1
|
Huang S, Abutaleb K, Mishra S. Glycosphingolipids in Cardiovascular Disease: Insights from Molecular Mechanisms and Heart Failure Models. Biomolecules 2024; 14:1265. [PMID: 39456198 PMCID: PMC11506000 DOI: 10.3390/biom14101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
This review explores the crucial role of glycosphingolipids (GSLs) in the context of cardiovascular diseases (CVDs), focusing on their biosynthesis, metabolic pathways, and implications for clinical outcomes. GSLs are pivotal in regulating a myriad of cellular functions that are essential for heart health and disease progression. Highlighting findings from both human cohorts and animal models, this review emphasizes the potential of GSLs as biomarkers and therapeutic targets. We advocate for more detailed mechanistic studies to deepen our understanding of GSL functions in cardiovascular health, which could lead to innovative strategies for diagnosis, treatment, and personalized medicine in cardiovascular care.
Collapse
Affiliation(s)
- Sarah Huang
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Karima Abutaleb
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
| | - Sumita Mishra
- Department of Surgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24061, USA
- Center for Exercise Medicine Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24061, USA
- Department of Human Nutrition, Foods, and Exercise, College of Life Sciences, Virginia Tech, Roanoke, VA 24061, USA
| |
Collapse
|
2
|
Huang CH, Kuo CL, Cheng YS, Huang CS, Liu CS, Chang CC. Sphingolipid Metabolism Is Associated with Cardiac Dyssynchrony in Patients with Acute Myocardial Infarction. Biomedicines 2024; 12:1864. [PMID: 39200328 PMCID: PMC11351212 DOI: 10.3390/biomedicines12081864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
AIM Sphingolipids are a class of complex and bioactive lipids that are involved in the pathological processes of cardiovascular disease. Fabry disease is an X-linked storage disorder that results in the pathological accumulation of glycosphingolipids in body fluids and the heart. Cardiac dyssynchrony is observed in patients with Fabry disease and left ventricular (LV) hypertrophy. However, little information is available on the relationship between plasma sphingolipid metabolites and LV remodelling after acute myocardial infarction (AMI). The purpose of this study was to assess whether the baseline plasma sphingomyelin/acid ceramidase (aCD) ratio predicts LV dyssynchrony at 6M after AMI. METHODS A total of 62 patients with AMI undergoing primary angioplasty were recruited. Plasma aCD and sphingomyelin were measured prior to primary angioplasty. Three-dimensional echocardiographic measurements of the systolic dyssynchrony index (SDI) were performed at baseline and 6 months of follow-up. The patients were divided into three groups according to the level of aCD and sphingomyelin above or below the median. Group 1 denotes lower aCD and lower sphingomyelin; Group 3 denotes higher aCD and higher sphingomyelin. Group 2 represents different categories of patients with aCD and sphingomyelin. Trend analysis showed a significant increase in the SDI from Group 1 to Group 3. Logistic regression analysis showed that the sphingomyelin/aCD ratio was a significant predictor of a worsening SDI at 6 months. CONCLUSIONS AMI patients with high baseline plasma sphingomyelin/aCD ratios had a significantly increased SDI at six months. The sphingomyelin/aCD ratio can be considered as a surrogate marker of plasma ceramide load or inefficient ceramide metabolism. Plasma sphingolipid pathway metabolism may be a new biomarker for therapeutic intervention to prevent adverse remodelling after MI.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan
- Department of Beauty Science and Graduate Institute of Beauty Science Technology, Chienkuo Technology University, Changhua 500, Taiwan
| | - Chen-Ling Kuo
- Vascular Medicine and Diabetes Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (C.-L.K.); (Y.-S.C.)
| | - Yu-Shan Cheng
- Vascular Medicine and Diabetes Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; (C.-L.K.); (Y.-S.C.)
| | - Ching-San Huang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chin-San Liu
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Chia-Chu Chang
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| |
Collapse
|
3
|
Zhang J, Li R, Yu Y, Sun W, Zhang C, Wang H. Network pharmacology-and molecular docking-based investigation of Danggui blood-supplementing decoction in ischaemic stroke. Growth Factors 2024; 42:13-23. [PMID: 37932893 DOI: 10.1080/08977194.2023.2277755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Danggui blood-supplementing decoction (DBsD) is an herbal preparation treating several diseases including stroke. The present study sought to investigate the potential mechanism of DBsD in ischaemic stroke (IS) using network pharmacology, molecular docking, and cell experiment. Based on the protein-protein (PPI) network analysis, MAPK1 (0.51, 12), KNG1 (0.57, 28), and TNF (0.64, 39) were found with relatively good performance in degree and closeness centrality. The functional enrichment analysis revealed that DBsD contributed to IS-related biological processes, molecule function, and presynaptic/postsynaptic cellular components. Pathway enrichment indicated that DBsD might protect IS by modulating multi-signalling pathways including the sphingolipid signalling pathway. Molecular docking verified the stigmasterol-KNG1, bifendate-TNF, and formononetin-MAPK1 pairs. Cell experiments confirmed the involvement of KNG1 and sphingolipid signalling pathway in hippocampal neuronal cell apoptosis. This study showed that DBsD can protect neuronal cell injury after IS through multiple components, multiple targets, and multiple pathways.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Ruiqing Li
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Yang Yu
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Weijia Sun
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Chengshi Zhang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| | - Haijun Wang
- Department of Neurology, The First Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, China
| |
Collapse
|
4
|
Pistritu DV, Vasiliniuc AC, Vasiliu A, Visinescu EF, Visoiu IE, Vizdei S, Martínez Anghel P, Tanca A, Bucur O, Liehn EA. Phospholipids, the Masters in the Shadows during Healing after Acute Myocardial Infarction. Int J Mol Sci 2023; 24:8360. [PMID: 37176067 PMCID: PMC10178977 DOI: 10.3390/ijms24098360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.
