1
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Sdogati S, Pacini T, Bibi R, Caporali A, Verdini E, Orsini S, Ortenzi R, Pecorelli I. Co-Occurrence of Aflatoxin B 1, Zearalenone and Ochratoxin A in Feed and Feed Materials in Central Italy from 2018 to 2022. Foods 2024; 13:313. [PMID: 38254614 PMCID: PMC10815256 DOI: 10.3390/foods13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mycotoxin contamination of feed and feed materials represent a serious health hazard. This study details the occurrence of aflatoxin B1 (AFB1), zearalenone (ZEN) and ochratoxin A (OTA) in 826 feed and 617 feed material samples, collected in two Italian Regions (Umbria and Marche) from 2018 to 2022 analyzed using a UPLC-FLD platform. The developed method was validated and accredited (ISO/IEC 17025) with satisfactory accuracy and precision data obtained in repeatability and intralaboratory reproducibility conditions. Feed had a higher incidence of contaminated samples (26%) with respect to feed materials (6%). AFB1 was found up to 0.1045 mg/kg in cattle feeds and 0.1234 mg/kg in maize; ZEN was detected up to 6.420 mg/kg in sheep feed while OTA was rarely reported and in lower concentrations (up to 0.085 mg/kg). Co-contamination of at least two mycotoxins was reported in 0.8% of the analyzed samples. The incidence of above maximum content/guidance level samples was 2% for feed and feed materials while almost 3-fold-higher for maize (5.8%) suggesting how mycotoxin contamination can affect some matrices more than others. Obtained data can be useful to improve official monitoring plans and therefore further raise awareness of this issue between agriculture stakeholders, healthcare entities and non-professionals.
Collapse
Affiliation(s)
- Stefano Sdogati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy (I.P.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Wu F, Wang F, Tang Z, Yang X, Liu Y, Zhao M, Liu S, Han S, Zhang Z, Chen B. Quercetagetin alleviates zearalenone-induced liver injury in rabbits through Keap1/Nrf2/ARE signaling pathway. Front Pharmacol 2023; 14:1271384. [PMID: 37854718 PMCID: PMC10579610 DOI: 10.3389/fphar.2023.1271384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: This study aimed to assess the alleviative effect of quercetagetin (QG) on zearalenone (ZEN)-induced liver injury in rabbits. Methods: Ninety 41-day-old healthy Hyla rabbits were randomly assigned into three groups, including a control (fed with basic diet), ZEN addition group (fed with basic diet + 600 μg/kg ZEN), and ZEN + QG addition group (fed with basic diet + 600 μg/kg ZEN + 100 mg/kg QG), with 30 rabbits per group. The duration of the experiment was 28 days. Results: The results revealed no significant differences in the average daily gain, average daily feed intake, the gain to feed ratio and the liver, kidney and spleen organ indexes (p > 0.05) between the rabbits across the three groups. However, the sacculus rotundus index of the rabbits in the control group was significantly higher than that in the ZEN + QG group (p < 0.05). The intake of ZEN-contaminated diet also significantly increased the activities or levels of alanine transaminase, alkaline phosphatase, total bile acid (TBA), total bilirubin, malondialdehyde, and interleukin-4 (IL-4) and enhanced the abundance of kelch-like ECH-associated protein 1 (Keap1), heat shock protein 70 (HSP70) and cysteine-aspartic acid protease-3 (Caspase-3) mRNA in the blood or liver tissue in ZEN group, compared to the control group (p < 0.05). On the contrary, the activities or levels of immunoglobulin A, complement 3, total antioxidant capacity, glutathione peroxidase (GSH-Px), superoxide dismutase, interleukin-10, and the abundance of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) mRNA were significantly decreased (p < 0.05). Supplementing the diet with QG still maintained significantly higher levels of TBA and IL-4, and the abundance of GSH-Px, HSP70, IL-4, and Caspase-3 mRNA in the blood and liver of rabbits in the ZEN + QG group than in the control group (p < 0.05). At the same time, the other indicators were restored to levels in the control group (p > 0.05). Discussion: In conclusion, QG alleviated the ZEN-induced oxidative damage and liver injury caused by inflammatory reaction through the Keap1-Nrf2-antioxidant response element (ARE) signal pathway, which protected the liver. This study revealed the alleviative effect of QG on the hepatotoxicity of ZEN in rabbits for the first time, providing a new perspective for applying QG and developing a ZEN antidote.
