1
|
Steinhardt CR, Mitchell DE, Cullen KE, Fridman GY. Pulsatile electrical stimulation creates predictable, correctable disruptions in neural firing. Nat Commun 2024; 15:5861. [PMID: 38997274 PMCID: PMC11245474 DOI: 10.1038/s41467-024-49900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Electrical stimulation is a key tool in neuroscience, both in brain mapping studies and in many therapeutic applications such as cochlear, vestibular, and retinal neural implants. Due to safety considerations, stimulation is restricted to short biphasic pulses. Despite decades of research and development, neural implants lead to varying restoration of function in patients. In this study, we use computational modeling to provide an explanation for how pulsatile stimulation affects axonal channels and therefore leads to variability in restoration of neural responses. The phenomenological explanation is transformed into equations that predict induced firing rate as a function of pulse rate, pulse amplitude, and spontaneous firing rate. We show that these equations predict simulated responses to pulsatile stimulation with a variety of parameters as well as several features of experimentally recorded primate vestibular afferent responses to pulsatile stimulation. We then discuss the implications of these effects for improving clinical stimulation paradigms and electrical stimulation-based experiments.
Collapse
Affiliation(s)
- Cynthia R Steinhardt
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA.
| | - Diana E Mitchell
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gene Y Fridman
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Adkisson PW, Steinhardt CR, Fridman GY. Galvanic vs. pulsatile effects on decision-making networks: reshaping the neural activation landscape. J Neural Eng 2024; 21:026021. [PMID: 38518369 DOI: 10.1088/1741-2552/ad36e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Objective. Primarily due to safety concerns, biphasic pulsatile stimulation (PS) is the present standard for electrical excitation of neural tissue with a diverse set of applications. While pulses have been shown to be effective to achieve functional outcomes, they have well-known deficits. Due to recent technical advances, galvanic stimulation (GS), delivery of current for extended periods of time (>1 s), has re-emerged as an alternative to PS.Approach. In this paper, we use a winner-take-all decision-making cortical network model to investigate differences between pulsatile and GS in the context of a perceptual decision-making task.Main results. Based on previous work, we hypothesized that GS would produce more spatiotemporally distributed, network-sensitive neural responses, while PS would produce highly synchronized activation of a limited group of neurons. Our results in-silico support these hypotheses for low-amplitude GS but deviate when galvanic amplitudes are large enough to directly activate or block nearby neurons.Significance. We conclude that with careful parametrization, GS could overcome some limitations of PS to deliver more naturalistic firing patterns in the group of targeted neurons.
Collapse
Affiliation(s)
- Paul W Adkisson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Cynthia R Steinhardt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, United States of America
- Simons Society of Fellows, Simons Foundation, New York, NY 10010, United States of America
| | - Gene Y Fridman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States of America
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, United States of America
| |
Collapse
|
4
|
Valero-Cuevas FJ, Finley J, Orsborn A, Fung N, Hicks JL, Huang HH, Reinkensmeyer D, Schweighofer N, Weber D, Steele KM. NSF DARE-Transforming modeling in neurorehabilitation: Four threads for catalyzing progress. J Neuroeng Rehabil 2024; 21:46. [PMID: 38570842 PMCID: PMC10988973 DOI: 10.1186/s12984-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/09/2024] [Indexed: 04/05/2024] Open
Abstract
We present an overview of the Conference on Transformative Opportunities for Modeling in Neurorehabilitation held in March 2023. It was supported by the Disability and Rehabilitation Engineering (DARE) program from the National Science Foundation's Engineering Biology and Health Cluster. The conference brought together experts and trainees from around the world to discuss critical questions, challenges, and opportunities at the intersection of computational modeling and neurorehabilitation to understand, optimize, and improve clinical translation of neurorehabilitation. We organized the conference around four key, relevant, and promising Focus Areas for modeling: Adaptation & Plasticity, Personalization, Human-Device Interactions, and Modeling 'In-the-Wild'. We identified four common threads across the Focus Areas that, if addressed, can catalyze progress in the short, medium, and long terms. These were: (i) the need to capture and curate appropriate and useful data necessary to develop, validate, and deploy useful computational models (ii) the need to create multi-scale models that span the personalization spectrum from individuals to populations, and from cellular to behavioral levels (iii) the need for algorithms that extract as much information from available data, while requiring as little data as possible from each client (iv) the insistence on leveraging readily available sensors and data systems to push model-driven treatments from the lab, and into the clinic, home, workplace, and community. The conference archive can be found at (dare2023.usc.edu). These topics are also extended by three perspective papers prepared by trainees and junior faculty, clinician researchers, and federal funding agency representatives who attended the conference.