Collapse
Affiliation(s)
- Dan-Valentin Pistritu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | | | - Anda Vasiliu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena-Florentina Visinescu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Ioana-Elena Visoiu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Smaranda Vizdei
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Paula Martínez Anghel
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Business Academy Aarhus, 30 Sønderhøj, 8260 Viby J, Denmark
| | - Antoanela Tanca
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Octavian Bucur
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 201 Washington Street, Boston, MA 02108, USA
| | - Elisa Anamaria Liehn
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 25 J.B Winsløws Vej, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| |
Collapse
|
5
|
Cross-Regulation of the Cellular Redox System, Oxygen, and Sphingolipid Signalling. Metabolites 2023; 13:metabo13030426. [PMID: 36984866 PMCID: PMC10054022 DOI: 10.3390/metabo13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Redox-active mediators are now appreciated as powerful molecules to regulate cellular dynamics such as viability, proliferation, migration, cell contraction, and relaxation, as well as gene expression under physiological and pathophysiological conditions. These molecules include the various reactive oxygen species (ROS), and the gasotransmitters nitric oxide (NO∙), carbon monoxide (CO), and hydrogen sulfide (H2S). For each of these molecules, direct targets have been identified which transmit the signal from the cellular redox state to a cellular response. Besides these redox mediators, various sphingolipid species have turned out as highly bioactive with strong signalling potential. Recent data suggest that there is a cross-regulation existing between the redox mediators and sphingolipid molecules that have a fundamental impact on a cell’s fate and organ function. This review will summarize the effects of the different redox-active mediators on sphingolipid signalling and metabolism, and the impact of this cross-talk on pathophysiological processes. The relevance of therapeutic approaches will be highlighted.
Collapse
|
6
|
Wang Y, Sun Z, Zang G, Zhang L, Wang Z. Role of ceramides in diabetic foot ulcers (Review). Int J Mol Med 2023; 51:26. [PMID: 36799149 PMCID: PMC9943538 DOI: 10.3892/ijmm.2023.5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder, which if not managed properly, can lead to serious health problems over time and impose significant financial burden on the patient, their family and society as a whole. The study of this disease and the underlying biological mechanism is gaining momentum. Multiple pieces of conclusive evidence show that ceramides are involved in the occurrence and development of diabetes. The present review focuses on the function of ceramides, a type of sphingolipid signaling molecule, to provide a brief description of ceramides and their metabolism, discuss the significant roles of ceramides in the healthy skin barrier, and speculate on the potential involvement of ceramides in the pathogenesis and development of diabetic foot ulcers (DFUs). Understanding these aspects of this disease more thoroughly is crucial to establish how ceramides contribute to the etiology of diabetic foot infections and identify possible therapeutic targets for the treatment of DFUs.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
7
|
Yu S, Wang K, Li Q, Wei Y, Li Y, Zhang Q, Huang P, Liang H, Sun H, Peng H, Huang X, Liu C, Zhou J, Qian J, Li C. Nonalcoholic steatohepatitis critically rewires the ischemia/reperfusion-induced dysregulation of cardiolipins and sphingolipids in mice. Hepatobiliary Surg Nutr 2023; 12:3-19. [PMID: 36860242 PMCID: PMC9944537 DOI: 10.21037/hbsn-21-133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Background Lipid dysregulation plays a fundamental role in nonalcoholic steatohepatitis (NASH), which is an emerging critical risk factor that aggravates hepatic ischemia/reperfusion (I/R) injury. However, the specific lipids that mediate the aggressive I/R injury in NASH livers have not yet been identified. Methods The mouse model of hepatic I/R injury on NASH was established on C56B/6J mice by first feeding the mice with a Western-style diet to induce NASH, then the NASH mice were subjected to surgical procedures to induce hepatic I/R injury. Untargeted lipidomics were performed to determine hepatic lipids in NASH livers with I/R injury through ultra-high performance liquid chromatography coupled with mass spectrometry. The pathology associated with the dysregulated lipids was examined. Results Lipidomics analyses identified cardiolipins (CL) and sphingolipids (SL), including ceramides (CER), glycosphingolipids, sphingosines, and sphingomyelins, as the most relevant lipid classes that characterized the lipid dysregulation in NASH livers with I/R injury. CER were increased in normal livers with I/R injury, and the I/R-induced increase of CER was further augmented in NASH livers. Metabolic pathway analysis revealed that the enzymes involved in the synthesis and degradation of CER were highly upregulated in NASH livers with I/R injury, including serine palmitoyltransferase 3 (Sptlc3), ceramide synthase 2 (Cers2), neutral sphingomyelinase 2 (Smpd3), and glucosylceramidase beta 2 (Gba2) that produced CER, and alkaline ceramidase 2 (Acer2), alkaline ceramidase 3 (Acer3), sphingosine kinase 1 (Sphk1), sphingosine-1-phosphate lyase (Sgpl1), and sphingosine-1-phosphate phosphatase 1 (Sgpp1) that catalyzed the degradation of CER. CL were not affected by I/R challenge in normal livers, but CL was dramatically reduced in NASH livers with I/R injury. Consistently, metabolic pathway analyses revealed that the enzymes catalyzing the generation of CL were downregulated in NASH-I/R injury, including cardiolipin synthase (Crls1) and tafazzin (Taz). Notably, the I/R-induced oxidative stress and cell death were found to be aggravated in NASH livers, which were possibly mediated by the reduction of CL and accumulation of CER. Conclusions The I/R-induced dysregulation of CL and SL were critically rewired by NASH, which might potentially mediate the aggressive I/R injury in NASH livers.