Collapse
Affiliation(s)
- Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhaohong Tang
- Hebei Research Institute of Microbiology Co., Ltd., Baoding, China
| | - Xinyu Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanhua Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Shuaijuan Han
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Zhisheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Ye XX, Li KY, Li YF, Lu JN, Guo PT, Liu HY, Zhou LW, Xue SS, Huang CY, Fang SM, Gan QF. The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Front Microbiol 2022; 13:974337. [PMID: 36246250 PMCID: PMC9563143 DOI: 10.3389/fmicb.2022.974337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium butyricum (C. butyricum) can provide many benefits for animals’ growth performance and gut health. In this study, we investigated the effects of C. butyricum on the growth performance, cecal microbiota, and plasma metabolome in Ira rabbits. A total of 216 Ira rabbits at 32 days of age were randomly assigned to four treatments supplemented with basal diets containing 0 (CG), 200 (LC), 400 (MC), and 600 mg/kg (HC) C. butyricum for 35 days, respectively. In comparison with the CG group, C. butyricum supplementation significantly improved the average daily gain (ADG) and feed conversion rate (FCR) at 53 and 67 days of age (P < 0.05) and digestibilities of crude protein (CP) and crude fiber (CF) at 67 days of age (P < 0.05). The cellulase activity in the HC group was higher respectively by 50.14 and 90.13% at 53 and 67 days of age, than those in the CG groups (P < 0.05). Moreover, at 67 days of age, the diet supplemented with C. butyricum significantly increased the relative abundance of Verrucomicrobia at the phylum level (P < 0.05). Meanwhile, the concentrations of different metabolites, such as amino acids and purine, were significantly altered by C. butyricum (P < 0.05). In addition, 10 different genera were highly correlated with 52 different metabolites at 53-day-old and 6 different genera were highly correlated with 18 different metabolites at 67-day-old Ira rabbits. These findings indicated that the C. butyricum supplementation could significantly improve the growth performance by modifying the cecal microbiota structure and plasma metabolome of weaned Ira rabbits.
Collapse
|
6
|
Effect of Feeding Insoluble Fiber on the Microbiota and Metabolites of the Caecum and Feces of Rabbits Recovering from Epizootic Rabbit Enteropathy Relative to Non-Infected Rabbits. Pathogens 2022; 11:pathogens11050571. [PMID: 35631092 PMCID: PMC9146049 DOI: 10.3390/pathogens11050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to investigate the effect of feeding insoluble fiber on the microbiota and metabolites of the caecum and feces of rabbits recovering from epizootic rabbit enteropathy relative to non-infected rabbits. Rabbits that had either recovered from epizootic rabbit enteropathy or ones that had never had epizootic rabbit enteropathy were fed on a diet of 32% or 36% neutral detergent fiber until they were 70 days of age. At this point, the short-chain fatty acid and ammonia levels were measured in caecotroph and fecal samples and compared using 2 × 2 ANOVA. The microbial composition of the samples was also analyzed using next-generation sequencing and compared by PERMANOVA. Caecotrophic samples from previously affected rabbits on lower fiber diets had higher short-chain fatty acid contents and higher species diversity index values for some indices (p < 0.05), although the fecal samples showed lower species diversity levels (p < 0.05). In addition, the PERMANOVA analyses demonstrated that differences were detected in the microbial composition of both fecal and caecotrophic samples, depending on the disease status at the outset of the experiment (p < 0.05). The results of this work show that, although there is some potential in the use of high-fiber diets for the treatment of rabbits that have had epizootic rabbit enteropathy, they are not able to produce the same digestive tract properties as those seen in rabbits that have never had the condition. This is true even after the rabbits have recovered from epizootic rabbit enteropathy.
