Anna Niestrawska
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria; (D.H.); (J.A.N.); (N.H.)
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (P.G.)
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (P.G.)
| | - Jan Kovac
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (Z.V.N.); (J.K.)
- National Institute of Rheumatic Diseases, Nabr. I. Krasku 4, 921 12 Piestany, Slovakia;
| | - Michal Palkovic
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.K.); (Z.V.N.); (J.K.)
- National Institute of Rheumatic Diseases, Nabr. I. Krasku 4, 921 12 Piestany, Slovakia;
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria; (D.H.); (J.A.N.); (N.H.)
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Forming Tools, 01187 Dresden, Germany
| | - Stanislav Ziaran
- National Institute of Rheumatic Diseases, Nabr. I. Krasku 4, 921 12 Piestany, Slovakia;
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
21
|
Hosseini SF, Galefi A, Hosseini S, Shaabani A, Farrokhi N, Jahanfar M, Nourany M, Homaeigohar S, Alipour A, Shahsavarani H. Magnesium oxide nanoparticle reinforced pumpkin-derived nanostructured cellulose scaffold for enhanced bone regeneration. Int J Biol Macromol 2024; 281:136303. [PMID: 39370065 DOI: 10.1016/j.ijbiomac.2024.136303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Considering global surge in bone fracture prevalence, limitation in use of traditional healing approaches like bone grafts highlights the need for innovative regenerative strategies. Here, a novel green fabrication approach has reported for reinforcement of physicochemical performances of sustainable bioinspired extracellular matrix (ECM) based on decellularized pumpkin tissue coated with Magnesium oxide nanoparticles (hereafter called DM-Pumpkin) for enhanced bone regeneration. Compared to uncoated scaffold, DM-Pumpkin exhibited significantly improved surface roughness, mechanical stiffness, porosity, hydrophilicity, swelling, and biodegradation rate. Obtained nanoporous structure provides an ideal three-dimensional microenvironment for the attachment, migration and osteo-induction in human adipose-derived mesenchymal stem cells (h- AdMSCs). Calcium deposition and mineralization, alkaline phosphatase activity, and SEM imaging of the cells as well as increased expression of bone-related genes after 21 days incubation confirmed capability of DM-Pumpkin in mimicking the biological properties of bone tissue. The presence of MgONPs had a silencing effect on inflammatory factors and improved wound closure, verified by in vivo studies. Increased expression of collagen type I and osteocalcin in the h- AdMSCs cultured on DM-Pumpkin compared to control further corroborated gained results. Altogether, boosting physicochemical and biological properties of DM-Pumpkin due to surface modification is a promising approach for guided bone regeneration.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Hosseini
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Atena Galefi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saadi Hosseini
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, GC, 1983969411 Tehran, Iran
| | - Naser Farrokhi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mehdi Jahanfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Mohammad Nourany
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Faculty of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Atefeh Alipour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran; Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran 1316943551, Iran; Iranian Biological Resource Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
22
|
Gupta S, Sharma A, Rajakannu M, Bisevac J, Rela M, Verma RS. Small Molecule-Mediated Stage-Specific Reprogramming of MSCs to Hepatocyte-Like Cells and Hepatic Tissue for Liver Injury Treatment. Stem Cell Rev Rep 2024; 20:2215-2235. [PMID: 39259445 PMCID: PMC11554881 DOI: 10.1007/s12015-024-10771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Derivation of hepatocytes from stem cells has been established through various protocols involving growth factor (GF) and small molecule (SM) agents, among others. However, mesenchymal stem cell-based derivation of hepatocytes still remains expensive due to the use of a cocktail of growth factors, and a long duration of differentiation is needed, thus limiting its potential clinical application. METHODS In this study, we developed a chemically defined differentiation strategy that is exclusively based on SM and takes 14 days, while the GF-based protocol requires 23-28 days. RESULTS We optimized a stage-specific differentiation protocol for the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into functional hepatocyte-like cells (dHeps) that involved four stages, i.e., definitive endoderm (DE), hepatic competence (HC), hepatic specification (HS) and hepatic differentiation and growth. We further generated hepatic tissue using human decellularized liver extracellular matrix and compared it with hepatic tissue derived from the growth factor-based protocol at the transcriptional level. dHep, upon transplantation in a rat model of acute liver injury (ALI), was capable of ameliorating liver injury in rats and improving liver function and tissue damage compared to those in the ALI model. CONCLUSIONS In summary, this is the first study in which hepatocytes and hepatic tissue were derived from MSCs utilizing a stage-specific strategy by exclusively using SM as a differentiation factor.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Muthukumarassamy Rajakannu
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Jovana Bisevac
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
23
|