Collapse
Affiliation(s)
- Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiran Wei
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifan Zhang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengxiang Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongxian Peng
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Piccoli M, Cirillo F, Ghiroldi A, Rota P, Coviello S, Tarantino A, La Rocca P, Lavota I, Creo P, Signorelli P, Pappone C, Anastasia L. Sphingolipids and Atherosclerosis: The Dual Role of Ceramide and Sphingosine-1-Phosphate. Antioxidants (Basel) 2023; 12:antiox12010143. [PMID: 36671005 PMCID: PMC9855164 DOI: 10.3390/antiox12010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Sphingolipids are bioactive molecules that play either pro- and anti-atherogenic roles in the formation and maturation of atherosclerotic plaques. Among SLs, ceramide and sphingosine-1-phosphate showed antithetic properties in regulating various molecular mechanisms and have emerged as novel potential targets for regulating the development of atherosclerosis. In particular, maintaining the balance of the so-called ceramide/S1P rheostat is important to prevent the occurrence of endothelial dysfunction, which is the trigger for the entire atherosclerotic process and is strongly associated with increased oxidative stress. In addition, these two sphingolipids, together with many other sphingolipid mediators, are directly involved in the progression of atherogenesis and the formation of atherosclerotic plaques by promoting the oxidation of low-density lipoproteins (LDL) and influencing the vascular smooth muscle cell phenotype. The modulation of ceramide and S1P levels may therefore allow the development of new antioxidant therapies that can prevent or at least impair the onset of atherogenesis, which would ultimately improve the quality of life of patients with coronary artery disease and significantly reduce their mortality.
Collapse
Affiliation(s)
- Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Simona Coviello
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Paolo La Rocca
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Ivana Lavota
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Pasquale Creo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
| | - Paola Signorelli
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Piazza Malan 2, San Donato Milanese, 20097 Milan, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, 20097 Milan, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226437765
| |
Collapse
|
9
|
Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232314749. [PMID: 36499076 PMCID: PMC9740309 DOI: 10.3390/ijms232314749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.
Collapse
|
10
|
Zhang H, Nagree MS, Liu H, Pan X, Medin JA, Lipinski DM. rAAV-mediated over-expression of acid ceramidase prevents retinopathy in a mouse model of Farber lipogranulomatosis. Gene Ther 2022; 30:297-308. [PMID: 35902747 DOI: 10.1038/s41434-022-00359-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Farber disease (FD) is a rare monogenic lysosomal storage disorder caused by mutations in ASAH1 that results in a deficiency of acid ceramidase (ACDase) activity and the abnormal systemic accumulation of ceramide species, leading to multi-system organ failure involving neurological decline and retinopathy. Here we describe the effects of rAAV-mediated ASAH1 over-expression on the progression of retinopathy in a mouse model of FD (Asah1P361R/P361R) and its littermate controls (Asah1+/+ and Asah1+/P361R). Using a combination of non-invasive multimodal imaging, electrophysiology, post-mortem histology and mass spectrometry we demonstrate that ASAH1 over-expression significantly reduces central retinal thickening, ceramide accumulation, macrophage activation and limits fundus hyper-reflectivity and auto-fluorescence in FD mice, indicating rAAV-mediated over-expression of biologically active ACDase protein is able to rescue the anatomical retinal phenotype of Farber disease. Unexpectedly, ACDase over-expression in Asah1+/+ and Asah1+/P361R control eyes was observed to induce abnormal fundus hyper-reflectivity, auto-fluorescence and retinal thickening that closely resembles a FD phenotype. This study represents the first evidence of a gene therapy for Farber disease-related retinopathy. Importantly, the described gene therapy approach could be used to preserve vision in FD patients synergistically with broader enzyme replacement strategies aimed at preserving life.
