1
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Ding J, Liu Y, Liu Z, Tan J, Xu W, Huang G, He Z. Glutathione-Responsive Organosilica Hybrid Nanosystems for Targeted Dual-Starvation Therapy in Luminal Breast Cancer. Mol Pharm 2024; 21:745-759. [PMID: 38148514 DOI: 10.1021/acs.molpharmaceut.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Starvation therapy is an innovative approach in cancer treatment aimed at depriving cancer cells of necessary resources by impeding tumor angiogenesis or blocking the energy supply. In addition to the commonly observed anaerobic glycolysis energy supply mode, adipocyte-rich tumor tissue triggers the fatty acid energy supply pathway, which fuels the proliferation and metastasis of cancer cells. To completely disrupt these dual-energy-supply pathways, we developed an exceptional nanoreactor. This nanoreactor consisted of yolk-shell mesoporous organosilica nanoparticles (YSMONs) loaded with a fatty acid transport inhibitor (Dox), conjugated with a luminal breast-cancer-specific targeting aptamer, and integrated with a glucose oxidation catalyst (GOx). Upon reaching cancer cells with the assistance of the aptamer, the nanoreactor underwent a structural collapse of the shell triggered by the high concentration of glutathione within cancer cells. This collapse led to the release of GOx and Dox, achieving targeted delivery and exhibiting significant efficacy in starving therapy. Additionally, the byproducts of glucose metabolism, gluconic acid and H2O2, enhanced the acidity and reactive oxygen species levels of the intracellular microenvironment, inducing oxidative damage to cancer cells. Simultaneously, released Dox acted as a potent broad-spectrum anticancer drug, inhibiting the activity of carnitine palmitoyltransferase 1A and exerting marked effects. Combining these effects ensures high anticancer efficiency, and the "dual-starvation" nanoreactor has the potential to establish a novel synergistic therapy paradigm with considerable clinical significance. Furthermore, this approach minimizes damage to normal organs, making it highly valuable in the field of cancer treatment.
Collapse
Affiliation(s)
- Jie Ding
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Yuke Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210023, China
| | - Zhifang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Jing Tan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Weiqiang Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Key Laboratory for Epigenetics of Dongguan City, China-America Cancer Research Institute, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
3
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Zara V, Assalve G, Ferramosca A. Insights into the malfunctioning of the mitochondrial citrate carrier: Implications for cell pathology. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166758. [PMID: 37209873 DOI: 10.1016/j.bbadis.2023.166758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
The mitochondrial citrate carrier (CIC) is a member of the mitochondrial carrier family and is responsible for the transit of tricarboxylates and dicarboxylates across the inner membrane. By modulating the flux of these molecules, it represents the molecular link between catabolic and anabolic reactions that take place in distinct cellular sub-compartments. Therefore, this transport protein represents an important element of investigation both in physiology and in pathology. In this review we critically analyze the involvement of the mitochondrial CIC in several human pathologies, which can be divided into two subgroups, one characterized by a decrease and the other by an increase in the flux of citrate across the inner mitochondrial membrane. In particular, a decrease in the activity of the mitochondrial CIC is responsible for several congenital diseases of different severity, which are also characterized by the increase in urinary levels of L-2- and D-2-hydroxyglutaric acids. On the other hand, an increase in the activity of the mitochondrial CIC is involved, in various ways, in the onset of inflammation, autoimmune diseases, and cancer. Then, understanding the role of CIC and the mechanisms driving the flux of metabolic intermediates between mitochondria and cytosol would potentially allow for manipulation and control of metabolism in pathological conditions.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Graziana Assalve
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy.
| |
Collapse
|
5
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
6
|
Citrate transporter inhibitors: possible new anticancer agents. Future Med Chem 2022; 14:665-679. [PMID: 35357238 DOI: 10.4155/fmc-2021-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The culmination of 80+ years of cancer research implicates the aberrant metabolism in tumor cells as a root cause of pathogenesis. Citrate is an essential molecule in intermediary metabolism, and its amplified availability to critical pathways in cancer cells via citrate transporters confers a high rate of cancer cell growth and proliferation. Inhibiting the plasma membrane and mitochondrial citrate transporters - whether individually, in combination, or partnered with complementary metabolic targets - in order to combat cancer may prove to be a consequential chemotherapeutic strategy. This review aims to summarize the use of different classes of citrate transporter inhibitors for anticancer activity, either individually or as part of a cocktail.