Collapse
Affiliation(s)
- Francisco J Valero-Cuevas
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA.
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, 90089, CA, USA.
| | - James Finley
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA
| | - Amy Orsborn
- Department of Electrical and Computer Engineering, University of Washington, 185 W Stevens Way NE, Box 352500, Seattle, 98195, WA, USA
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Box 355061, Seattle, 98195, WA, USA
- Washington National Primate Research Center, University of Washington, 3018 Western Ave, Seattle, 98121, WA, USA
| | - Natalie Fung
- Thomas Lord Department of Computer Science, University of Southern California, 941 Bloom Walk, Los Angeles, 90089, CA, USA
| | - Jennifer L Hicks
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, 94305, CA, USA
| | - He Helen Huang
- Joint Department of Biomedical Engineering, North Carolina State University, 1840 Entrepreneur Dr Suite 4130, Raleigh, 27606, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, 333 S Columbia St, Chapel Hill, 27514, NC, USA
| | - David Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, UCI Samueli School of Engineering, 3225 Engineering Gateway, Irvine, 92697, CA, USA
| | - Nicolas Schweighofer
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 Alcazar St 155, Los Angeles, 90033, CA, USA
| | - Douglas Weber
- Department of Mechanical Engineering and the Neuroscience Institute, Carnegie Mellon University, 5000 Forbes Avenue, B12 Scaife Hall, Pittsburgh, 15213, PA, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Box 352600, Seattle, 98195, WA, USA
| |
Collapse
|
5
|
Seminara L, Dosen S, Mastrogiovanni F, Bianchi M, Watt S, Beckerle P, Nanayakkara T, Drewing K, Moscatelli A, Klatzky RL, Loeb GE. A hierarchical sensorimotor control framework for human-in-the-loop robotic hands. Sci Robot 2023; 8:eadd5434. [PMID: 37196072 DOI: 10.1126/scirobotics.add5434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Human manual dexterity relies critically on touch. Robotic and prosthetic hands are much less dexterous and make little use of the many tactile sensors available. We propose a framework modeled on the hierarchical sensorimotor controllers of the nervous system to link sensing to action in human-in-the-loop, haptically enabled, artificial hands.
Collapse
Affiliation(s)
- Lucia Seminara
- Department of Electrical, Electronic, and Telecommunication Engineering and Naval Architecture, University of Genoa, Genoa, Italy
| | - Strahinja Dosen
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Fulvio Mastrogiovanni
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Genoa, Italy
| | - Matteo Bianchi
- Research Center "E. Piaggio" and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simon Watt
- School of Human and Behavioural Sciences, Bangor University, Bangor, UK
| | - Philipp Beckerle
- Department of Electrical Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany
| | | | - Knut Drewing
- Department of Experimental Psychology, HapLab, University of Giessen, Giessen, Germany
| | - Alessandro Moscatelli
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Systems Medicine and Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberta L Klatzky
- Department of Psychology and Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gerald E Loeb
- Alfred E. Mann Department of Biomedical Engineering, Keck School of Medicine, and Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Barroso FO, Torricelli D, Moreno JC. Neurorobotics and neuroprostheses: Towards a new anatomy. Anat Rec (Hoboken) 2023; 306:706-709. [PMID: 36715240 DOI: 10.1002/ar.25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
The idea of this Special Issue arose from the technological advances in bionic, robotic, and neural rehabilitation systems and the common need to comprehend in detail how human anatomical structures can be replicated or controlled. Motor control theories, among others, include the generalized control program theory, the equilibrium point hypothesis, or the optimal control approach in which neural commands to the muscles are a result of the central nervous system solving an optimization problem for a specific cost function. No matter the alternative interpretation selected to replicate biological control of human movements, artificial "anatomies" should consider not only motor capabilities from the central nervous system but integrate bioinspired mechanical features (such as compliance) in artificial limbs. The development of wearable robotics and neuroprosthetic systems for human movement compensation and control is naturally inspired by human anatomy and biology. Cutting-edge technological advances in the field of biomedical and neural engineering are bringing us more and more close to a new artificial anatomy with which humans could augment their motor capabilities or replace them after they are compromised. Either augmentative/assistive or rehabilitation technologies in the near future will require engineering solutions based on novel approaches to create usable neurorobotic and neuroprosthetic systems for the most relevant societal needs.