Collapse
Affiliation(s)
- Hanmeng Zhang
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Haoyuan Liu
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics: Section of Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Pils V, Terlecki-Zaniewicz L, Schosserer M, Grillari J, Lämmermann I. The role of lipid-based signalling in wound healing and senescence. Mech Ageing Dev 2021; 198:111527. [PMID: 34174292 DOI: 10.1016/j.mad.2021.111527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Lipid-based signalling modulates several cellular processes and intercellular communication during wound healing and tissue regeneration. Bioactive lipids include but are not limited to the diverse group of eicosanoids, phospholipids, and extracellular vesicles and mediate the attraction of immune cells, initiation of inflammatory responses, and their resolution. In aged individuals, wound healing and tissue regeneration are greatly impaired, resulting in a delayed healing process and non-healing wounds. Senescent cells accumulate with age in vivo, preferably at sites implicated in age-associated pathologies and their elimination was shown to alleviate many age-associated diseases and disorders. In contrast to these findings, the transient presence of senescent cells in the process of wound healing exerts beneficial effects and limits fibrosis. Hence, clearance of senescent cells during wound healing was repeatedly shown to delay wound closure in vivo. Recent findings established a dysregulated synthesis of eicosanoids, phospholipids and extracellular vesicles as part of the senescent phenotype. This intriguing connection between cellular senescence, lipid-based signalling, and the process of wound healing and tissue regeneration prompts us to compile the current knowledge in this review and propose future directions for investigation.
Collapse
Affiliation(s)
- Vera Pils
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lucia Terlecki-Zaniewicz
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence - SKINMAGINE, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Johannes Grillari
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz and Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Ingo Lämmermann
- Christian Doppler Laboratory for the Biotechnology of Skin Aging, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
12
|
Liu L, Yang C, Qiu T, Shen X, Liu B, Qi X, Song G. Hydrogen alleviates acute lung injury induced by limb ischaemia/reperfusion in mice. Life Sci 2021; 279:119659. [PMID: 34052293 DOI: 10.1016/j.lfs.2021.119659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/18/2023]
Abstract
AIMS Limb ischaemia/reperfusion (LIR) occurs in various clinical conditions including critical limb ischaemia, abdominal aortic aneurysm, and traumatic arterial injury. Reperfusion of the acutely ischemic limb can lead to a systemic inflammation response and multiple organ dysfunction syndrome, further resulting in significant morbidity and mortality. Molecular hydrogen exhibits therapeutic activity for the treatment and prevention of many diseases. Our study investigated the possible therapeutic effects of hydrogen and its mechanism of action in a LIR-induced acute lung injury (ALI) model. MATERIALS AND METHODS Limb ischaemia/-reperfusion model was established in mice. The hydrogen-saturated saline was administered by intraperitoneal injection. Protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO1) and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) was evaluated by immunohistochemistry staining and western blotting. Autophagy-related molecules were evaluated by western blotting. Malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by assay kits. Quantification of ceramides in lung was performed by high-performance liquid chromatography-tandem mass spectrometry. KEY FINDINGS Molecular hydrogen exhibited a protective effect on the LIR-induced ALI model. Hydrogen decreased malondialdehyde and increased superoxide dismutase activity in lung tissues. Additionally, hydrogen activated Nrf2 signalling in lung tissues. Hydrogen could inhibit the upregulation of autophagy in the present rodent model. Furthermore, ceramide was accumulated in lung tissues because of LIR; however, hydrogen altered the accumulation status. SIGNIFICANCE Molecular hydrogen was found to be therapeutically effective in the LIR-induced ALI model; the mechanisms of action included modulation of antioxidation and autophagy.
Collapse
Affiliation(s)
- Ling Liu
- Taian City central Hospital of Shandong Province, Taian 271000, China
| | - Chao Yang
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Tingting Qiu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xin Shen
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Boyan Liu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China.
| | - Guohua Song
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China.