Collapse
|
7
|
Batchuluun B, Pinkosky SL, Steinberg GR. Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022; 21:283-305. [PMID: 35031766 PMCID: PMC8758994 DOI: 10.1038/s41573-021-00367-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
Fatty acids are essential for survival, acting as bioenergetic substrates, structural components and signalling molecules. Given their vital role, cells have evolved mechanisms to generate fatty acids from alternative carbon sources, through a process known as de novo lipogenesis (DNL). Despite the importance of DNL, aberrant upregulation is associated with a wide variety of pathologies. Inhibiting core enzymes of DNL, including citrate/isocitrate carrier (CIC), ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), represents an attractive therapeutic strategy. Despite challenges related to efficacy, selectivity and safety, several new classes of synthetic DNL inhibitors have entered clinical-stage development and may become the foundation for a new class of therapeutics. De novo lipogenesis (DNL) is vital for the maintenance of whole-body and cellular homeostasis, but aberrant upregulation of the pathway is associated with a broad range of conditions, including cardiovascular disease, metabolic disorders and cancers. Here, Steinberg and colleagues provide an overview of the physiological and pathological roles of the core DNL enzymes and assess strategies and agents currently in development to therapeutically target them.
Collapse
Affiliation(s)
- Battsetseg Batchuluun
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
8
|
Li W, Wang X, Zhang X, Gong P, Ding D, Wang N, Wang Z. Revealing potential lipid biomarkers in clear cell renal cell carcinoma using targeted quantitative lipidomics. Lipids Health Dis 2021; 20:160. [PMID: 34774030 PMCID: PMC8590225 DOI: 10.1186/s12944-021-01572-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND The high drug resistance and metabolic reprogramming of clear cell renal cell carcinoma (ccRCC) are considered responsible for poor prognosis. In-depth research at multiple levels is urgently warranted to illustrate the lipid composition, distribution, and metabolic pathways of clinical ccRCC specimens. METHODS In this project, a leading-edge targeted quantitative lipidomic study was conducted using 10 pairs of cancerous and adjacent normal tissues obtained from ccRCC patients. Accurate lipid quantification was performed according to a linear equation calculated using internal standards. Qualitative and quantitative analyses of lipids were performed with multiple reaction monitoring analysis based on ultra-performance liquid chromatography (UPLC) and mass spectrometry (MS). Additionally, a multivariate statistical analysis was performed using data obtained on lipids. RESULTS A total of 28 lipid classes were identified. Among them, the most abundant were triacylglycerol (TG), diacylglycerol (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Cholesteryl ester (CE) was the lipid exhibiting the most considerable difference between normal samples and tumor samples. Lipid content, chain length, and chain unsaturation of acylcarnitine (CAR), CE, and DG were found to be significantly increased. Based on screening for variable importance in projection scores ≥1, as well as fold change limits between 0.5 and 2, 160 differentially expressed lipids were identified. CE was found to be the most significantly upregulated lipid, while TG was observed to be the most significantly downregulated lipid. CONCLUSION Based on the absolute quantitative analysis of lipids in ccRCC specimens, it was observed that the content and change trends varied in different lipid classes. Upregulation of CAR, CE, and DG was observed, and analysis of changes in the distribution helped clarify the causes of lipid accumulation in ccRCC and possible carcinogenic molecular mechanisms. The results and methods described herein provide a comprehensive analysis of ccRCC lipid metabolism and lay a theoretical foundation for cancer treatment.