Elnawam H, Thabet A, Mobarak A, Abdallah A, Elbackly R. Preparation and characterization of bovine dental pulp-derived extracellular matrix hydrogel for regenerative endodontic applications: an in vitro study. BMC Oral Health 2024; 24:1281. [PMID: 39448989 PMCID: PMC11515367 DOI: 10.1186/s12903-024-05004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The use of biological scaffolds in regenerative endodontics has gained much attention in recent years. The search for a new biomimetic scaffold that contains tissue-specific cell homing factors could lead to more predictable tissue regeneration. The aim of this study was to prepare and characterize decellularized bovine dental pulp-derived extracellular matrix (P-ECM) hydrogels for regenerative endodontic applications. METHODS Freshly extracted bovine molar teeth were collected. Bovine dental pulp tissues were harvested, and stored at -40º C. For decellularization, a 5-day protocol was implemented incorporating trypsin/EDTA, deionized water and DNase treatment. Decellularization was evaluated by DNA quantification and histological examination to assess collagen and glycosaminoglycans (GAGs) content. This was followed by the preparation of P-ECM hydrogel alone or combined with hyaluronic acid gel (P-ECM + HA). The fabricated scaffolds were then characterized using protein quantification, hydrogel topology and porosity, biodegradability, and growth factor content using Enzyme-linked immunosorbent assay (ELISA): transforming growth factor beta-1(TGF-β1), basic fibroblast growth factor (bFGF), bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF). RESULTS Decellularization was histologically confirmed, and DNA content was below (50 ng/mg tissue). P-ECM hydrogel was prepared with a final ECM concentration of 3.00 mg/ml while P-ECM + HA hydrogel was prepared with a final ECM concentration of 1.5 mg/ml. Total protein content in P-ECM hydrogel was found to be (439.0 ± 123.4 µg/µl). P-ECM + HA showed sustained protein release while the P-ECM group showed gradual decreasing release. Degradation was higher in P-ECM + HA which had a significantly larger fiber diameter, while P-ECM had a larger pore area percentage. ELISA confirmed the retention and release of growth factors where P-ECM hydrogel had higher BMP-2 release, while P-ECM + HA had higher release of TGF-β1, bFGF, and VEGF. CONCLUSIONS Both P-ECM and P-ECM + HA retained their bioactive properties demonstrating a potential role as functionalized scaffolds for regenerative endodontic procedures.
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Abdelrahman Thabet
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Santos-Silva T, Viana IS, Queiroz ABPS, de Oliveira FS, Horvath-Pereira BDO, da Silva-Júnior LN, Araujo MS, Canola PA, Dias LGGG, Soares MM, Miglino MA. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. J Funct Biomater 2024; 15:311. [PMID: 39452609 PMCID: PMC11508647 DOI: 10.3390/jfb15100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.
Collapse
Affiliation(s)
- Thamires Santos-Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Inácio Silva Viana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Andrea Barros Piazzon S. Queiroz
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Fabrício Singaretti de Oliveira
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Paulo Alescio Canola
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Luís Gustavo Gosuen G. Dias
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Marcelo Melo Soares
- Institute of Orofacial Osteogenesis Rehabilitation S/S Ltda., Vila Olímpia 04532-060, SP, Brazil;
| | - Maria Angelica Miglino
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| |
Collapse
|
25
|
Choi SJ, Han J, Shin YH, Kim JK. Increased efficiency of peripheral nerve regeneration using supercritical carbon dioxide-based decellularization in acellular nerve graft. Sci Rep 2024; 14:23696. [PMID: 39389997 PMCID: PMC11467423 DOI: 10.1038/s41598-024-72672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Acellular nerve grafts (ANGs) are a promising therapeutic for patients with nerve defects caused by injuries. Conventional decellularization methods utilize a variety of detergents and enzymes. However, these methods have disadvantages, such as long processing times and the presence of detergents that remain on the graft. In this study, we aimed to reduce process time and minimize the risks associated with residual detergents by replacing them with supercritical carbon dioxide (scCO2) and compared the effectiveness to Hudson's decellularization method, which uses several detergents. The dsDNA and the expression of MHC1 and 2 were significantly reduced in both decellularized groups, which confirmed the effective removal of cellular debris. The extracellular matrix proteins and various factors were found to be better preserved in the scCO2 ANGs compared to the detergent-ANGs. We conducted behavioral tests and histological analyses to assess the impact of scCO2 ANGs on peripheral nerve regeneration in animal models. Compared with Hudson's method, the scCO2 method effectively improved the efficacy of peripheral nerve regeneration. Therefore, the decellularization method using scCO2 is not only beneficial for ANG synthesis, but it may also be helpful for therapeutics by enhancing the efficacy of peripheral nerve regeneration.
Collapse
Affiliation(s)
| | | | - Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Kwang Kim
- Asan Institute for Life Sciences, Seoul, Korea.
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
26
|
Almeida GHDR, Gibin MS, Rinaldi JDC, Gonzaga VHDS, Thom CR, Iglesia RP, da Silva RS, Fernandes IC, Bergamo RO, Lima LS, Lopomo B, Santos GVC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Meirelles FV, Carreira ACO. Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts. Tissue Eng Part C Methods 2024. [PMID: 39311629 DOI: 10.1089/ten.tec.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis in situ. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, in vitro performance and in vivo biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection in vivo in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.
