1
|
Kamsu GT, Ndebia EJ. Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review. FUTURE PHARMACOLOGY 2024; 4:626-650. [DOI: 10.3390/futurepharmacol4030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Collapse
Affiliation(s)
- Gabriel Tchuente Kamsu
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| | - Eugene Jamot Ndebia
- Department of Human Biology, Faculty of Medicine and Health Sciences, Walter Sisulu University, Mthatha 5100, South Africa
| |
Collapse
|
2
|
Chu L, Zhang S, Wu W, Gong Y, Chen Z, Wen Y, Wang Y, Wang L. Grape seed proanthocyanidin extract alleviates inflammation in experimental colitis mice by inhibiting NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2572-2582. [PMID: 38205677 DOI: 10.1002/tox.24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Ulcerative colitis (UC) is a complex inflammatory disease of colorectum that induces abnormal immune responses and severely affects the quality of life of the patients. Grape seed proanthocyanidin extract (GSPE) exerts anti-inflammatory and antioxidant functions in many inflammatory diseases. The objective of this study was to investigate the potential therapeutic effects and underlying mechanisms of GSPE in UC using a dextran sodium sulfate (DSS)-induced mouse UC model and a lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model. In this study, we found that the GSPE markedly prevented DSS-induced weight loss and colon length shortening in UC mice. Further investigations showed that GSPE significantly attenuated the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and elevated the expression of anti-inflammatory cytokine IL-10 in the colon tissues and serum of DSS-induced colitis mice by suppressing NF-κB signaling pathway. Furthermore, LPS-induced inflammation in RAW264.7 cells was also reversed by GSPE. Taken together, our results confirm that GSPE can ameliorate inflammatory response in experimental colitis via inhibiting NF-κB signaling pathway. This study advances the research progress on a potentially effective therapeutic strategy for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lei Chu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Shaoru Zhang
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weidong Wu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yuqing Gong
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhenshi Chen
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lihui Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Balance of Macrophage Activation by a Complex Coacervate-Based Adhesive Drug Carrier Facilitates Diabetic Wound Healing. Antioxidants (Basel) 2022; 11:antiox11122351. [PMID: 36552559 PMCID: PMC9774176 DOI: 10.3390/antiox11122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.
Collapse
|
5
|
An J, An S, Choi M, Jung JH, Kim B. Natural Products for Esophageal Cancer Therapy: From Traditional Medicine to Modern Drug Discovery. Int J Mol Sci 2022; 23:13558. [PMID: 36362345 PMCID: PMC9657766 DOI: 10.3390/ijms232113558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 02/02/2024] Open
Abstract
Esophageal cancer (EC) is one of the most malignant types of cancer worldwide and has a high incidence and mortality rate in Asian countries. When it comes to treating EC, although primary methods such as chemotherapy and surgery exist, the prognosis remains poor. The purpose of this current research is to review the range of effects that natural products have on cancer by analyzing studies conducted on EC. Fifty-seven studies were categorized into four anti-cancer mechanisms, as well as clinical trials. The studies that were scrutinized in this research were all reported within five years. The majority of the substances reviewed induced apoptosis in EC, acting on a variety of mechanisms. Taken together, this study supports the fact that natural products have the potential to act as a candidate for treating EC.
Collapse
Affiliation(s)
| | | | | | | | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
6
|
Lin KN, Zhao W, Huang SY, Li H. Grape seed proanthocyanidin extract induces apoptosis of HL-60/ADR cells via the Bax/Bcl-2 caspase-3/9 signaling pathway. Transl Cancer Res 2022; 10:3939-3947. [PMID: 35116693 PMCID: PMC8797540 DOI: 10.21037/tcr-21-920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Background Our previous study detailed the direct induction of apoptosis by grape seed proanthocyanidin extract (GSPE) in a multidrug resistant human acute myeloid leukemia (AML) HL-60/adriamycin (HL-60/ADR) cell line, although the mechanism of this effect was not detailed. This study aims to elucidate the mechanism underlying GSPE-induced cell apoptosis in HL-60/ADR cells. Methods HL-60/ADR cells were studied to evaluate effects of GSPE (0–100 µg/mL); a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to identify the cytotoxic effect of varying GSPE concentrations. Trypan blue staining was used to observe changes in cell viability; flow cytometry assays were used to verify apoptosis. Expression of Bax and Bcl-2 mRNA was analyzed using real-time polymerase chain reaction (PCR). Activity of caspase-3 and caspase-9 was also detected. Results Here, GSPE was found to inhibit HL-60/ADR cell growth and induce cell apoptosis in a dose-dependent manner. Real-time PCR findings revealed that GSPE concentrations above 75 µg/mL significantly increase expression of Bax mRNA (P<0.001). GSPE concentrations above 25 µg/mL were found to significantly decrease expression of Bcl-2 mRNA (P<0.01), while concentrations above 50 µg/mL were found to significantly increase caspase-3 activity after 6, 12 and 24 h (P<0.01). However, only 100 µg/mL GSPE was found to significantly increase caspase-9 activity (P<0.001 at 6 and 12 h; P<0.05 at 24 h). Conclusions GSPE inhibits the proliferation of HL-60/ADR cells by the induction of apoptosis in a dose-dependent manner via the Bax/Bcl-2 caspase-3/9 signaling pathway.