Collapse
Affiliation(s)
- Wen Li
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xiaobin Wang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Xianbin Zhang
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.,Department of General Surgery, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Peng Gong
- Carson International Cancer Centre, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, 518000, Guangdong, China.,Health Science Center, School of Medicine, Shenzhen University, Shenzhen, 518060, China.,Department of General Surgery, Shenzhen University General Hospital, Xueyuan Road 1098, Shenzhen, 518055, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China
| | - Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China
| | - Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou City, 450003, Henan Province, China.
| |
Collapse
|
9
|
Kumar A, Cordes T, Thalacker-Mercer AE, Pajor AM, Murphy AN, Metallo CM. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep 2021; 36:109701. [PMID: 34525352 PMCID: PMC8500708 DOI: 10.1016/j.celrep.2021.109701] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.
Collapse
Affiliation(s)
- Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Li P, Xia Z, Kong W, Wang Q, Zhao Z, Arnold A, Xu Q, Xu J. Exogenous L-carnitine ameliorates burn-induced cellular and mitochondrial injury of hepatocytes by restoring CPT1 activity. Nutr Metab (Lond) 2021; 18:65. [PMID: 34167568 PMCID: PMC8223334 DOI: 10.1186/s12986-021-00592-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Impaired hepatic fatty acid metabolism and persistent mitochondrial dysfunction are phenomena commonly associated with liver failure. Decreased serum levels of L-carnitine, a amino acid derivative involved in fatty-acid and energy metabolism, have been reported in severe burn patients. The current study aimed to evaluate the effects of L-carnitine supplementation on mitochondrial damage and other hepatocyte injuries following severe burns and the related mechanisms. Methods Serum carnitine and other indicators of hepatocytic injury, including AST, ALT, LDH, TG, and OCT, were analyzed in severe burn patients and healthy controls. A burn model was established on the back skin of rats; thereafter, carnitine was administered, and serum levels of the above indicators were evaluated along with Oil Red O and TUNEL staining, transmission electron microscopy, and assessment of mitochondrial membrane potential and carnitine palmitoyltransferase 1 (CPT1) activity and expression levels in the liver. HepG2 cells pretreated with the CPT1 inhibitor etomoxir were treated with or without carnitine for 24 h. Next, the above indicators were examined, and apoptotic cells were analyzed via flow cytometry. High-throughput sequencing of rat liver tissues identified several differentially expressed genes (Fabp4, Acacb, Acsm5, and Pnpla3) were confirmed using RT-qPCR. Results Substantially decreased serum levels of carnitine and increased levels of AST, ALT, LDH, and OCT were detected in severe burn patients and the burn model rats. Accumulation of TG, evident mitochondrial shrinkage, altered mitochondrial membrane potential, decreased ketogenesis, and reduced CPT1 activity were detected in the liver tissue of the burned rats. Carnitine administration recovered CPT1 activity and improved all indicators related to cellular and fatty acid metabolism and mitochondrial injury. Inhibition of CPT1 activity with etomoxir induced hepatocyte injuries similar to those in burn patients and burned rats; carnitine supplementation restored CPT1 activity and ameliorated these injuries. The expression levels of the differentially expressed genes Fabp4, Acacb, Acsm5, and Pnpla3 in the liver tissue from burned rats and etomoxir-treated hepatocytes were also restored by treatment with exogenous carnitine. Conclusion Exogenous carnitine exerts protective effects against severe burn-induced cellular, fatty-acid metabolism, and mitochondrial dysfunction of hepatocytes by restoring CPT1 activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-021-00592-x.