Collapse
Affiliation(s)
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, CSIC, Madrid, Spain
| |
Collapse
|
7
|
Zoneff ER, Gao DX, Nisbet DR, Grayden DB, Clark GM. Restoration of the senses and human communication: Sustainable Development Goals 3 and 9. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 25:9-14. [PMID: 36476000 DOI: 10.1080/17549507.2022.2142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE This invited commentary addresses the importance of the senses in human communication, outlines advances achieved with cochlear implants, and new research directions to improve neural prostheses. RESULT In severely deaf people, cochlear implants restore speech understanding and enable children to achieve spoken language. Research in neural prostheses is advancing the restoration of hearing, vision, tactile senses, movement and the management of epilepsy. Bio-inspired stimulation strategies incorporating temporal and spatial characteristics of neural responses may deliver improved speech, vision and tactile perception using prostheses. To achieve stable long-term stimulation, chronic inflammation at the brain-electrode interface may be reduced using ROCK/Rho signalling pathway inhibitors and materials with brain-mimicking properties. CONCLUSION This commentary paper addresses two Sustainable Development Goals: industry, innovation and infrastructure (SDG 9) and good health and well-being (SDG 3).
Collapse
Affiliation(s)
- Elizabeth R Zoneff
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Demi X Gao
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, Australia
| | - David B Grayden
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, Australia
| | - Graeme M Clark
- The Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Huang WC, Hung CH, Lin YW, Zheng YC, Lei WL, Lu HE. Electrically Copolymerized Polydopamine Melanin/Poly(3,4-ethylenedioxythiophene) Applied for Bioactive Multimodal Neural Interfaces with Induced Pluripotent Stem Cell-Derived Neurons. ACS Biomater Sci Eng 2022; 8:4807-4818. [PMID: 36222713 DOI: 10.1021/acsbiomaterials.2c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multimodal neural interfaces include combined functions of electrical neuromodulation and synchronic monitoring of neurochemical and physiological signals in one device. The remarkable biocompatibility and electrochemical performance of polystyrene sulfonate-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) have made it the most recommended conductive polymer neural electrode material. However, PEDOT:PSS formed by electrochemical deposition, called PEDOT/PSS, often need multiple doping to improve structural instability in moisture, resolve the difficulties of functionalization, and overcome the poor cellular affinity. In this work, inspired by the catechol-derived adhesion and semiconductive properties of polydopamine melanin (PDAM), we used electrochemical oxidation polymerization to develop PDAM-doped PEDOT (PEDOT/PDAM) as a bioactive multimodal neural interface that permits robust electrochemical performance, structural stability, analyte-trapping capacity, and neural stem cell affinity. The use of potentiodynamic scans resolved the problem of copolymerizing 3,4-ethylenedioxythiophene (EDOT) and dopamine (DA), enabling the formation of PEDOT/PDAM self-assembled nanodomains with an ideal doping state associated with remarkable current storage and charge transfer capacity. Owing to the richness of hydrogen bond donors/acceptors provided by the hydroxyl groups of PDAM, PEDOT/PDAM presented better electrochemical and mechanical stability than PEDOT/PSS. It has also enabled high sensitivity and selectivity in the electrochemical detection of DA. Different from PEDOT/PSS, which inhibited the survival of human induced pluripotent stem cell-derived neural progenitor cells, PEDOT/PDAM maintained cell proliferation and even promoted cell differentiation into neuronal networks. Finally, PEDOT/PDAM was modified on a commercialized microelectrode array system, which resulted in the reduction of impedance by more than one order of magnitude; this significantly improved the resolution and reduced the noise of neuronal signal recording. With these advantages, PEDOT/PDAM is anticipated to be an efficient bioactive multimodal neural electrode material with potential application to brain-machine interfaces.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ching-Heng Hung
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yueh-Wen Lin
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yu-Cheng Zheng
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Wan-Lou Lei
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Huai-En Lu
- Food Industry Research and Development Institute, Hsinchu 300, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
9
|
Adkisson P, Fridman GY, Steinhardt CR. Difference in Network Effects of Pulsatile and Galvanic Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3093-3099. [PMID: 36086346 DOI: 10.1109/embc48229.2022.9871812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biphasic pulsatile stimulation is the present standard for neural prosthetic use, and it is used to understand connectivity and functionality of the brain in brain mapping studies. While pulses have been shown to drive behavioral changes, such as biasing decision making, they have deficits. For example, cochlear implants restore hearing but lack the ability to restore pitch perception. Recent work shows that pulses produce artificial synchrony in networks of neurons and non-linear changes in firing rate with pulse amplitude. Studies also show galvanic stimulation, delivery of current for extended periods of time, produces more naturalistic behavioral responses than pulses. In this paper, we use a winner-take-all decision-making network model to investigate differences between pulsatile and galvanic stimulation at the single neuron and network level while accurately modeling the effects of pulses on neurons for the first time. Results show pulses bias spike timing and make neurons more resistive to natural network inputs than galvanic stimulation at an equivalent current amplitude. Clinical Relevance- This establishes that pulsatile stimulation may disrupt natural spike timing and network-level interactions while certain parameterizations of galvanic stimulation avoid these effects and can drive network firing more naturally.