| |
Collapse
|
13
|
Jiang Y, He X, Simonaro CM, Yi B, Schuchman EH. Acid Ceramidase Protects Against Hepatic Ischemia/Reperfusion Injury by Modulating Sphingolipid Metabolism and Reducing Inflammation and Oxidative Stress. Front Cell Dev Biol 2021; 9:633657. [PMID: 34026750 PMCID: PMC8134688 DOI: 10.3389/fcell.2021.633657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022] Open
Abstract
Ceramide is a bioactive signaling lipid involved in the pathogenesis of numerous diseases. It also plays an important role in ischemia reperfusion (IR) injury via activation of inflammatory/oxidative stress-stimulated signaling pathways, resulting in tissue damage. Acid ceramidase is a lipid hydrolase that modulates the levels of ceramide, and as such has a potential therapeutic role in many human diseases where ceramide has been implicated. Here we investigated the therapeutic potential of recombinant acid ceramidase in a murine model of hepatic IR injury. Serum ALT, AST, and LDH activities, as well as oxidative stress (MDA) and inflammatory (MCP-1) markers, were increased in mice subjected to IR compared to a sham group. In contrast, these elevations were significantly lower in an IR group pretreated with a single injection of acid ceramidase. Histological examination by two different assessment criteria also revealed that acid ceramidase pretreatment alleviated IR-induced hepatocyte damage, including reduced evidence of cell death and necrosis. In addition, elevated ceramide and sphingosine levels were observed in the IR group compared to sham, and were markedly reduced when pretreated with acid ceramidase. In contrast, the levels of the protective signaling lipid, sphingosine-1-phosphate (S1P), were reduced following IR and elevated in response to acid ceramidase pretreatment. These changes in sphingolipid levels could be correlated with changes in the activities of several sphingolipid-metabolizing enzymes. Overall, these results indicated that sphingolipid changes were an important pathologic component of hepatic IR injury, and that acid ceramidase administration ameliorated these lipid changes and other downstream pathologic changes.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Calogera M Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Yi
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Todorović Z, Đurašević S, Stojković M, Grigorov I, Pavlović S, Jasnić N, Tosti T, Macut JB, Thiemermann C, Đorđević J. Lipidomics Provides New Insight into Pathogenesis and Therapeutic Targets of the Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:2798. [PMID: 33801983 PMCID: PMC7999969 DOI: 10.3390/ijms22062798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.
Collapse
Affiliation(s)
- Zoran Todorović
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Maja Stojković
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
| | - Ilijana Grigorov
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Slađan Pavlović
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (I.G.); (S.P.)
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelica Bjekić Macut
- School of Medicine, University of Belgrade, 11129 Belgrade, Serbia; (M.S.); (J.B.M.)
- University Medical Centre “Bežanijska kosa”, 11080 Belgrade, Serbia
| | - Christoph Thiemermann
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Jelena Đorđević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (S.Đ.); (N.J.); (J.Đ.)
| |
Collapse
|
15
|
Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6631805. [PMID: 33777315 PMCID: PMC7969100 DOI: 10.1155/2021/6631805] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
Stroke is a leading cause of death and disability in humans. The excessive production of reactive oxygen species (ROS) is an important contributor to oxidative stress and secondary brain damage after stroke. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an enzyme complex consisting of membrane subunits and cytoplasmic subunits, regulates neuronal maturation and cerebrovascular homeostasis. However, NADPH oxidase overproduction contributes to neurotoxicity and cerebrovascular disease. NADPH oxidase has been implicated as the principal source of ROS in the brain, and numerous studies have shown that the knockout of NADPH exerts a protective effect in the model of ischemic stroke. In this review, we summarize the mechanism of activation of the NADPH oxidase family members, the pathophysiological effects of NADPH oxidase isoforms in ischemic stroke, and the studies of NADPH oxidase inhibitors to explore potential clinical applications.
Collapse
|
16
|
Li Q, Qian J, Li Y, Huang P, Liang H, Sun H, Liu C, Peng J, Lin X, Chen X, Peng H, Wang Z, Liu M, Shi Y, Yan H, Wei Y, Liao L, He Q, Huang X, Ruan F, Mao C, Zhou J, Wang K, Li C. Generation of sphingosine-1-phosphate by sphingosine kinase 1 protects nonalcoholic fatty liver from ischemia/reperfusion injury through alleviating reactive oxygen species production in hepatocytes. Free Radic Biol Med 2020; 159:136-149. [PMID: 32738398 DOI: 10.1016/j.freeradbiomed.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver (NAFL) is emerging as a leading risk factor of hepatic ischemia/reperfusion (I/R) injury lacking of effective therapy. Lipid dyshomeostasis has been implicated in the hepatopathy of NAFL. Herein, we investigate the bioactive lipids that critically regulate I/R injury in NAFL. METHODS Lipidomics were performed to identify dysregulated lipids in mouse and human NAFL with I/R injury. The alteration of corresponding lipid-metabolizing genes was examined. The effects of the dysregulated lipid metabolism on I/R injury in NAFL were evaluated in mice and primary hepatocytes. RESULTS Sphingolipid metabolic pathways responsible for the generation of sphingosine-1-phosphate (S1P) were uncovered to be substantially activated by I/R in mouse NAFL. Sphingosine kinase 1 (Sphk1) was found to be essential for hepatic S1P generation in response to I/R in hepatocytes of NAFL mice. Sphk1 knockdown inhibited the hepatic S1P rise while accumulating ceramides in hepatocytes of NAFL mice, leading to aggressive hepatic I/R injury with upregulation of oxidative stress and increase of reactive oxygen species (ROS). In contrast, administration of exogenous S1P protected hepatocytes of NAFL mice from hepatic I/R injury. Clinical study revealed a significant activation of S1P generation by I/R in liver specimens of NAFL patients. In vitro studies on the L02 human hepatocytes consolidated that inhibiting the generation of S1P by knocking down SPHK1 exaggerated I/R-induced damage and oxidative stress in human hepatocytes of NAFL. CONCLUSIONS Generation of S1P by SPHK1 is important for protecting NAFL from I/R injury, which may serve as therapeutic targets for hepatic I/R injury in NAFL.