Collapse
Affiliation(s)
| | | | | | | | | | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael Oliveira Bergamo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luan Stefani Lima
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Beatriz Lopomo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá, Brazil
| | - Mauro Luciano Baesso
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
27
|
Fazel Anvari Yazdi A, Tahermanesh K, Ejlali M, Babaei-Ghazvini A, Acharya B, Badea I, MacPhee DJ, Chen X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front Bioeng Biotechnol 2024; 12:1418034. [PMID: 39416283 PMCID: PMC11480021 DOI: 10.3389/fbioe.2024.1418034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Decellularized uterine extracellular matrix has emerged as a pivotal focus in the realm of biomaterials, offering a promising source in uterine tissue regeneration, research on disease diagnosis and treatments, and ultimately uterine transplantation. In this study, we examined various protocols for decellularizing porcine uterine tissues, aimed to unravel the intricate dynamics of DNA removal, bioactive molecules preservation, and microstructural alterations. Methods Porcine uterine tissues were treated with 6 different, yet rigorously selected and designed, protocols with sodium dodecyl sulfate (SDS), Triton® X-100, peracetic acid + ethanol, and DNase I. After decellularization, we examined DNA quantification, histological staining (H&E and DAPI), glycosaminoglycans (GAG) assay, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Thermogravimetric Analysis (TGA). Results A comparative analysis among all 6 protocols was conducted with the results demonstrating that all protocols achieved decellularization; while 0.1% SDS + 1% Triton® X-100, coupled with agitation, demonstrated the highest efficiency in DNA removal. Also, it was found that DNase I played a key role in enhancing the efficiency of the decellularization process by underscoring its significance in digesting cellular contents and eliminating cell debris by 99.79% (19.63 ± 3.92 ng/mg dry weight). Conclusions Our findings enhance the nuanced understanding of DNA removal, GAG preservation, microstructural alteration, and protein decomposition in decellularized uterine extracellular matrix, while highlighting the importance of decellularization protocols designed for intended applications. This study along with our findings represents meaningful progress for advancing the field of uterine transplantation and related tissue engineering/regenerative medicine.
Collapse
Affiliation(s)
| | - Kobra Tahermanesh
- Department of Obstetrics and Gynecology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Ejlali
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J. MacPhee
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
28
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
29
|
Shang L, Wang S, Mao Y. Recent advances in plant-derived polysaccharide scaffolds in tissue engineering: A review. Int J Biol Macromol 2024; 277:133830. [PMID: 39002914 DOI: 10.1016/j.ijbiomac.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
As a natural three-dimensional biopolymer, decellularized plant-derived scaffolds usually comprise various polysaccharides, mostly cellulose, pectin, and hemicellulose. They are characterized by natural biocompatibility and porous structures. The emergence of decellularized purified polysaccharide scaffolds provides an attractive method to overcome the challenges associated with nutrient delivery and biocompatibility, as they serve as optimal non-immune environments for stem cell adhesion and proliferation. To date, limited corresponding literature is available to systemically summarize the development and potential of these scaffolds in tissue engineering. Therefore, the current review summarized the biomimetic properties of plant-derived polysaccharide scaffolds and the latest progress in tissue engineering applications. This review first discusses the advantages of decellularized plant-derived polysaccharide scaffolds by briefly introducing their features and current limitations in clinical applications. Subsequently, the latest progress in emerging applications of regenerative biomaterials is reviewed, followed by a discussion of the studies on the interactions of biomaterials with cells and tissues. Finally, challenges in obtaining reliable scaffolds and possible future directions are discussed.