Collapse
|
10
|
Dupan S, McNeill Z, Sarda E, Brunton E, Nazarpour K. How fast is too fast? Boundaries to the perception of electrical stimulation of peripheral nerves. IEEE Trans Neural Syst Rehabil Eng 2022; 30:782-788. [PMID: 35271444 DOI: 10.1109/tnsre.2022.3158067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcutaneous electrical stimulation is a promising technique for providing prosthetic hand users with information about sensory events. However, questions remain over how to design the stimulation paradigms to provide users the best opportunity to discriminate these events. Here, we investigate if the refractory period influences how the amplitude of the applied stimulus is perceived. Twenty participants completed a two-alternative forced choice experiment. We delivered two stimuli spaced between 250 ms to 450 ms apart (inter-stimulus-interval, isi). The participants reported which stimulus they perceived as strongest. Each stimulus consisted of either a single or paired pulse delivered transcutaneously. The inter-pulse interval (ipi) for the paired pulse stimuli varied between 6 and 10 ms. We found paired pulses with an ipi of 6 ms were perceived stronger than a single pulse less often than paired pulses with an ipi of 8 ms (p = 0.001) or 10 ms (p < 0.0001). Additionally, we found when the isi was 250 ms, participants were less likely to identify the paired pulse as strongest, than when the isi was 350 or 450 ms. This study emphasizes the importance of basing stimulation paradigms on the underlying neural physiology. The results indicate there is an upper limit to the commonly accepted notion that higher stimulation frequencies lead to stronger perception. If frequency is to be used to encode sensory events, then the results suggest stimulus paradigms should be designed using frequencies below 125 Hz.
Collapse
|
11
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Wijdenes P, Haider K, Gavrilovici C, Gunning B, Wolff MD, Lijnse T, Armstrong R, Teskey GC, Rho JM, Dalton C, Syed NI. Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals. Sci Rep 2021; 11:21952. [PMID: 34754055 PMCID: PMC8578611 DOI: 10.1038/s41598-021-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Neural recordings made to date through various approaches—both in-vitro or in-vivo—lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.
Collapse
Affiliation(s)
- P Wijdenes
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - K Haider
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - C Gavrilovici
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - B Gunning
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - M D Wolff
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - T Lijnse
- Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - R Armstrong
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - G C Teskey
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - J M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - C Dalton
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Naweed I Syed
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Cumming School of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
13
|
Loeb GE, Richmond FJ. Turning Neural Prosthetics Into Viable Products. Front Robot AI 2021; 8:754114. [PMID: 34660704 PMCID: PMC8513865 DOI: 10.3389/frobt.2021.754114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Academic researchers concentrate on the scientific and technological feasibility of novel treatments. Investors and commercial partners, however, understand that success depends even more on strategies for regulatory approval, reimbursement, marketing, intellectual property protection and risk management. These considerations are critical for technologically complex and highly invasive treatments that entail substantial costs and risks in small and heterogeneous patient populations. Most implanted neural prosthetic devices for novel applications will be in FDA Device Class III, for which guidance documents have been issued recently. Less invasive devices may be eligible for the recently simplified “de novo” submission routes. We discuss typical timelines and strategies for integrating the regulatory path with approval for reimbursement, securing intellectual property and funding the enterprise, particularly as they might apply to implantable brain-computer interfaces for sensorimotor disabilities that do not yet have a track record of approved products.