Collapse
Affiliation(s)
- Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pengxiang Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hang Sun
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Peng
- Department of General Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinxin Lin
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuefang Chen
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongxian Peng
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zihuan Wang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiqi Liu
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaru Shi
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongmei Yan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiran Wei
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghua He
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xixin Huang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangyi Ruan
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Cungui Mao
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
de la Monte SM, Gallucci GM, Lin A, Tong M, Chen X, Stonestreet BS. Critical Shifts in Cerebral White Matter Lipid Profiles After Ischemic-Reperfusion Brain Injury in Fetal Sheep as Demonstrated by the Positive Ion Mode MALDI-Mass Spectrometry. CELL MEDICINE 2020; 12:2155179019897002. [PMID: 34557326 PMCID: PMC8454457 DOI: 10.1177/2155179019897002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ischemic-reperfusion (I/R) injury to cerebral white matter during the perinatal period leads to long-term cognitive and motor disabilities in children. Immature white matter oligodendrocytes are especially vulnerable to metabolic insults such as those caused by hypoxic, ischemic, and reperfusion injury. Consequences include an impaired capacity of oligodendrocytes to generate and maintain mature lipid-rich myelin needed for efficient neuronal conductivity. Further research is needed to increase an understanding of the early, possibly reversible myelin-associated pathologies that accompany I/R white matter injury. This experiment characterized I/R time-dependent alterations in cerebral white matter lipid profiles in an established fetal sheep model. Fetal sheep (127 days gestation) were subjected to 30 min of bilateral carotid artery occlusion followed by 4 h (n = 5), 24 h (n = 7), 48 h (n = 3), or 72 h (n = 5) of reperfusion, or sham treatment (n = 5). Supraventricular cerebral white matter lipids were analyzed using the positive ionization mode matrix-assisted laser desorption/ionization mass spectrometry. Striking I/R-associated shifts in phospholipid (PL) and sphingolipid expression with a prominent upregulation of cardiolipin, phosphatidylcholine, phosphatidylinositol monomannoside, sphingomyelin, sulfatide, and ambiguous or unidentified lipids were observed to occur mainly at I/R-48 and normalized or suppressed responses at I/R-72. In fetal sheep, cerebral I/R caused major shifts in white matter myelin lipid composition favoring the upregulated expression of diverse PLs and sphingolipids which are needed to support neuronal membrane, synaptic, metabolic, and cell signaling functions.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Providence VA Medical Center and the Women & Infants Hospital of Rhode Island, RI, USA,Department of Neurology, Rhode Island Hospital, Providence, RI, USA,Department of Neurosurgery, Rhode Island Hospital, Providence, RI, USA, Department of Medicine, Rhode Island Hospital, Providence, RI, USA, Alpert Medical School of Brown University, Providence, RI, USA,Suzanne M. de la Monte, Rhode Island Hospital, 55 Claverick Street, Room 419, Providence, RI 02903, USA;
| | - Gina M. Gallucci
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Amy Lin
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA, Alpert Medical School of Brown University, Providence, RI, USA
| | - Xiaodi Chen
- Alpert Medical School of Brown University, Providence, RI, USA, Division of Neonatology, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Barbara S. Stonestreet
- Alpert Medical School of Brown University, Providence, RI, USA, Division of Neonatology, Department of Pediatrics, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
18
|
Sun M, Nie K, Wang F, Deng L. Optimization of the Lipase-Catalyzed Selective Amidation of Phenylglycinol. Front Bioeng Biotechnol 2020; 7:486. [PMID: 32039186 PMCID: PMC6987038 DOI: 10.3389/fbioe.2019.00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/30/2019] [Indexed: 11/13/2022] Open
Abstract
Ceramides and their analogs have a regulatory effect on inflammatory cytokines expression. It was found that a kind of ceramides analog synthesized from phenylglycinol could inhibit the production of cytokine TNF-α. However, two active hydrogen groups are present in the phenylglycinol molecule. It is difficult to control the process without hydroxyl group protection to dominantly produce amide in the traditional chemical synthesis. A selective catalytic the amidation route of phenylglycinol by lipases was investigated in this research. The results indicated that the commercial immobilized lipase Novozym 435 has the best regio-selectivity on the amide group. Based on the experimental results and in silico simulation, it was found that the mechanism of specific N-acyl selectivity of lipase was not only from intramolecular migration and proton shuttle mechanism, but also from the special structure of active site of enzyme. The optimal reaction yield of aromatic amide compound in a solvent-free system with lipase loading of 15 wt% (to the weight of total substrate) reached 89.41 ± 2.8% with very few of byproducts detected (0.21 ± 0.1% ester and 0.64 ± 0.2% diacetylated compound). Compare to other reported works, this work have the advantages such as low enzyme loading, solvent free, and high N-acylation selectivity. Meanwhile, this Novozym 435 lipase based synthesis method has an excellent regio-selectivity on most kinds of amino alcohol compounds. Compared to the chemical method, the enzymatic synthesis exhibited high regio-selectivity, and conversion rates. The method could be a promising alternative strategy for the synthesis of aromatic alkanolamides.