Collapse
Affiliation(s)
- Pengtao Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Zhengguo Xia
- Department of Wound Repair and Plastic and Aesthetic Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Road, Xinzhan District, China
| | - Weichang Kong
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qiong Wang
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ziyue Zhao
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ashley Arnold
- International College of Anhui Medical University, No. 81 Meishan road, Hefei, 230032, Anhui, China
| | - Qinglian Xu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Jiegou Xu
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
11
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. The role and therapeutic implication of CPTs in fatty acid oxidation and cancers progression. Am J Cancer Res 2021; 11:2477-2494. [PMID: 34249411 PMCID: PMC8263643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023] Open
Abstract
Cancer cells must maintain metabolic homeostasis under a wide range of conditions and meet their own energy needs in order to survive and reproduce. In addition to glycolysis, cancer cells can also perform various metabolic strategies, such as fatty acid oxidation (FAO). It has been found that the proliferation, survival, drug resistance and metastasis of cancer cells depend on FAO. The carnitine palmitoyltransferase (CPT), including CPT1 and CPT2, located on the mitochondrial membrane, are important mediators of FAO. In recent years, many researchers have found that CPT has a close relationship with the metabolic development of tumor cells, not only provides energy for cancer cells development and metastasis by promoting FAO but also affects the occurrence and invasion through other signal pathways or cytokines or microRNA. This review summarized the role of CPTs in several kinds of tumors and the developed targeted inhibitors of CPTs, as well as the potential gene therapy and immunotherapy of CPTs, hoping to better explore the mechanism and role of CPTs in the future and providing useful ideas for clinical treatment.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| |
Collapse
|
12
|
Coleman PS, Parlo RA. Warburg's Ghost-Cancer's Self-Sustaining Phenotype: The Aberrant Carbon Flux in Cholesterol-Enriched Tumor Mitochondria via Deregulated Cholesterogenesis. Front Cell Dev Biol 2021; 9:626316. [PMID: 33777935 PMCID: PMC7994618 DOI: 10.3389/fcell.2021.626316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Interpreting connections between the multiple networks of cell metabolism is indispensable for understanding how cells maintain homeostasis or transform into the decontrolled proliferation phenotype of cancer. Situated at a critical metabolic intersection, citrate, derived via glycolysis, serves as either a combustible fuel for aerobic mitochondrial bioenergetics or as a continuously replenished cytosolic carbon source for lipid biosynthesis, an essentially anaerobic process. Therein lies the paradox: under what conditions do cells control the metabolic route by which they process citrate? The Warburg effect exposes essentially the same dilemma—why do cancer cells, despite an abundance of oxygen needed for energy-generating mitochondrial respiration with citrate as fuel, avoid catabolizing mitochondrial citrate and instead rely upon accelerated glycolysis to support their energy requirements? This review details the genesis and consequences of the metabolic paradigm of a “truncated” Krebs/TCA cycle. Abundant data are presented for substrate utilization and membrane cholesterol enrichment in tumors that are consistent with criteria of the Warburg effect. From healthy cellular homeostasis to the uncontrolled proliferation of tumors, metabolic alterations center upon the loss of regulation of the cholesterol biosynthetic pathway. Deregulated tumor cholesterogenesis at the HMGR locus, generating enhanced carbon flux through the cholesterol synthesis pathway, is an absolute prerequisite for DNA synthesis and cell division. Therefore, expedited citrate efflux from cholesterol-enriched tumor mitochondria via the CTP/SLC25A1 citrate transporter is fundamental for sustaining the constant demand for cytosolic citrate that fuels the elevated flow of carbons from acetyl-CoA through the deregulated pathway of cholesterol biosynthesis.
Collapse
Affiliation(s)
| | - Risa A Parlo
- Kingsborough Community College, Brooklyn, NY, United States
| |
Collapse
|
13
|
The Mitochondrial Citrate Carrier SLC25A1/CIC and the Fundamental Role of Citrate in Cancer, Inflammation and Beyond. Biomolecules 2021; 11:biom11020141. [PMID: 33499062 PMCID: PMC7912299 DOI: 10.3390/biom11020141] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial citrate/isocitrate carrier, CIC, has been shown to play an important role in a growing list of human diseases. CIC belongs to a large family of nuclear-encoded mitochondrial transporters that serve the fundamental function of allowing the transit of ions and metabolites through the impermeable mitochondrial membrane. Citrate is central to mitochondrial metabolism and respiration and plays fundamental activities in the cytosol, serving as a metabolic substrate, an allosteric enzymatic regulator and, as the source of Acetyl-Coenzyme A, also as an epigenetic modifier. In this review, we highlight the complexity of the mechanisms of action of this transporter, describing its involvement in human diseases and the therapeutic opportunities for targeting its activity in several pathological conditions.