Collapse
Affiliation(s)
- Gerald E Loeb
- Medical Device Development Facility, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| | - Frances J Richmond
- DK Kim International Center for Regulatory Science, Department of Regulatory and Quality Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
14
|
Cury J, Vande Perre L, Smets H, Stumpp L, Vespa S, Vanhoestenberghe A, Doguet P, Delbeke J, El Tahry R, Gorza SP, Nonclercq A. Infrared neurostimulation in ex-vivorat sciatic nerve using 1470 nm wavelength. J Neural Eng 2021; 18. [PMID: 33770780 DOI: 10.1088/1741-2552/abf28f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
Objective.To design and implement a setup forex-vivooptical stimulation for exploring the effect of several key parameters (optical power and pulse duration), activation features (threshold, spatial selectivity) and recovery characteristics (repeated stimuli) in peripheral nerves.Approach.A nerve chamber allowing ex-vivo electrical and optical stimulation was designed and built. A 1470 nm light source was chosen to stimulate the nerve. A photodiode module was implemented for synchronization of the electrical and optical channels.Main results. Compound neural action potentials (CNAPs) were successfully generated with infrared light pulses of 200-2000µs duration and power in the range of 3-10 W. These parameters determine a radiant exposure for stimulation in the range 1.59-4.78 J cm-2. Recruitment curves were obtained by increasing durations at a constant power level. Neural activation threshold is reached at a mean radiant exposure of 3.16 ± 0.68 J cm-2and mean pulse energy of 3.79 ± 0.72 mJ. Repetition rates of 2-10 Hz have been explored. In eight out of ten sciatic nerves (SNs), repeated light stimuli induced a sensitization effect in that the CNAP amplitude progressively grows, representing an increasing number of recruited fibres. In two out of ten SNs, CNAPs were composed of a succession of peaks corresponding to different conduction velocities.Significance.The reported sensitization effect could shed light on the mechanism underlying infrared neurostimulation. Our results suggest that, in sharp contrast with electrical stimuli, optical pulses could recruit slow fibres early on. This more physiological order of recruitment opens the perspective for specific neuromodulation of fibre population who remained poorly accessible until now. Short high-power light pulses at wavelengths below 1.5µm offer interesting perspectives for neurostimulation.
Collapse
Affiliation(s)
- Joaquin Cury
- Bio, Electro and Mechanical Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium.,Opera Photonics, Université libre de Bruxelles, Brussels, Belgium
| | - Louis Vande Perre
- Bio, Electro and Mechanical Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | - Hugo Smets
- Bio, Electro and Mechanical Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| | - Lars Stumpp
- Institute of Neurosciences (IONS), Université Catholique de Louvain, Belgium-Cliniques Universitaires Saint Luc, Department of Neurology, Brussels, Belgium
| | - Simone Vespa
- Institute of Neurosciences (IONS), Université Catholique de Louvain, Belgium-Cliniques Universitaires Saint Luc, Department of Neurology, Brussels, Belgium
| | - Anne Vanhoestenberghe
- Aspire Centre for Rehabilitation Engineering and Assistive Technology, University College London, London, United Kingdom
| | | | - Jean Delbeke
- Institute of Neurosciences (IONS), Université Catholique de Louvain, Belgium-Cliniques Universitaires Saint Luc, Department of Neurology, Brussels, Belgium
| | - Riëm El Tahry
- Institute of Neurosciences (IONS), Université Catholique de Louvain, Belgium-Cliniques Universitaires Saint Luc, Department of Neurology, Brussels, Belgium
| | | | - Antoine Nonclercq
- Bio, Electro and Mechanical Systems (BEAMS), Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Steinhardt CR, Fridman GY. Direct current effects on afferent and hair cell to elicit natural firing patterns. iScience 2021; 24:102205. [PMID: 33748701 PMCID: PMC7967006 DOI: 10.1016/j.isci.2021.102205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In contrast to the conventional pulsatile neuromodulation that excites neurons, galvanic or direct current stimulation can excite, inhibit, or sensitize neurons. The vestibular system presents an excellent system for studying galvanic neural interface due to the spontaneously firing afferent activity that needs to be either suppressed or excited to convey head motion sensation. We determine the cellular mechanisms underlying the beneficial properties of galvanic vestibular stimulation (GVS) by creating a computational model of the vestibular end organ that elicits all experimentally observed