Collapse
Affiliation(s)
- Meina Sun
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Li Deng
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China.,Amoy-BUCT Industrial Bio-technovation Institute, Xiamen, China
| |
Collapse
|
19
|
Cataldi S, Borrelli A, Ceccarini MR, Nakashidze I, Codini M, Belov O, Ivanov A, Krasavin E, Ferri I, Conte C, Patria FF, Traina G, Beccari T, Mancini A, Curcio F, Ambesi-Impiombato FS, Albi E. Neutral Sphingomyelinase Modulation in the Protective/Preventive Role of rMnSOD from Radiation-Induced Damage in the Brain. Int J Mol Sci 2019; 20:ijms20215431. [PMID: 31683613 PMCID: PMC6862120 DOI: 10.3390/ijms20215431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023] Open
Abstract
Studies on the relationship between reactive oxygen species (ROS)/manganese superoxide dismutase (MnSOD) and sphingomyelinase (SMase) are controversial. It has been demonstrated that SMase increases the intracellular ROS level and induces gene expression for MnSOD protein. On the other hand, some authors showed that ROS modulate the activation of SMase. The human recombinant manganese superoxide dismutase (rMnSOD) exerting a radioprotective effect on normal cells, qualifies as a possible pharmaceutical tool to prevent and/or cure damages derived from accidental exposure to ionizing radiation. This study aimed to identify neutral SMase (nSMase) as novel molecule connecting rMnSOD to its radiation protective effects. We used a new, and to this date, unique, experimental model to assess the effect of both radiation and rMnSOD in the brain of mice, within a collaborative project among Italian research groups and the Joint Institute for Nuclear Research, Dubna (Russia). Mice were exposed to a set of minor γ radiation and neutrons and a spectrum of neutrons, simulating the radiation levels to which cosmonauts will be exposed during deep-space, long-term missions. Groups of mice were treated or not-treated (controls) with daily subcutaneous injections of rMnSOD during a period of 10 days. An additional group of mice was also pretreated with rMnSOD for three days before irradiation, as a model for preventive measures. We demonstrate that rMnSOD significantly protects the midbrain cells from radiation-induced damage, inducing a strong upregulation of nSMase gene and protein expression. Pretreatment with rMnSOD before irradiation protects the brain with a value of very high nSMase activity, indicating that high levels of activity might be sufficient to exert the rMnSOD preventive role. In conclusion, the protective effect of rMnSOD from radiation-induced brain damage may require nSMase enzyme.
Collapse
Affiliation(s)
- Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", 80131 Napoli, Italy.
| | | | - Irina Nakashidze
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Oleg Belov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Alexander Ivanov
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Eugene Krasavin
- Laboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980 Dubna, Russia.
| | - Ivana Ferri
- Division of Pathological Anatomy and Histology, Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, 06126 Perugia, Italy.
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | | | - Giovanna Traina
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Aldo Mancini
- Laedhexa Biotechnologies Inc., San Francisco, CA QB3@953, USA.
| | - Francesco Curcio
- Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy.
| | | | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
20
|
Yuan X, Bhat OM, Lohner H, Zhang Y, Li PL. Endothelial acid ceramidase in exosome-mediated release of NLRP3 inflammasome products during hyperglycemia: Evidence from endothelium-specific deletion of Asah1 gene. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158532. [PMID: 31647995 DOI: 10.1016/j.bbalip.2019.158532] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/31/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
Exosomes have been demonstrated to be one of the mechanisms mediating the release of intracellular signaling molecules to conduct cell-to-cell communication. However, it remains unknown whether and how exosomes mediate the release of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome products such as interleukin-1 beta (IL-1β) from endothelial cells. The present study hypothesized that lysosomal acid ceramidase (AC) determines the fate of multivesicular bodies (MVBs) to control the exosome-mediated release of NLRP3 inflammasome products during hyperglycemia. Using a streptozotocin (STZ)-induced diabetes mouse model, we found that endothelium-specific AC gene knockout mice (Asah1fl/fl/ECcre) significantly enhanced the formation and activation of NLRP3 inflammasomes in coronary arterial ECs (CECs). These mice also had increased thickening of the coronary arterial wall and reduced expression of tight junction protein compared to wild-type (WT/WT) littermates. We also observed the expression of exosome markers such as CD63 and alkaline phosphatase (ALP) was augmented in STZ-treated Asah1fl/fl/ECcre mice compared to WT/WT mice, which was accompanied by an increased IL-1β release of exosomes. In the primary cultures of CECs, we demonstrated that AC deficiency markedly enhanced the formation and activation of NLRP3 inflammasomes, but significantly down-regulated tight junction proteins when these cells were exposed to high levels of glucose. The CECs from Asah1fl/fl/ECcre mice had decreased MVB-lysosome interaction and increased IL-1β-containing exosome release in response to high glucose stimulation. Together, these results suggest that AC importantly controls exosome-mediated release of NLRP3 inflammasome products in CECs, which is enhanced by AC deficiency leading to aggravated arterial inflammatory response during hyperglycemia.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Hannah Lohner