Collapse
Affiliation(s)
- Ka-Na Lin
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Ruan Y, Jin Q, Zeng J, Ren F, Xie Z, Ji K, Wu L, Wu J, Li L. Grape Seed Proanthocyanidin Extract Ameliorates Cardiac Remodelling After Myocardial Infarction Through PI3K/AKT Pathway in Mice. Front Pharmacol 2020; 11:585984. [PMID: 33343353 PMCID: PMC7747856 DOI: 10.3389/fphar.2020.585984] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction is one of the most serious fatal diseases in the world, which is due to acute occlusion of coronary arteries. Grape seed proanthocyanidin extract (GSPE) is an active compound extracted from grape seeds that has anti-oxidative, anti-inflammatory and anti-tumor pharmacological effects. Natural products are cheap, easy to obtain, widely used and effective. It has been used to treat numerous diseases, such as cancer, brain injury and diabetes complications. However, there are limited studies on its role and associated mechanisms in myocardial infarction in mice. This study showed that GSPE treatment in mice significantly reduced cardiac dysfunction and improved the pathological changes due to MI injury. In vitro, GSPE inhibited the apoptosis of H9C2 cells after hypoxia culture, resulting in the expression of Bax decreased and the expression of Bcl-2 increased. The high expression of p-PI3K and p-AKT was detected in MI model in vivo and in vitro. The use of the specific PI3K/AKT pathway inhibitor LY294002 regressed the cardio-protection of GSPE. Our results showed that GSPE could improve the cardiac dysfunction and remodeling induced by MI and inhibit cardiomyocytes apoptosis in hypoxic conditions through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yongxue Ruan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qike Jin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zeng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangfang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuoyi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kangting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingguo Wu
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Grau-Bové C, Sierra-Cruz M, Miguéns-Gómez A, Rodríguez-Gallego E, Beltrán-Debón R, Blay M, Terra X, Pinent M, Ardévol A. A Ten-Day Grape Seed Procyanidin Treatment Prevents Certain Ageing Processes in Female Rats over the Long Term. Nutrients 2020; 12:nu12123647. [PMID: 33260866 PMCID: PMC7759988 DOI: 10.3390/nu12123647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Adaptive homeostasis declines with age and this leads to, among other things, the appearance of chronic age-related pathologies such as cancer, neurodegeneration, osteoporosis, sarcopenia, cardiovascular disease and diabetes. Grape seed-derived procyanidins (GSPE) have been shown to be effective against several of these pathologies, mainly in young animal models. Here we test their effectiveness in aged animals: 21-month-old female rats were treated with 500 mg GSPE/kg of body weight for ten days. Afterwards they were kept on a chow diet for eleven weeks. Food intake, body weight, metabolic plasma parameters and tumor incidence were measured. The GSPE administered to aged rats had an effect on food intake during the treatment and after eleven weeks continued to have an effect on visceral adiposity. It prevented pancreas dysfunction induced by ageing and maintained a higher glucagon/insulin ratio together with a lower decrease in ketonemia. It was very effective in preventing age-related tumor development. All in all, this study supports the positive effect of GSPE on preventing some age-related pathologies.
Collapse
|
9
|
Effective utilization of food wastes: Bioactivity of grape seed extraction and its application in food industry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104113] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
10
|
Pistol GC, Marin DE, Rotar MC, Ropota M, Taranu I. Bioactive compounds from dietary whole grape seed meal improved colonic inflammation via inhibition of MAPKs and NF-kB signaling in pigs with DSS induced colitis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103708] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Lin KN, Jiang YL, Zhang SG, Huang SY, Li H. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway. Biomed Pharmacother 2020; 125:109885. [PMID: 32007917 DOI: 10.1016/j.biopha.2020.109885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Multidrug resistance (MDR) is a great challenge and obstacle in cancer treatment. It is a common problem in the treatment of acute myeloid leukemia (AML). Whether grape seed proanthocyanidin extract (GSPE) could reverse MDR in patients with AML is still unknown. The aim of this study was to investigate the MDR reverse ability of GSPE and its possible mechanism in vitro. MATERIALS AND METHODS Human leukemia cell line HL-60 cells and HL-ADR cells were used. MTT assay were employed to identify the cytotoxic effects of different chemotherapeutic drugs and reverse ability of GSPE. Flow cytometry assays were used to verify the cell apoptosis induced by GSPE. MDR-related genes expression was tested by real-time polymerase chain reaction (Q-PCR). MDR-related protein expression was assessed by Western blotting assays. The genes and their related protein expression of multidrug resistance-associated protein 1 (MRP1), multidrug resistance protein 1 (MDR1) and lung resistance-related protein (LRP) were tested in this study. KEY RESULTS We found that HL-60/ADR cells were resistant to a variety of chemotherapeutic drugs, including cytarabine (Ara-C), adriamycin (ADR), vincristine (VCR), daunorubicin (DNR), mitoxantrone (MTZ), pirarubicin (THP), homoharringtonine (HHT) and etoposide (VP16). Co-treatment with GSPE could significant lower the IC50 of Ara-C and ADR in HL-60/ADR cells (P < 0.01). MDR related mRNA and their protein expression of MRP1 and MDR1 were significant highly expressed in HL-60/ADR cells than HL-60 cells (P < 0.01). But only protein expression of LRP was higher in HL-60/ADR cells than HL-60 cells (P < 0.05). GSPE could induce a higher intracellular level of ADR in HL-60/ADR cells. It could also inhibit Akt phosphorylation resulted in the down regulation of MRP1, MDR1 and LRP and induce cell apoptosis. 25.0 μg/mL GSPE significant inhibited the Akt phosphorylation (P < 0.05). CONCLUSION AND IMPLICATIONS GSPE-reversed MDR of HL-60/ADR cells might be associated with the inhibition of the PI3K/Akt signaling pathway, which resulted in the down-regulation the expression of MRP1, MDR1 and LRP. These results provide that GSPE may serve as a combination therapy in AML chemotherapy for future study.