response characteristics to GVS simultaneously. When GVS was modeled to affect the axon alone, the complete experimental data could not be replicated. We found that if GVS affects hair cell vesicle release and axonal excitability simultaneously, our modeling results matched all experimental observations. We conclude that contrary to the conventional belief that GVS affects only axons, the hair cells are likely also affected by this stimulation paradigm. Galvanic vestibular stimulation was shown to evoke naturalistic neural responses Conventional understanding maintains that it affects only afferent axons In contrast, our work suggests that it affects both hair cells and afferents Our work further explains the likely underlying mechanisms of these effects
Collapse
Affiliation(s)
- Cynthia R Steinhardt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21217, USA
| | - Gene Y Fridman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21217, USA.,Department of Otolaryngology Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21217, USA
| |
Collapse
|
16
|
He T, Guo X, Lee C. Flourishing energy harvesters for future body sensor network: from single to multiple energy sources. iScience 2021; 24:101934. [PMID: 33392482 PMCID: PMC7773596 DOI: 10.1016/j.isci.2020.101934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Body sensor network (bodyNET) offers possibilities for future disease diagnosis, preventive health care, rehabilitation, and treatment. However, the eventual realization demands reliable and sustainable power sources. The flourishing energy harvesters (EHs) have provided prominent techniques for practically addressing the concurrent energy issue. Targeting for a specific energy source, wearable EHs with a sole conversion mechanism are well investigated. Hybrid EHs integrating different effects for a single source or multi-sources are attaining growing attention, for they provide another degree of freedom concerning a higher-level energy utility. Merging EHs with other functional electronics, diversified functional self-sustainable systems are developed, paving the way for the accomplishment of bodyNET. This review introduces the evolution of wearable EHs from a single effect to hybridized mechanisms for multiple energy sources and wearable to implantable self-sustainable systems. Last, we provide our perspectives on the future development of hybrid EHs to be more competitive with conventional batteries.
Collapse
Affiliation(s)
- Tianyiyi He
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Xinge Guo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
17
|
Woodroffe RW, Pearson AC, Pearlman AM, Howard MA, Nauta HJW, Nagel SJ, Hori YS, Machado AG, Almeida Frizon L, Helland L, Holland MT, Gillies GT, Wilson S. Spinal Cord Stimulation for Visceral Pain: Present Approaches and Future Strategies. PAIN MEDICINE 2020; 21:2298-2309. [PMID: 32719876 DOI: 10.1093/pm/pnaa108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The introduction of successful neuromodulation strategies for managing chronic visceral pain lag behind what is now treatment of choice in refractory chronic back and extremity pain for many providers in the United States and Europe. Changes in public policy and monetary support to identify nonopioid treatments for chronic pain have sparked interest in alternative options. In this review, we discuss the scope of spinal cord stimulation (SCS) for visceral pain, its limitations, and the potential role for new intradural devices of the type that we are developing in our laboratories, which may be able to overcome existing challenges. METHODS A review of the available literature relevant to this topic was performed, with particular focus on the pertinent neuroanatomy and uses of spinal cord stimulation systems in the treatment of malignant and nonmalignant gastrointestinal, genitourinary, and chronic pelvic pain. RESULTS To date, there have been multiple off-label reports testing SCS for refractory gastrointestinal and genitourinary conditions. Though some findings have been favorable for these organs and systems, there is insufficient evidence to make this practice routine. The unique configuration and layout of the pelvic pain pathways may not be ideally treated using traditional SCS implantation techniques, and intradural stimulation may be a viable alternative. CONCLUSIONS Despite the prevalence of visceral pain, the application of neuromodulation therapies, a standard approach for other painful conditions, has received far too little attention, despite promising outcomes from uncontrolled trials. Detailed descriptions of visceral pain pathways may offer several clues that could be used to implement devices tailored to this unique anatomy.