Collapse
|
7
|
Yang HT, Xiu WJ, Liu JK, Yang Y, Zhang YJ, Zheng YY, Wu TT, Hou XG, Wu CX, Ma YT, Xie X. Characteristics of the Intestinal Microorganisms in Middle-Aged and Elderly Patients: Effects of Smoking. ACS OMEGA 2022; 7:1628-1638. [PMID: 35071858 PMCID: PMC8771693 DOI: 10.1021/acsomega.1c02120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/21/2021] [Indexed: 06/14/2023]
Abstract
Introduction: Smoking affects the occurrence and development of many diseases. We attempt to study the structure of intestinal flora in the middle-aged and elderly population as well as how smoking affects the intestinal flora. Methods: We collected population information, biochemical indicators, and patient feces from 188 middle-aged and elderly male patients, and their feces were tested for the 16S rRNA gene of intestinal flora. Results: We performed a cluster analysis on the intestinal structure of the included population and found that there was a significant difference in the number of smokers between each group (p = 0.011). Subsequently, the microbiological diversity analysis of current smokers and nonsmokers was carried out. The results indicated that there was a significant difference in species composition between the two groups (p = 0.029). Through the analysis on LEfSe differential bacteria, it was found that in current smoking patients, the abundances of the genus Bifidobacterium and the genus Coprobacillus were less, while the abundances of the genera Shigella, Paraprevotella, Burkholderia, Sutterella, Megamonas, and p-75-a5 under the family level of Erysipelotrichaceae were slightly high. We analyzed the correlation between the abundances of these eight different bacteria and clinical indicators. The results revealed the following: the abundance of the genus Bifidobacterium was negatively correlated with fasting blood glucose (r = -0.198, p = 0.006) and positively correlated with uric acid (r = 0.207, p = 0.004) and total bilirubin (r = 0.175, p = 0.017); Shigella bacteria were positively correlated with fasting blood glucose (r = 0.160, p = 0.028) and uric acid (r = 0.153, p = 0.036) levels; the genus Paraprevotella and BMI (r = -0.172, p = 0.018) are negatively correlated; the abundance of the genus Burkholderia was positively correlated with γ-glutamyltransferase (r = 0.146, p = 0.045) levels; Sutterella was correlated with fasting blood glucose (r = 0.143, p = 0.05) and creatinine level (r = -0.16, p = 0.027), which was positively correlated with fasting blood glucose and negatively correlated with creatinine. Conclusions: In middle-aged and elderly patients with cardiovascular disease, smoking can reduce the abundance of Bifidobacterium, while the abundances of some negative bacteria such as Burkholderia, Sutterella, and Megamonas increase.