Collapse
Affiliation(s)
- Lijun Shang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Shan Wang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yingji Mao
- School of Life Sciences, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
30
|
Yiu F, Lee V, Sahoo A, Shiba J, Garcia-Soto N, Aninwene GE, Pandey V, Wohlschlegel J, Sturm RM. Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology. J Pediatr Urol 2024; 20:843-850. [PMID: 38945790 DOI: 10.1016/j.jpurol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Acellular matrices have historically been applied as biologic scaffolds in surgery, wound care, and tissue engineering, albeit with inconsistent outcomes. One aspect that varies widely between products is the selection of decellularization protocol, yet few studies assess comparative effectiveness of these protocols in preserving mechanics, and protein content. This study characterizes bladder acellular matrix (BAM) using two different detergent and enzymatic protocols, evaluating effects on nuclei and DNA removal (≥90%), structure, tensile properties, and maintenance of extracellular matrix proteins. METHODS Porcine bladders were decellularized with 0.5% Sodium Dodecyl Sulfate (SDS) or 0.25% Trypsin-hypotonic-Triton X-100 hypertonic (TT)-based agitation protocols, followed by DNase/RNase agents. Characterization of BAM included decellularization efficacy (DAPI, DNA quantification), structure (histology and scanning electron microscopy), tensile testing (Instron 345C-1 mechanical tester), and protein presence and diversity (mass spectrometry). SDS and TT data was directly compared to the same native bladder using two-tailed paired t-tests. Native, TT, and SDS cohorts for tensile testing were compared using one-way ANOVA; Tukey's post-hoc tests for among group differences. RESULTS Effective nuclei removal was achieved by SDS- and TT-based protocols. However, target DNA removal was achieved with SDS but not TT. SDS more effectively maintained qualitative tissue architecture compared to TT. The tensile modulus of the TT cohort increased, and stretchability decreased after decellularization in both SDS and TT. UTS was unaffected by either protocol. Higher overall diversity and quantity of core matrisome and matrisome-associated proteins was maintained in the SDS vs TT cohort post-decellularization. CONCLUSION The results indicated that detergent selection affects multiple aspects of the resultant BAM biologic product. In the selected protocols, SDS was superior to TT efficacy, and maintenance of gross tissue architecture as well as maintenance of ECM proteins. Decellularization increased scaffold resistance to deformation in both cohorts. Future studies applying biologic scaffolds must consider the processing method and agents used to ensure that materials selected are optimized for characteristics that will facilitate effective translational use.
Collapse
Affiliation(s)
- Felix Yiu
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Victoria Lee
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Astha Sahoo
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Shiba
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nohemi Garcia-Soto
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - George E Aninwene
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vijaya Pandey
- Proteome Research Center, University of California Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Proteome Research Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Renea M Sturm
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Yiu F, Sturm RM. Response regarding "Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology". J Pediatr Urol 2024; 20:853-854. [PMID: 39147609 DOI: 10.1016/j.jpurol.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Affiliation(s)
- F Yiu
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R M Sturm
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
López-Chicón P, Rodríguez Martínez JI, Castells-Sala C, Lopez-Puerto L, Ruiz-Ponsell L, Fariñas O, Vilarrodona A. Pericardium decellularization in a one-day, two-step protocol. Mol Cell Biochem 2024:10.1007/s11010-024-05086-x. [PMID: 39251464 DOI: 10.1007/s11010-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Scaffolds used in tissue engineering can be obtained from synthetic or natural materials, always focusing the effort on mimicking the extracellular matrix of human native tissue. In this study, a decellularization process is used to obtain an acellular, biocompatible non-cytotoxic human pericardium graft as a bio-substitute. An enzymatic and hypertonic method was used to decellularize the pericardium. Histological analyses were performed to determine the absence of cells and ensure the integrity of the extracellular matrix (ECM). In order to measure the effect of the decellularization process on the tissue's biological and mechanical properties, residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and the tissue's tensile strength was tested. Preservation of the biomolecules, a residual genetic content below 50 ng/mg dry tissue, and maintenance of the histological structure provided evidence for the efficacy of the decellularization process, while preserving the ECM. Moreover, the acellular tissue retains its mechanical properties, as shown by the biomechanical tests. Our group has shown that the acellular pericardial matrix obtained through the super-fast decellularization protocol developed recently retains the desired biomechanical and structural properties, suggesting that it is suitable for a broad range of clinical indications.
Collapse
Affiliation(s)
- P López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - J I Rodríguez Martínez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - C Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain.
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain.
| | - L Lopez-Puerto
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - L Ruiz-Ponsell
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - O Fariñas
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - A Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
33
|
Gupt C, Lamba AK, Faraz F, Tandon S, Augustine J, Datta A, Dhingra S. Histological evaluation of decellularization of freeze dried and chemically treated indigenously prepared bovine pericardium membrane. Cell Tissue Bank 2024; 25:773-784. [PMID: 38780817 DOI: 10.1007/s10561-024-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Decellularization is regarded as a xenogenic antigen-reduction technique because it effectively eliminates all cellular and nuclear components while mitigating any negative impact on the composition, biological functionality, and structural integrity of the remaining extracellular matrix. This study aimed to histologically evaluate native, freeze dried and chemically decellularized bovine pericardium membrane. Also, this study focused on preservation of extracellular matrix after decellularization. Bovine pericardium membrane was decellularized by freeze thaw cycle followed by freeze drying and 1% sodium dodecyl sulphate. Unprocessed pericardium was used as control. The effectiveness of Decellularization was assessed based on the reduction of histologically visible nuclei. Decellularization by freeze thaw cycle followed by freeze drying resulted in 17.84% reduction in nuclei content and decellularization by sodium dodecyl sulphate results in 92% reduction in nuclei content compare to control group. Picrosirius red staining for freeze dried group displayed loosely organised, thin collagen bundles that exhibit reddish-yellow birefringence and sodium dodecyl sulfate group revealed dense collagen bundles that are parallelly organised and compact, exhibiting reddish-yellow birefringence and showed good structural integrity. These results suggested that the sodium do decyl sulfate showed optimal decellularization results with better extracellular matrix preservation. It may be a suitable protocol for producing a suitable scaffold for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Chander Gupt
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India.