Collapse
|
14
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
15
|
Haider T, Pandey V, Banjare N, Gupta PN, Soni V. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacol Rep 2020; 72:1125-1151. [PMID: 32700248 DOI: 10.1007/s43440-020-00138-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Drug resistance developed towards conventional therapy is one of the important reasons for chemotherapy failure in cancer. The various underlying mechanism for drug resistance development in tumor includes tumor heterogeneity, some cellular levels changes, genetic factors, and others novel mechanisms which have been highlighted in the past few years. In the present scenario, researchers have to focus on these novel mechanisms and their tackling strategies. The small molecules, peptides, and nanotherapeutics have emerged to overcome the drug resistance in cancer. The drug delivery systems with targeting moiety enhance the site-specificity, receptor-mediated endocytosis, and increase the drug concentration inside the cells, thus minimizing drug resistance and improve their therapeutic efficacy. These therapeutic approaches work by modulating the different pathways responsible for drug resistance. This review focuses on the different mechanisms of drug resistance and the recent advancements in therapeutic approaches to improve the sensitivity and effectiveness of chemotherapeutics.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India
| | - Nagma Banjare
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.,Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India
| | - Prem N Gupta
- Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, J&K, India.
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
16
|
Tan M, Mosaoa R, Graham GT, Kasprzyk-Pawelec A, Gadre S, Parasido E, Catalina-Rodriguez O, Foley P, Giaccone G, Cheema A, Kallakury B, Albanese C, Yi C, Avantaggiati ML. Inhibition of the mitochondrial citrate carrier, Slc25a1, reverts steatosis, glucose intolerance, and inflammation in preclinical models of NAFLD/NASH. Cell Death Differ 2020; 27:2143-2157. [PMID: 31959914 PMCID: PMC7308387 DOI: 10.1038/s41418-020-0491-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its evolution to inflammatory steatohepatitis (NASH) are the most common causes of chronic liver damage and transplantation that are reaching epidemic proportions due to the upraising incidence of metabolic syndrome, obesity, and diabetes. Currently, there is no approved treatment for NASH. The mitochondrial citrate carrier, Slc25a1, has been proposed to play an important role in lipid metabolism, suggesting a potential role for this protein in the pathogenesis of this disease. Here, we show that Slc25a1 inhibition with a specific inhibitor compound, CTPI-2, halts salient alterations of NASH reverting steatosis, preventing the evolution to steatohepatitis, reducing inflammatory macrophage infiltration in the liver and adipose tissue, while starkly mitigating obesity induced by a high-fat diet. These effects are differentially recapitulated by a global ablation of one copy of the Slc25a1 gene or by a liver-targeted Slc25a1 knockout, which unravel dose-dependent and tissue-specific functions of this protein. Mechanistically, through citrate-dependent activities, Slc25a1 inhibition rewires the lipogenic program, blunts signaling from peroxisome proliferator-activated receptor gamma, a key regulator of glucose and lipid metabolism, and inhibits the expression of gluconeogenic genes. The combination of these activities leads not only to inhibition of lipid anabolic processes, but also to a normalization of hyperglycemia and glucose intolerance as well. In summary, our data show for the first time that Slc25a1 serves as an important player in the pathogenesis of fatty liver disease and thus, provides a potentially exploitable and novel therapeutic target.
Collapse
Affiliation(s)
- Mingjun Tan
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Rami Mosaoa
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Garrett T Graham
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Anna Kasprzyk-Pawelec
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Shreyas Gadre
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Erika Parasido
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Olga Catalina-Rodriguez
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Patricia Foley
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Giuseppe Giaccone
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Amrita Cheema
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Bhaskar Kallakury
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Chris Albanese
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Chunling Yi
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA
| | - Maria Laura Avantaggiati
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., 20057, USA.
| |
Collapse
|
17
|
Golonka R, Yeoh BS, Vijay-Kumar M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Liver and Gut Health. ACTA ACUST UNITED AC 2019; 5:303-316. [PMID: 32864300 DOI: 10.1007/s40495-019-00187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health. Recent Findings Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut. Summary The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.,Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|