Collapse
Affiliation(s)
- Hai-Tao Yang
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Wen-Juan Xiu
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Jing-Kun Liu
- Department
of Oncology, First Affiliated Hospital of
Xinjiang Medical University, Urumqi 830011, China
| | - Yi Yang
- Department
of Cardiology Fourth Ward, Xinjiang Medical
University Affiliated Hospital of Traditional Chinese Medicine, Urumqi 830011, China
| | - Yan-jun Zhang
- Department
of Clinical Research Center, People’s
Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Ying-Ying Zheng
- Department
of Cardiology, First Affiliated Hospital
of Zhengzhou University, Key Laboratory of Cardiac Injury and Repair
of Henan Province, Zhengzhou 450002, China
| | - Ting-Ting Wu
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Xian-Geng Hou
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Cheng-Xin Wu
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Yi-Tong Ma
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| | - Xiang Xie
- Department
of Cardiology, First Affiliated Hospital
of Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
8
|
Yu J, Zhou Y, Wen Q, Wang B, Gong H, Zhu L, Lan H, Wu B, Lang W, Zheng X, Wu M. Effects of faecal microbiota transplantation on the growth performance, intestinal microbiota, jejunum morphology and immune function of laying-type chicks. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Context Recent studies have indicated that the early stage of growth is a critical window for intestinal microbiota manipulation to optimise the immunity and body growth. Faecal microbiota transplantation (FMT) is often used to regulate intestinal microbiota colonisation. Aims The aim of this study was to explore the effect of FMT on the growth performance, intestinal microbiota, jejunum morphology and immune function of newly hatched laying-type chicks. Methods The chicks (Hy-line Brown) were randomly divided into the control group (CON) and FMT group (FMT), which were treated with sterile saline and faecal microbiota suspension of Hy-line Brown breeder hens on Days 1, 3 and 5 respectively. For each group, there were five replications of 12 birds each for 4 weeks. This study investigated the body weight, tibia length, intestinal microflora, jejunum morphology and immune indexes of the chicks. Key results The results showed that the body weight and tibia length of birds in the FMT group were significantly increased at 7, 14 and 21 days of age (P < 0.01). Furthermore, we found that FMT altered the intestinal microbiota community of the birds and improved the richness, evenness, diversity and stability of their intestinal microbiota (P < 0.05). The faecal microbiota of the donor hens and birds that received the transplantation were very similar. The villus height and the ratio of the villus to crypt of the birds in the FMT group were significantly (P < 0.0001) higher than those in the control group. In addition, Spearman’s correlation analysis showed that the villus height of the FMT group showed positive correlation with Bacteroides (P < 0.05), and the villus height and the ratio of the villus to crypt in the FMT group showed positive correlations with Megasphaera (P < 0.05). The birds in the FMT group had no significant difference in intestinal length, immune organ indexes, serum β-defensin and IgA concentrations. Conclusions In summary, FMT can promote the early growth performance and jejunum morphology of laying-type chicks and improve the intestinal microbiota. FMT has no significant effect on the immune function of chicks. Implications FMT may be a potential method to improve the health of chicks to enhance the poultry industry.
Collapse
|
9
|
Response of Fecal Bacterial Flora to the Exposure of Fumonisin B1 in BALB/c Mice. Toxins (Basel) 2021; 13:toxins13090612. [PMID: 34564616 PMCID: PMC8472543 DOI: 10.3390/toxins13090612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fumonisins are a kind of mycotoxin that has harmful influence on the health of humans and animals. Although some research studies associated with fumonisins have been reported, the regulatory limits of fumonisins are imperfect, and the effects of fumonisins on fecal bacterial flora of mice have not been suggested. In this study, in order to investigate the effects of fumonisin B1 (FB1) on fecal bacterial flora, BALB/c mice were randomly divided into seven groups, which were fed intragastrically with 0 mg/kg, 0.018 mg/kg, 0.054 mg/kg, 0.162 mg/kg, 0.486 mg/kg, 1.458 mg/kg and 4.374 mg/kg of FB1 solutions, once a day for 8 weeks. Subsequently, feces were collected for analysis of microflora. The V3-V4 16S rRNA of fecal bacterial flora was sequenced using the Illumina MiSeq platform. The results revealed that fecal bacterial flora of mice treated with FB1 presented high diversity. Additionally, the composition of fecal bacterial flora of FB1 exposure groups showed marked differences from that of the control group, especially for the genus types including Alloprevotella, Prevotellaceae_NK3B31_group, Rikenellaceae_RC9_gut_group, Parabacteroides and phylum types including Cyanobacteria. In conclusion, our data indicate that FB1 alters the diversity and composition of fecal microbiota in mice. Moreover, the minimum dose of FB1 exposure also causes changes in fecal microbiota to some extent. This study is the first to focus on the dose-related effect of FB1 exposure on fecal microbiota in rodent animals and gives references to the regulatory doses of fumonisins for better protection of human and animal health.