| | - Arundeep Kaur Lamba
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Farrukh Faraz
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Shruti Tandon
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Jeyaseelan Augustine
- Department of Oral Pathology and Microbiology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Archita Datta
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| | - Sachin Dhingra
- Department of Periodontology, Maulana Azad Institute of Dental Sciences, New Delhi, 110002, India
| |
Collapse
|
34
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
35
|
Subasi Can S, Tuncer S, Akel Bilgic H, İmrak G, Günal G, Damadoglu E, Aydin HM, Karaaslan C. Establishment of 3D cell culture systems with decellularized lung-derived extracellular matrix hydrogel scaffold. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-23. [PMID: 39190661 DOI: 10.1080/09205063.2024.2392356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Decellularized tissue hydrogels, especially that mimic the native tissue, have a high potential for tissue engineering, three-dimensional (3D) cell culture, bioprinting, and therapeutic agent encapsulation due to their excellent biocompatibility and ability to facilitate the growth of cells. It is important to note that the decellularization process significantly affects the structural integrity and properties of the extracellular matrix, which in turn shapes the characteristics of the resulting hydrogels at the macromolecular level. Therefore, our study aims to identify an effective chemical decellularization method for sheep lung tissue, using a mixing/agitation technique with a range of detergents, including commonly [Sodium dodecyl sulfate (SDS), Triton X-100, and 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate] (CHAPS), and rarely used (sodium cholate hydrate, NP-40, and 3-[N,N-Dimethyl(3-myristoylaminopropyl)ammonio]propanesulfonate) (ASB-14). After the effectiveness of the used detergents on decellularization was determined by histological and biochemical methods, lung derived decellularized extracellular matrix was converted into hydrogel. We investigated the interactions between lung cells and decellularized extracellular matrix using proliferation assay, scanning electron microscopy, and immunofluorescence microscopy methods on BEAS-2B cells in air-liquid interface. Notably, this study emphasizes the effectiveness of ASB-14 in the decellularization process, showcasing its crucial role in removing cellular components while preserving vital extracellular matrix biological macromolecules, including glycosaminoglycans, collagen, and elastin. The resulting hydrogels demonstrated favorable mechanical properties and are compatible with both cell-cell and cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Secil Subasi Can
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Türkiye
| | - Sema Tuncer
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Türkiye
| | - Hayriye Akel Bilgic
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Gizem İmrak
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Gülçin Günal
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Türkiye
- Department of Plastic Surgery, Akdeniz University, Antalya, Türkiye
| | - Ebru Damadoglu
- Division of Allergy and Immunology, Department of Chest Diseases, Hacettepe University School of Medicine, Ankara, Türkiye
| | - Halil Murat Aydin
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Türkiye
| | - Cagatay Karaaslan
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Türkiye
- Molecular Biology Section, Department of Biology, Faculty of Science, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
36
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
37
|
Ma R, Gao X, Jin Y, Wang X, Li R, Qiao R, Wang X, Liu D, Xie Z, Wang L, Zhang J, Xu W, Hu Y. Is there a duration-characteristic relationship for trypsin exposure on tendon? A study on anterior cruciate ligament reconstruction in a rabbit model. Front Med (Lausanne) 2024; 11:1417930. [PMID: 39234049 PMCID: PMC11371708 DOI: 10.3389/fmed.2024.1417930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background Decellularized allograft tendons are highly regarded for their accessibility and the reduced risk of immune rejection, making them a promising choice for grafting due to their favorable characteristics. However, effectively integrating reconstructed tendons with host bone remains a significant clinical challenge. Purpose This study aims to investigate the relationship between the duration of tendon exposure to trypsin and its impact on tendon biomechanical properties and healing capacity. Methods Morphological assessments and biochemical quantifications were conducted. Allograft tendons underwent heterotopic transplantation into the anterior cruciate ligament (ACL) in a rabbit model, with specimens harvested 6 weeks post-surgery for a comparative analysis of cell adhesion strength and mechanical performance. Duration-response curves were constructed using maximum stress and cell adhesion quantity as primary indicators. Results The trypsin treatment enhanced cell adhesion on the tendon surface. Adhesion rates in the control group vs. the experimental groups were as follows: 3.10 ± 0.56% vs. 4.59 ± 1.51%, 5.36 ± 1.24%, 6.12 ± 1.98%, and 8.27 ± 2.34% (F = 6.755, p = 0.001). However, increasing treatment duration led to a decline in mechanical properties, with the ultimate load (N) in the control vs. experimental groups reported as 103.30 ± 10.51 vs. 99.59 ± 4.37, 93.15 ± 12.38, 90.42 ± 7.87, and 82.68 ± 6.89, F = 4.125 (p = 0.013). Conclusion The findings reveal an increasing trend in adhesion effectiveness with prolonged exposure duration, while mechanical strength declines. The selection of the optimal processing duration should involve careful consideration of the benefits derived from both outcomes.