Collapse
Affiliation(s)
- Royce W Woodroffe
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Amy C Pearson
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Amy M Pearlman
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Haring J W Nauta
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky
| | - S J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| | - Y S Hori
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Logan Helland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Marshall T Holland
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
18
|
Mazurek KA, Schieber MH. Injecting Information into the Mammalian Cortex: Progress, Challenges, and Promise. Neuroscientist 2020; 27:129-142. [PMID: 32648527 DOI: 10.1177/1073858420936253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For 150 years artificial stimulation has been used to study the function of the nervous system. Such stimulation-whether electrical or optogenetic-eventually may be used in neuroprosthetic devices to replace lost sensory inputs and to otherwise introduce information into the nervous system. Efforts toward this goal can be classified broadly as either biomimetic or arbitrary. Biomimetic stimulation aims to mimic patterns of natural neural activity, so that the subject immediately experiences the artificial stimulation as if it were natural sensation. Arbitrary stimulation, in contrast, makes no attempt to mimic natural patterns of neural activity. Instead, different stimuli-at different locations and/or in different patterns-are assigned different meanings randomly. The subject's time and effort then are required to learn to interpret different stimuli, a process that engages the brain's inherent plasticity. Here we will examine progress in using artificial stimulation to inject information into the cerebral cortex and discuss the challenges for and the promise of future development.
Collapse
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Marc H Schieber
- Department of Neuroscience, University of Rochester, Rochester, NY, USA.,Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA.,Department of Neurology, University of Rochester, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Aplin FP, Singh D, Della Santina CC, Fridman GY. Combined ionic direct current and pulse frequency modulation improves the dynamic range of vestibular canal stimulation. J Vestib Res 2020; 29:89-96. [PMID: 30856136 DOI: 10.3233/ves-190651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vestibular prostheses emulate normal vestibular function by electrically stimulating the semicircular canals using pulse frequency modulation (PFM). Spontaneous activity at the vestibular nerve may limit the dynamic range elicited by PFM. One proposed solution is the co-application of ionic direct current (iDC) to inhibit this spontaneous activity. OBJECTIVE We aimed to test the hypothesis that a tonic iDC baseline delivered in conjunction with PFM to the vestibular semicircular canals could improve the dynamic range of evoked eye responses. METHODS Gentamicin-treated chinchillas were implanted with microcatheter electrodes in the vestibular semicircular canals through which pulsatile and iDC current was delivered. PFM was used to modulate vestibulo-ocular reflex (VOR) once it was adapted to a preset iDC and pulse-frequency baseline. Responses to stimulation were assessed by recording the evoked VOR eye direction and velocity. RESULTS PFM produced VOR responses aligned to the stimulated canal. Introduction of an iDC baseline lead to a small but statistically significant increase in eye response velocity, without influencing the direction of eye rotation. CONCLUSIONS Tonic iDC baselines increase the dynamic range of encoding head velocity evoked by pulsatile stimulation, potentially via the inhibition of spontaneous activity in the vestibular nerve.
Collapse
Affiliation(s)
- F P Aplin
- Departments of Otolaryngology Head and Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - D Singh
- Departments of Otolaryngology Head and Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - C C Della Santina
- Departments of Otolaryngology Head and Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Y Fridman
- Departments of Otolaryngology Head and Neck Surgery and Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Neural Modulation of the Primary Auditory Cortex by Intracortical Microstimulation with a Bio-Inspired Electronic System. Bioengineering (Basel) 2020; 7:bioengineering7010023. [PMID: 32131459 PMCID: PMC7175366 DOI: 10.3390/bioengineering7010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the majority of the progress in the development of implantable neuroprostheses has been achieved by improving the knowledge of brain functions so as to restore sensorial impairments. Intracortical microstimulation (ICMS) is a widely used technique to investigate site-specific cortical responses to electrical stimuli. Herein, we investigated the neural modulation induced in the primary auditory cortex (A1) by an acousto-electric transduction of ultrasonic signals using a bio-inspired intracortical microstimulator. The developed electronic system emulates the transduction of ultrasound signals in the cochlea, providing bio-inspired electrical stimuli. Firstly, we identified the receptive fields in the primary auditory cortex devoted to encoding ultrasonic waves at different frequencies, mapping each area with neurophysiological patterns. Subsequently, the activity elicited by bio-inspired ICMS in the previously identified areas, bypassing the sense organ, was investigated. The observed evoked response by microstimulation resulted as highly specific to the stimuli, and the spatiotemporal dynamics of neural oscillatory activity in the alpha, beta, and gamma waves were related to the stimuli preferred by the neurons at the stimulated site. The alpha waves modulated cortical excitability only during the activation of the specific tonotopic neuronal populations, inhibiting neural responses in unrelated areas. Greater neuronal activity in the posterior area of A1 was observed in the beta band, whereas a gamma rhythm was induced in the anterior A1. The results evidence that the proposed bio-inspired acousto-electric ICMS triggers high-frequency oscillations, encoding information about the stimulation sites and involving a large-scale integration in the brain.