Collapse
|
10
|
Metaproteomics Reveals Alteration of the Gut Microbiome in Weaned Piglets Due to the Ingestion of the Mycotoxins Deoxynivalenol and Zearalenone. Toxins (Basel) 2021; 13:toxins13080583. [PMID: 34437454 PMCID: PMC8402495 DOI: 10.3390/toxins13080583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022] Open
Abstract
The ingestion of mycotoxins can cause adverse health effects and represents a severe health risk to humans and livestock. Even though several acute and chronic effects have been described, the effect on the gut metaproteome is scarcely known. For that reason, we used metaproteomics to evaluate the effect of the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) on the gut microbiome of 15 weaned piglets. Animals were fed for 28 days with feed contaminated with different concentrations of DON (DONlow: 870 μg DON/kg feed, DONhigh: 2493 μg DON/kg feed) or ZEN (ZENlow: 679 μg ZEN/kg feed, ZENhigh: 1623 μg ZEN/kg feed). Animals in the control group received uncontaminated feed. The gut metaproteome composition in the high toxin groups shifted compared to the control and low mycotoxin groups, and it was also more similar among high toxin groups. These changes were accompanied by the increase in peptides belonging to Actinobacteria and a decrease in peptides belonging to Firmicutes. Additionally, DONhigh and ZENhigh increased the abundance of proteins associated with the ribosomes and pentose-phosphate pathways, while decreasing glycolysis and other carbohydrate metabolism pathways. Moreover, DONhigh and ZENhigh increased the abundance of the antioxidant enzyme thioredoxin-dependent peroxiredoxin. In summary, the ingestion of DON and ZEN altered the abundance of different proteins associated with microbial metabolism, genetic processing, and oxidative stress response, triggering a disruption in the gut microbiome structure.
Collapse
|
11
|
Astaxanthin Alleviates Ochratoxin A-Induced Cecum Injury and Inflammation in Mice by Regulating the Diversity of Cecal Microbiota and TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8894491. [PMID: 33505592 PMCID: PMC7806395 DOI: 10.1155/2021/8894491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ochratoxin A (OTA) is a common environmental pollutant found in a variety of foods and grains, and excessive OTA consumption causes serious global health effects on animals and humans. Astaxanthin (AST) is a natural carotenoid that has anti-inflammatory, antiapoptotic, immunomodulatory, antitumor, antidiabetes, and other biological activities. The present study is aimed at investigating the effects of AST on OTA-induced cecum injury and its mechanism of action. Eighty C57 mice were randomly divided into four groups, including the control group, OTA group (5 mg/kg body weight), AST group (100 mg/kg body weight), and AST intervention group (100 mg/kg body weight AST+5 mg/kg body weight OTA). It was found that AST decreased the endotoxin content, effectively prevented the shortening of mouse cecum villi, and increased the expression levels of tight junction (TJ) proteins, consisting of occludin, claudin-1, and zonula occludens-1 (ZO-1). AST increased the number of goblet cells, the contents of mucin-2 (MUC2), and defensins (Defa5 and β-pD2) significantly, while the expression of mucin-1 (MUC1) decreased significantly. The 16S rRNA sequencing showed that AST affected the richness and diversity of cecum flora, decreased the proportion of lactobacillus, and also decreased the contents of short-chain fatty acids (SCFAs) (acetate and butyrate). In addition, AST significantly decreased the expression of TLR4, MyD88, and p-p65, while increasing the expression of p65. Meanwhile, the expression of inflammatory factors including TNF-α and INF-γ decreased, while the expression of IL-10 increased. In conclusion, AST reduced OTA-induced cecum injury by regulating the cecum barrier function and TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