Collapse
Affiliation(s)
- Rongxing Ma
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaokang Gao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yangyang Jin
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xiaolong Wang
- The People's Hospital of Chengyang Qingdao, Qingdao, Shandong, China
| | - Ruifeng Li
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Xinliang Wang
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
| | - Dayong Liu
- Department of Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Zhitao Xie
- Department of Orthopedics, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Jingyu Zhang
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Weiguo Xu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yongcheng Hu
- Clinical School/College of Orthopedics, Tianjin Medical University, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
38
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
39
|
Boroumand S, Rahmani M, Sigaroodi F, Ganjoury C, Parandakh A, Bonakdar A, Khani MM, Soleimani M. The landscape of clinical trials in corneal regeneration: A systematic review of tissue engineering approaches in corneal disease. J Biomed Mater Res B Appl Biomater 2024; 112:e35449. [PMID: 39032135 DOI: 10.1002/jbm.b.35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Bonakdar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Le LTT, Pham NC, Trinh XT, Nguyen NG, Nguyen VL, Nam SY, Heo CY. Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. Tissue Eng Part A 2024; 30:447-459. [PMID: 38205627 DOI: 10.1089/ten.tea.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.
Collapse
Affiliation(s)
- Linh Thi Thuy Le
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngoc Chien Pham
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngan Giang Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
| | - Van Long Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
41
|
Wang Y, Zong Y, Chen W, Diao N, Zhao Q, Li C, Jia B, Zhang M, Li J, Zhao Y, Du R, He Z. Decellularized Antler Cancellous Bone Matrix Material Can Serve as Potential Bone Tissue Scaffold. Biomolecules 2024; 14:907. [PMID: 39199295 PMCID: PMC11353137 DOI: 10.3390/biom14080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Due to the limited supply of autologous bone grafts, there is a need to develop more bone matrix materials to repair bone defects. Xenograft bone is expected to be used for clinical treatment due to its exact structural similarity to natural bone and its high biocompatibility. In this study, decellularized antler cancellous bone matrix (DACB) was first prepared, and then the extent of decellularization of DACB was verified by histological staining, which demonstrated that it retained the extracellular matrix (ECM). The bioactivity of DACB was assessed using C3H10T1/2 cells, revealing that DACB enhanced cell proliferation and facilitated cell adhesion and osteogenic differentiation. When evaluated by implanting DACB into nude mice, there were no signs of necrosis or inflammation in the epidermal tissues. The bone repair effect of DACB was verified in vivo using sika deer during the antler growth period as an animal model, and the molecular mechanisms of bone repair were further evaluated by transcriptomic analysis of the regenerated tissues. Our findings suggest that the low immunogenicity of DACB enhances the production of bone extracellular matrix components, leading to effective osseointegration between bone and DACB. This study provides a new reference for solving bone defects.
Collapse
Affiliation(s)
- Yusu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Quanmin Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Chunyi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Boyin Jia
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Miao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
42
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
43
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
44
|
Shukla P, Bera AK, Ghosh A, Kiranmai G, Pati F. Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications. Biofabrication 2024; 16:035030. [PMID: 38876096 DOI: 10.1088/1758-5090/ad586b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Ashis Kumar Bera
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Amit Ghosh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Gaddam Kiranmai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
45
|
Faeed M, Ghiasvand M, Fareghzadeh B, Taghiyar L. Osteochondral organoids: current advances, applications, and upcoming challenges. Stem Cell Res Ther 2024; 15:183. [PMID: 38902814 PMCID: PMC11191177 DOI: 10.1186/s13287-024-03790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
In the realm of studying joint-related diseases, there is a continuous quest for more accurate and representative models. Recently, regenerative medicine and tissue engineering have seen a growing interest in utilizing organoids as powerful tools for studying complex biological systems in vitro. Organoids, three-dimensional structures replicating the architecture and function of organs, provide a unique platform for investigating disease mechanisms, drug responses, and tissue regeneration. The surge in organoid research is fueled by the need for physiologically relevant models to bridge the gap between traditional cell cultures and in vivo studies. Osteochondral organoids have emerged as a promising avenue in this pursuit, offering a better platform to mimic the intricate biological interactions within bone and cartilage. This review explores the significance of osteochondral organoids and the need for their development in advancing our understanding and treatment of bone and cartilage-related diseases. It summarizes osteochondral organoids' insights and research progress, focusing on their composition, materials, cell sources, and cultivation methods, as well as the concept of organoids on chips and application scenarios. Additionally, we address the limitations and challenges these organoids face, emphasizing the necessity for further research to overcome these obstacles and facilitate orthopedic regeneration.