Collapse
Affiliation(s)
- Ka-Na Lin
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School Medicine, Shanghai, 200127, China
| | - Yue-Lian Jiang
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School Medicine, Shanghai, 200127, China
| | - Shun-Guo Zhang
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School Medicine, Shanghai, 200127, China
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School Medicine, Shanghai, 200127, China.
| | - Hao Li
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School Medicine, Shanghai, 200127, China.
| |
Collapse
|
12
|
Barbe A, Ramé C, Mellouk N, Estienne A, Bongrani A, Brossaud A, Riva A, Guérif F, Froment P, Dupont J. Effects of Grape Seed Extract and Proanthocyanidin B2 on In Vitro Proliferation, Viability, Steroidogenesis, Oxidative Stress, and Cell Signaling in Human Granulosa Cells. Int J Mol Sci 2019; 20:ijms20174215. [PMID: 31466336 PMCID: PMC6747392 DOI: 10.3390/ijms20174215] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) which lead to oxidative stress affect ovarian function. Grape seed extract (GSE) could be proposed as an effective antioxidant, particularly due to its proanthocyanidin content. In this study, we investigated a dose effect (0, 0.01, 0.1, 1, 10, 50, and 100 μg/mL) of GSE and proanthocyanidin B2 (GSPB2) on the ROS content, cell proliferation, cell viability, and steroidogenesis in both primary luteinized granulosa cells (hGC) and the tumor granulosa cell line (KGN). The levels of ROS were measured using ROS-Glo assay. Cell proliferation and viability were evaluated by [3H]-thymidine incorporation and Cell Counting Kit-8 (CCK8) assay, respectively. Steroid secretion was evaluated by radioimmunoassay. We also analyzed the cell cycle component protein level and signaling pathways by immunoblot and the NOX4 mRNA expression by RTqPCR. From 0.1 to 1 μg/mL, GSE and GSBP2 reduced the ROS cell content and the NOX4 mRNA levels, whereas, GSE and GSBP2 increased the ROS cell content from 50 to 100 μM in both hGC and KGN. GSE and GSPB2 treatments at 50 and 100 μg/mL induced a delay in G1 to S phase cell cycle progression as determined by fluorescence-activated cell sorting. Consequently, they reduced cell growth, cyclin D2 amount, and Akt phosphorylation, and they increased protein levels of p21 and p27 cyclin-dependent kinase inhibitors. These data were also associated with an increase in cell death that could be due to a reduction in Bcl-2-associated death promoter (BAD) phosphorylation and an increase in the cleaved-caspase-3 level. All these negative effects were not observed at lower concentrations of GSE and GSPB2 (0.01 to 10 μg/mL). Interestingly, we found that GSE and GSPB2 treatments (0.1 to 100 μg/mL) improved progesterone and estradiol secretion and this was associated with a higher level of the cholesterol carriers, StAR (steroidogenic acute regulatory protein), CREB (Cyclic adenosine monophosphate Response Element-binding protein), and MAPK ERK1/2 (Mitogen-Activated Protein Kinases Extracellular signal-Regulated Kinases 1/2) phosphorylation in both hGC and KGN cells. Taken together, GSE and GSPB2 (0.1–10 μg/mL) in vitro treatments decrease oxidative stress and increase steroidogenesis without affecting cell proliferation and viability in human granulosa cells.
Collapse
Affiliation(s)
- Alix Barbe
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Namya Mellouk
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Anthony Estienne
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Adeline Brossaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | | | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, Hospital of Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Department of Animal Physiology, University of François Rabelais, F-37041 Tours, France.
- Institut Français du Cheval et de l'Equitation, F-37380 Nouzilly, France.
| |
Collapse
|