12
|
Guerre P. Mycotoxin and Gut Microbiota Interactions. Toxins (Basel) 2020; 12:E769. [PMID: 33291716 PMCID: PMC7761905 DOI: 10.3390/toxins12120769] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interactions between mycotoxins and gut microbiota were discovered early in animals and explained part of the differences in susceptibility to mycotoxins among species. Isolation of microbes present in the gut responsible for biotransformation of mycotoxins into less toxic metabolites and for binding mycotoxins led to the development of probiotics, enzymes, and cell extracts that are used to prevent mycotoxin toxicity in animals. More recently, bioactivation of mycotoxins into toxic compounds, notably through the hydrolysis of masked mycotoxins, revealed that the health benefits of the effect of the gut microbiota on mycotoxins can vary strongly depending on the mycotoxin and the microbe concerned. Interactions between mycotoxins and gut microbiota can also be observed through the effect of mycotoxins on the gut microbiota. Changes of gut microbiota secondary to mycotoxin exposure may be the consequence of the antimicrobial properties of mycotoxins or the toxic effect of mycotoxins on epithelial and immune cells in the gut, and liberation of antimicrobial peptides by these cells. Whatever the mechanism involved, exposure to mycotoxins leads to changes in the gut microbiota composition at the phylum, genus, and species level. These changes can lead to disruption of the gut barrier function and bacterial translocation. Changes in the gut microbiota composition can also modulate the toxicity of toxic compounds, such as bacterial toxins and of mycotoxins themselves. A last consequence for health of the change in the gut microbiota secondary to exposure to mycotoxins is suspected through variations observed in the amount and composition of the volatile fatty acids and sphingolipids that are normally present in the digesta, and that can contribute to the occurrence of chronic diseases in human. The purpose of this work is to review what is known about mycotoxin and gut microbiota interactions, the mechanisms involved in these interactions, and their practical application, and to identify knowledge gaps and future research needs.
Collapse
Affiliation(s)
- Philippe Guerre
- Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, ENVT, F-31076 Toulouse, France
| |
Collapse
|
13
|
Memiş EY, Yalçın SS, Yalçın S. Mycotoxin carry-over in breast milk and weight of infant in exclusively-breastfed infants. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:313-318. [PMID: 33023405 DOI: 10.1080/19338244.2020.1828242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim was to evaluate the levels of aflatoxin M1 (AFM1), ochratoxin A (OTA), zearalenone (ZEN), deoxynivalenol (DON) in human milk, and to investigate the relation between selected mycotoxin levels in breast milk and infantile growth in exclusively-breastfed infants under four months. Mycotoxin analysis was performed with commercial ELISA kits. Infants were weighed, and z scores of weight-for-age (WAZ) were calculated with WHO standards. The first quartile of the mycotoxin levels was classified in subgroups as low-level, the last quartile as high-level, and between them as middle-level. The subgroups of AFM1, OTA, and DON had similar infants' WAZ. When cases without maternal smoke exposure were selected and WAZ at birth, infant age, and gender were adjusted, higher infant WAZ on admission was detected in high-ZEN subgroup (p = 0.033). Further cohort studies in exclusively-breastfed infants and absence of maternal smoke exposure could clarify the effect of ZEN on infant growth.