Collapse
Affiliation(s)
- Maryam Faeed
- Cell and Molecular School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahsa Ghiasvand
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahar Fareghzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Taghiyar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
46
|
Khodayari H, Khodayari S, Rezaee M, Rezaeiani S, Alipour Choshali M, Erfanian S, Muhammadnejad A, Nili F, Pourmehran Y, Pirjani R, Rajabi S, Aghdami N, Nebigil-Désaubry C, Wang K, Mahmoodzadeh H, Pahlavan S. Promotion of cardiac microtissue assembly within G-CSF-enriched collagen I-cardiogel hybrid hydrogel. Regen Biomater 2024; 11:rbae072. [PMID: 38974665 PMCID: PMC11226883 DOI: 10.1093/rb/rbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Tissue engineering as an interdisciplinary field of biomedical sciences has raised many hopes in the treatment of cardiovascular diseases as well as development of in vitro three-dimensional (3D) cardiac models. This study aimed to engineer a cardiac microtissue using a natural hybrid hydrogel enriched by granulocyte colony-stimulating factor (G-CSF), a bone marrow-derived growth factor. Cardiac ECM hydrogel (Cardiogel: CG) was mixed with collagen type I (ColI) to form the hybrid hydrogel, which was tested for mechanical and biological properties. Three cell types (cardiac progenitor cells, endothelial cells and cardiac fibroblasts) were co-cultured in the G-CSF-enriched hybrid hydrogel to form a 3D microtissue. ColI markedly improved the mechanical properties of CG in the hybrid form with a ratio of 1:1. The hybrid hydrogel demonstrated acceptable biocompatibility and improved retention of encapsulated human foreskin fibroblasts. Co-culture of three cell types in G-CSF enriched hybrid hydrogel, resulted in a faster 3D structure shaping and a well-cellularized microtissue with higher angiogenesis compared to growth factor-free hybrid hydrogel (control). Immunostaining confirmed the presence of CD31+ tube-like structures as well as vimentin+ cardiac fibroblasts and cTNT+ human pluripotent stem cells-derived cardiomyocytes. Bioinformatics analysis of signaling pathways related to the G-CSF receptor in cardiovascular lineage cells, identified target molecules. The in silico-identified STAT3, as one of the major molecules involved in G-CSF signaling of cardiac tissue, was upregulated in G-CSF compared to control. The G-CSF-enriched hybrid hydrogel could be a promising candidate for cardiac tissue engineering, as it facilitates tissue formation and angiogenesis.
Collapse
Affiliation(s)
- Hamid Khodayari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Saeed Khodayari
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Malihe Rezaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Siamak Rezaeiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Saiedeh Erfanian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Fatemeh Nili
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Yasaman Pourmehran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran 13145-871, Iran
| | - Reihaneh Pirjani
- Obstetrics and Gynecology Department, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran 1653915981, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| | - Naser Aghdami
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran 19395-4644, Iran
| | - Canan Nebigil-Désaubry
- Institute National de le santé et de la recherce médicale, INSERM, University of Strasbourg, UMR 1260-Regenerative Nanomedicine, CRBS, Central of Research in biomedicine of Strasbourg, Strasbourg 90032, France
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 19395-4644, Iran
| |
Collapse
|
47
|
Seifi Z, Khazaei M, Cheraghali D, Rezakhani L. Decellularized tissues as platforms for digestive system cancer models. Heliyon 2024; 10:e31589. [PMID: 38845895 PMCID: PMC11153114 DOI: 10.1016/j.heliyon.2024.e31589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
The extracellular matrix (ECM) is a multifunctional network of macromolecules that regulate various cellular functions and physically support the tissues. Besides physiological conditions, the ECM also changes during pathological conditions such as cancer. As tumor cells proliferate, notable changes occur in the quantity and makeup of the surrounding ECM. Therefore, the role of this noncellular component of tissues in studies of tumor microenvironments should be considered. So far, many attempts have been made to create 2-dimensional (2D) or 3-dimensional (3D) models that can replicate the intricate connections within the tumor microenvironment. Decellularized tissues are proper scaffolds that imitate the complex nature of native ECM. This review aims to summarize 3D models of digestive system cancers based on decellularized ECMs. These ECM-based scaffolds will enable us to study the interactive communication between cells and their surrounding environment which brings new potential for a better understanding of the pathophysiology of cancer.
Collapse
Affiliation(s)
- Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Danial Cheraghali
- Department of Mechanical Engineering, New Jersey Institute of Technology, NJ, USA
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
48
|
Ali ZM, Wang X, Shibru MG, Alhosani M, Alfadhli N, Alnuaimi A, Murtaza FF, Zaid A, Khaled R, Salih AE, Vurivi H, Daoud S, Butt H, Chan V, Pantic IV, Paunovic J, Corridon PR. A sustainable approach to derive sheep corneal scaffolds from stored slaughterhouse waste. Regen Med 2024; 19:303-315. [PMID: 39177571 PMCID: PMC11346552 DOI: 10.1080/17460751.2024.2357499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/10/2024] [Indexed: 08/24/2024] Open
Abstract
Aim: The escalating demand for corneal transplants significantly surpasses the available supply. To bridge this gap, we concentrated on ethical and sustainable corneal grafting sources. Our objective was to create viable corneal scaffolds from preserved slaughterhouse waste.Materials & methods: Corneas were extracted and decellularized from eyeballs that had been refrigerated for several days. These scaffolds underwent evaluation through DNA quantification, histological analysis, surface tension measurement, light propagation testing, and tensile strength assessment.Results: Both the native and acellular corneas (with ~90% DNA removed using a cost-effective and environmentally friendly surfactant) maintained essential optical and biomechanical properties for potential clinical use.Conclusion: Our method of repurposing slaughterhouse waste, stored at 4°C for several days, to develop corneal scaffolds offers a sustainable and economical alternative xenograft model.