Collapse
|
21
|
Hybrid diamond/ carbon fiber microelectrodes enable multimodal electrical/chemical neural interfacing. Biomaterials 2020; 230:119648. [DOI: 10.1016/j.biomaterials.2019.119648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023]
|
22
|
Sound- and current-driven laminar profiles and their application method mimicking acoustic responses in the mouse auditory cortex in vivo. Brain Res 2019; 1721:146312. [PMID: 31323198 DOI: 10.1016/j.brainres.2019.146312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 11/24/2022]
Abstract
The local application of electrical currents to the cortex is one of the most commonly used techniques to activate neurons, and this intracortical stimulation (ICS) could potentially lead to new types of neuroprosthetic devices that can be directly applied to the cortex. To identify whether ICS-activated circuits are physiological vs. profoundly artificial, it is necessary to record in vivo the responses of the same neuronal population to both natural sensory stimuli and artificial electric stimuli. However, few studies have extensively reported simultaneous electrophysiological recordings combined with ICS. Here, we evaluated the similarity between sound- and ICS-driven cortical response patterns in different cortical layers. In the mouse auditory cortex, we performed laminar recordings using 16-channel silicon electrodes and ICS using sharp glass-pipette electrodes containing biocytin for layer identification. In different cortical depths, short current pulses were delivered in vivo to mice under urethane anesthesia. For the recorded data, we mainly analyzed properties of local field potentials and current source densities (CSDs). We demonstrated that electrical stimulation evoked different excitation patterns according to the stimulated cortical layer; responses to electric stimuli in layer 4 were most likely to mimic acoustic responses. Next, we proposed a CSD-based stimulation method to artificially synthesize sound-driven responses, using an approximation method associated with a linear combination of CSD patterns electrically stimulated in the different cortical layers. The result indicates that synthesized responses were consistent with the canonical model of sound processing. Using these approaches, we provide a new technique in which natural sound-driven responses can be mimicked by well-designed computational stimulation pattern sequences in a layer-dependent manner. These findings may aid in the future development of an electrical stimulation methodology for a cortical prosthesis.
Collapse
|
23
|
Aplin FP, Fridman GY. Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy. Front Neurosci 2019; 13:379. [PMID: 31057361 PMCID: PMC6482222 DOI: 10.3389/fnins.2019.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Implantable neuroprostheses such as cochlear implants, deep brain stimulators, spinal cord stimulators, and retinal implants use charge-balanced alternating current (AC) pulses to recover delivered charge and thus mitigate toxicity from electrochemical reactions occurring at the metal-tissue interface. At low pulse rates, these short duration pulses have the effect of evoking spikes in neural tissue in a phase-locked fashion. When the therapeutic goal is to suppress neural activity, implants typically work indirectly by delivering excitation to populations of neurons that then inhibit the target neurons, or by delivering very high pulse rates that suffer from a number of undesirable side effects. Direct current (DC) neural modulation is an alternative methodology that can directly modulate extracellular membrane potential. This neuromodulation paradigm can excite or inhibit neurons in a graded fashion while maintaining their stochastic firing patterns. DC can also sensitize or desensitize neurons to input. When applied to a population of neurons, DC can modulate synaptic connectivity. Because DC delivered to metal electrodes inherently violates safe charge injection criteria, its use has not been explored for practical applicability of DC-based neural implants. Recently, several new technologies and strategies have been proposed that address this safety criteria and deliver ionic-based direct current (iDC). This, along with the increased understanding of the mechanisms behind the transcutaneous DC-based modulation of neural targets, has caused a resurgence of interest in the interaction between iDC and neural tissue both in the central and the peripheral nervous system. In this review we assess the feasibility of in-vivo iDC delivery as a form of neural modulation. We present the current understanding of DC/neural interaction. We explore the different design methodologies and technologies that attempt to safely deliver iDC to neural tissue and assess the scope of application for direct current modulation as a form of neuroprosthetic treatment in disease. Finally, we examine the safety implications of long duration iDC delivery. We conclude that DC-based neural implants are a promising new modulation technology that could benefit from further chronic safety assessments and a better understanding of the basic biological and biophysical mechanisms that underpin DC-mediated neural modulation.
Collapse
Affiliation(s)
- Felix P Aplin
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gene Y Fridman
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|