Collapse
Affiliation(s)
| | - Sıddıka Songül Yalçın
- Unit of Social Pediatrics, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suzan Yalçın
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
14
|
Fang S, Chen X, Pan J, Chen Q, Zhou L, Wang C, Xiao T, Gan QF. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG). BMC Microbiol 2020; 20:116. [PMID: 32410629 PMCID: PMC7227296 DOI: 10.1186/s12866-020-01797-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The mammalian intestinal tract harbors diverse and dynamic microbial communities that play pivotal roles in host health, metabolism, immunity, and development. Average daily gain (ADG) is an important growth trait in meat rabbit industry. The effects of gut microbiota on ADG in meat rabbits are still unknown. Results In this study, we investigated the dynamic distribution of gut microbiota in commercial Ira rabbits from weaning to finishing and uncover the relationship between the microbiota and average daily gain (ADG) via 16S rRNA gene sequencing. The results indicated that the richness and diversity of gut microbiota significantly increased with age. Gut microbial structure was less variable among finishing rabbits than among weaning rabbits. The relative abundances of the dominant phyla Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria, and the 15 predominant genera significantly varied with age. Metagenomic prediction analysis showed that both KOs and KEGG pathways related to the metabolism of monosaccharides and vitamins were enriched in the weaning rabbits, while those related to the metabolism of amino acids and polysaccharides were more abundant in the finishing rabbits. We identified 34 OTUs, 125 KOs, and 25 KEGG pathways that were significantly associated with ADG. OTUs annotation suggested that butyrate producing bacteria belong to the family Ruminococcaceae and Bacteroidales_S24-7_group were positively associated with ADG. Conversely, Eubacterium_coprostanoligenes_group, Christensenellaceae_R-7_group, and opportunistic pathogens were negatively associated with ADG. Both KOs and KEGG pathways correlated with the metabolism of vitamins, basic amino acids, and short chain fatty acids (SCFAs) showed positive correlations with ADG, while those correlated with aromatic amino acids metabolism and immune response exhibited negative correlations with ADG. In addition, our results suggested that 10.42% of the variation in weaning weight could be explained by the gut microbiome. Conclusions Our findings give a glimpse into the dynamic shifts in gut microbiota of meat rabbits and provide a theoretical basis for gut microbiota modulation to improve ADG in the meat rabbit industry.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuan Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahua Pan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaohui Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwen Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Fu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Zheng YY, Wu TT, Liu ZQ, Li A, Guo QQ, Ma YY, Zhang ZL, Xun YL, Zhang JC, Wang WR, Kadir P, Wang DY, Ma YT, Zhang JY, Xie X. Gut Microbiome-Based Diagnostic Model to Predict Coronary Artery Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3548-3557. [PMID: 32100534 DOI: 10.1021/acs.jafc.0c00225] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, we aimed to characterize gut microbiome and develop a gut microbiome-based diagnostic model in patients with coronary artery disease (CAD). Prospectively, we collected 309 fecal samples from Central China and Northwest China and carried out the sequencing of the V3-V4 regions of the 16S rRNA gene. The gut microbiome was characterized, and microbial biomarkers were identified in 152 CAD patients and 105 healthy controls (Xinjiang cohort, n = 257). Using the biomarkers, we constructed a diagnostic model and validated it externally in 34 CAD patients and 18 healthy controls (Zhengzhou cohort, n = 52). Fecal microbial diversity was increased in CAD patients compared to that in healthy controls (P = 0.021). Phylum Bacteroidetes was increased in CAD patients versus healthy controls (P = 0.001). Correspondingly, 48 microbial markers were identified through a 10-fold cross-validation on a random forest model, and an area under the curve (AUC) of 87.7% (95% CI: 0.832 to 0.916, P < 0.001) was achieved in the Xinjiang cohort (development cohort, n = 257). Notably, an AUC of 90.4% (95% CI: 0.848 to 0.928, P < 0.001) was achieved using combined analysis of gut microbial markers and clinical variables. This model provided a robust tool for the prediction of CAD. It could be widely employed to complement the clinical assessment and prevention of CAD.
Collapse
Affiliation(s)
- Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China
| | - Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Zhi-Qiang Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qian-Qian Guo
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China
| | - Yan-Yan Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Zeng-Lei Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China
| | - Yi-Li Xun
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Jian-Chao Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China
| | - Wan-Rong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Patigvl Kadir
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Ding-Yu Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| | - Jin-Ying Zhang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou 450052, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011 P. R. China
| |
Collapse
|
16
|
Zheng W, Fan W, Feng N, Lu N, Zou H, Gu J, Yuan Y, Liu X, Bai J, Bian J, Liu Z. T he Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091517. [PMID: 31035709 PMCID: PMC6540048 DOI: 10.3390/ijerph16091517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control ( p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation.
Collapse
Affiliation(s)
- Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Wentong Fan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|