Collapse
Affiliation(s)
- Zehara M Ali
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Xinyu Wang
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Meklit G Shibru
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Maha Alhosani
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Nouf Alfadhli
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aysha Alnuaimi
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Fiza F Murtaza
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aisha Zaid
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Rodaina Khaled
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Ahmed E Salih
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi,UAE
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Vincent Chan
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Igor V Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, 3498838,Israel
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
| | - Peter R Corridon
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| |
Collapse
|
49
|
García-Gareta E, Calderón-Villalba A, Alamán-Díez P, Costa CG, Guerrero PE, Mur C, Flores AR, Jurjo NO, Sancho P, Pérez MÁ, García-Aznar JM. Physico-chemical characterization of the tumour microenvironment of pancreatic ductal adenocarcinoma. Eur J Cell Biol 2024; 103:151396. [PMID: 38359522 DOI: 10.1016/j.ejcb.2024.151396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy that accounts for more than 90% of pancreatic cancer diagnoses. Our research is focused on the physico-chemical properties of the tumour microenvironment (TME), including its tumoural extracellular matrix (tECM), as they may have an important impact on the success of cancer therapies. PDAC xenografts and their decellularized tECM offer a great material source for research in terms of biomimicry with the original human tumour. Our aim was to evaluate and quantify the physico-chemical properties of the PDAC TME. Both cellularized (native TME) and decellularized (tECM) patient-derived PDAC xenografts were analyzed. A factorial design of experiments identified an optimal combination of factors for effective xenograft decellularization. Our results provide a complete advance in our understanding of the PDAC TME and its corresponding stroma, showing that it presents an interconnected porous architecture with very low permeability and small pores due to the contractility of the cellular components. This fact provides a potential therapeutic strategy based on the therapeutic agent size.
Collapse
Affiliation(s)
- Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain; Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom.
| | - Alejandro Calderón-Villalba
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Carlos Gracia Costa
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Pedro Enrique Guerrero
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Carlota Mur
- Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Ana Rueda Flores
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Nerea Olivera Jurjo
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Patricia Sancho
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| |
Collapse
|
50
|
Augustin G, Jeong JH, Kim M, Hur SS, Lee JH, Hwang Y. Stem Cell‐Based Therapies and Tissue Engineering Innovations for Tendinopathy: A Comprehensive Review of Current Strategies and Future Directions. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 01/06/2025]
Abstract
AbstractTendon diseases commonly lead to physical disability, exerting a profound impact on the routine of affected patients. These conditions respond poorly to existing treatments, presenting a substantial challenge for orthopedic scientists. Research into clinical translational therapy has yet to yield highly versatile interventions capable of effectively addressing tendon diseases, including tendinopathy. Stem cell‐based therapies have emerged as a promising avenue for modifying the biological milieu through the secretion of regenerative and immunomodulatory factors. The current review provides an overview of the intricate tendon microenvironment, encompassing various tendon stem progenitor cells within distinct tendon sublocations, gene regulation, and pathways pertinent to tendon development, and the pathology of tendon diseases. Subsequently, the advantages of stem cell‐based therapies are discussed that utilize distinct types of autologous and allogeneic stem cells for tendon regeneration at the translational level. Moreover, this review outlines the challenges, gaps, and future innovations to propose a consolidated stem cell‐based therapy to treat tendinopathy. Finally, regenerative soluble therapies, insoluble bio‐active therapies, along with insoluble bio‐active therapies, and implantable 3D scaffolds for tendon tissue engineering are discussed, thereby presenting a pathway toward enhanced tissue regeneration and engineering.
Collapse
Affiliation(s)
- George Augustin
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Biochemistry and Biophysics Oregon State University Corvallis OR 92331 USA
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| | - Min‐Kyu Kim
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
| | - Joon Ho Lee
- Department of Anesthesiology and Pain Medicine Soonchunhyang University Bucheon Hospital Soonchunhyang University College of Medicine Bucheon‐Si 14584 Republic of Korea
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐bio Science (SIMS) Soonchunhyang University Cheonan‐Si, Chungnam‐Do 31151 Republic of Korea
- Department of Integrated Biomedical Science Soonchunhyang University Asan‐si, Chungnam‐Do 31538 Republic of Korea
| |
Collapse
|