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Yang Zhang
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
21
|
Bonezzi F, Piccoli M, Dei Cas M, Paroni R, Mingione A, Monasky MM, Caretti A, Riganti C, Ghidoni R, Pappone C, Anastasia L, Signorelli P. Sphingolipid Synthesis Inhibition by Myriocin Administration Enhances Lipid Consumption and Ameliorates Lipid Response to Myocardial Ischemia Reperfusion Injury. Front Physiol 2019; 10:986. [PMID: 31447688 PMCID: PMC6696899 DOI: 10.3389/fphys.2019.00986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Myocardial infarct requires prompt thrombolytic therapy or primary percutaneous coronary intervention to limit the extent of necrosis, but reperfusion creates additional damage. Along with reperfusion, a maladaptive remodeling phase might occur and it is often associated with inflammation, oxidative stress, as well as a reduced ability to recover metabolism homeostasis. Infarcted individuals can exhibit reduced lipid turnover and their accumulation in cardiomyocytes, which is linked to a deregulation of peroxisome proliferator activated receptors (PPARs), controlling fatty acids metabolism, energy production, and the anti-inflammatory response. We previously demonstrated that Myriocin can be effectively used as post-conditioning therapeutic to limit ischemia/reperfusion-induced inflammation, oxidative stress, and infarct size, in a murine model. In this follow-up study, we demonstrate that Myriocin has a critical regulatory role in cardiac remodeling and energy production, by up-regulating the transcriptional factor EB, PPARs nuclear receptors and genes involved in fatty acids metabolism, such as VLDL receptor, Fatp1, CD36, Fabp3, Cpts, and mitochondrial FA dehydrogenases. The overall effects are represented by an increased β–oxidation, together with an improved electron transport chain and energy production. The potent immunomodulatory and metabolism regulatory effects of Myriocin elicit the molecule as a promising pharmacological tool for post-conditioning therapy of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Fabiola Bonezzi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | | | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Chiara Riganti
- Cell Biochemistry Laboratory, Oncology Department, and Interdepartmental Research Center for Molecular Biotechnology, University of Turin, Turin, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
23
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
24
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
25
|
Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019; 20:ijms20020411. [PMID: 30669371 PMCID: PMC6359388 DOI: 10.3390/ijms20020411] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to playing a role as a structural component of cellular membranes, ceramide is now clearly recognized as a bioactive lipid implicated in a variety of physiological functions. This review aims to provide updated information on the role of ceramide in the regulation of vascular tone. Ceramide may induce vasodilator or vasoconstrictor effects by interacting with several signaling pathways in endothelial and smooth muscle cells. There is a clear, albeit complex, interaction between ceramide and redox signaling. In fact, reactive oxygen species (ROS) activate different ceramide generating pathways and, conversely, ceramide is known to increase ROS production. In recent years, ceramide has emerged as a novel key player in oxygen sensing in vascular cells and mediating vascular responses of crucial physiological relevance such as hypoxic pulmonary vasoconstriction (HPV) or normoxic ductus arteriosus constriction. Likewise, a growing body of evidence over the last years suggests that exaggerated production of vascular ceramide may have detrimental effects in a number of pathological processes including cardiovascular and lung diseases.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), 6202 AZ Maastricht, The Netherlands.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
26
|
DHA and 19,20-EDP induce lysosomal-proteolytic-dependent cytotoxicity through de novo ceramide production in H9c2 cells with a glycolytic profile. Cell Death Discov 2018; 4:29. [PMID: 30131878 PMCID: PMC6102239 DOI: 10.1038/s41420-018-0090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Docosahexaenoic acid (DHA) and their CYP-derived metabolites, epoxydocosapentaenoic acids (EDPs), are important fatty acids obtained from dietary sources. While it is known that they have significant biological effects, which can differ between cell type and disease state, our understanding of how they work remains limited. Previously, we demonstrated that DHA and 19,20-EDP triggered pronounced cytotoxicity in H9c2 cells correlating with increased ceramide production. In this study, we examine whether DHA- and 19,20-EDP-induced cell death depends on the type of metabolism (glycolysis or OXPHOS). We cultivated H9c2 cells in distinct conditions that result in either glycolytic or oxidative metabolism. Our major findings suggest that DHA and its epoxy metabolite, 19,20-EDP, trigger cytotoxic effects toward H9c2 cells with a glycolytic metabolic profile. Cell death occurred through a mechanism involving activation of a lysosomal-proteolytic degradation pathway. Importantly, accumulation of ceramide played a critical role in the susceptibility of glycolytic H9c2 cells to cytotoxicity. Furthermore, our data suggest that an alteration in the cellular metabolic profile is a major factor determining the type and magnitude of cellular toxic response. Together, the novelty of this study demonstrates that DHA and 19,20-EDP induce cell death in H9c2 cells with a glycolytic metabolicwct 2 profile through a lysosomal-proteolytic mechanism.
Collapse
|