1
|
Masjedi M, Izadi Y, Montahaei T, Mohammadi R, Ali Helforoush M, Rohani Rad K. An illustrated review on herbal medicine used for the treatment of female infertility. Eur J Obstet Gynecol Reprod Biol 2024; 302:273-282. [PMID: 39348759 DOI: 10.1016/j.ejogrb.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Infertility is one of the significant global issues that affects approximately 15-17 % of couples worldwide, with around 50 % of cases being attributed to female infertility factors. The exploration of herbal extracts and their effects on female infertility has been limited, particularly regarding the underlying mechanisms beyond hormonal and oxidative stress influences. In this study, the herbal medicines with potential effects such as antioxidative properties, enhancement of insulin sensitivity, and modulation of the hypothalamic-pituitary-gonadal axis have been reviewed. Several herbal extracts were found to exhibit significant antioxidant properties and demonstrate phytoestrogenic effects on reproductive factors and hormonal levels. Antioxidants are essential in mitigating oxidative stress by neutralizing free radicals, which in turn helps to lower insulin resistance, total cholesterol, fat accumulation, and the proliferation of cancerous cells. Furthermore, this review highlights that certain parts of specific plants are rich in polyphenolic compounds, including isoflavones and flavonoids, along with other advantageous substances that support women's reproductive health. These compounds not only modulate female endocrine systems but also alleviate menopausal symptoms and effectively address a range of reproductive disorders, such as polycystic ovary syndrome (PCOS), premature ovarian failure (POF), endometriosis, hyperprolactinemia, and hypothalamic dysfunction. Turning to the other side, the plants and herbal extracts with suppressive effects on female fertility have been reviewed. These findings indicated that herbal extracts could be exploited to develop natural products as supplements for supporting the female reproductive system.
Collapse
Affiliation(s)
- Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Research and Development, DarooSazan Sorena Exir Pharmaceutical Company, Shiraz, Iran.
| | - Yalda Izadi
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Talieh Montahaei
- Department of Research and Development, DarooSazan Sorena Exir Pharmaceutical Company, Shiraz, Iran
| | - Rahim Mohammadi
- Department of Research and Development, DarooSazan Sorena Exir Pharmaceutical Company, Shiraz, Iran
| | - Mohammad Ali Helforoush
- Department of Traditional Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katayoun Rohani Rad
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Jafari M, Akbari A, Esmailpour Z, Nadi Z, Baazm M. Protective effects of Withania somnifera against cyclophosphamide-induced testicular damage in rats. Clin Exp Reprod Med 2024; 51:205-212. [PMID: 38853132 PMCID: PMC11372316 DOI: 10.5653/cerm.2023.06415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/26/2023] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVE Cyclophosphamide (CP) is an alkylating agent commonly used in cancer treatment. It is known to have detrimental effects on the reproductive system, including the potential to cause infertility. Recently, herbal remedies have gained traction as a complementary approach to addressing these side effects. In this study, our goal was to investigate whether the aqueous-alcoholic extract of Withania somnifera (WS) could mitigate the adverse impacts of CP on testicular tissue. METHODS Animals were randomly assigned to one of the following groups: control, WS (500 mg/kg), CP (100 mg/kg), CP+WS pre-treatment, and CP+WS post-treatment. WS was administered orally through gavage for 1 month. We assessed sperm parameters, testicular histopathology, and the expression of the Bax and Bcl2 genes in the experimental groups. RESULTS Sperm parameters (including count, viability, and motility), the number of spermatogonia, the seminiferous tubule diameter, and Bcl2 gene expression, significantly decreased after CP injection (p<0.05). Conversely, the number of immotile sperm and Bax gene expression significantly increased (p<0.05). Treatment with WS, especially when administered as a pre-treatment, ameliorated the sperm parameters, histological alterations, and the expression of apoptosis-related genes (p<0.05). CONCLUSION The data suggest that WS may mitigate the detrimental effects of CP on testicular tissue by reducing apoptosis. Consequently, WS has the potential to be used as an adjunctive therapy to reduce the complications associated with CP treatment.
Collapse
Affiliation(s)
- Mehrana Jafari
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Akbari
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Zeynab Esmailpour
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Zahra Nadi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
3
|
Srivastava A, Ahmad R, Yadav K, Siddiqui S, Trivedi A, Misra A, Mehrotra S, Ahmad B, Ali Khan M. An update on existing therapeutic options and status of novel anti-metastatic agents in breast cancer: Elucidating the molecular mechanisms underlying the pleiotropic action of Withania somnifera (Indian ginseng) in breast cancer attenuation. Int Immunopharmacol 2024; 136:112232. [PMID: 38815352 DOI: 10.1016/j.intimp.2024.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Major significant advancements in pharmacology and drug technology have been made to heighten the impact of cancer therapies, improving the life expectancy of subjects diagnosed with malignancy. Statistically, 99% of breast cancers occur in women while 0.5-1% occur in men, the female gender being the strongest breast cancer risk factor. Despite several breakthroughs, breast cancer continues to have a worldwide impact and is one of the leading causes of mortality. Additionally, resistance to therapy is a crucial factor enabling cancer cell persistence and resurgence. As a result, the search and discovery of novel modulatory agents and effective therapies capable of controlling tumor progression and cancer cell proliferation is critical. Withania somnifera (L.) Dunal (WS), commonly known as Indian ginseng, has long been used traditionally for the treatment of several ailments in the Indian context. Recently, WS and its phytoconstituents have shown promising anti-breast cancer properties and, as such, can be employed as prophylactic as well as therapeutic adjuncts to the main line of breast cancer treatment. The present review is an attempt to explore and provide experimental evidences in support of the prophylactic and therapeutic potential of WS in breast cancer, along with a deeper insight into the multiple molecular mechanisms and novel targets through which it acts against breast and other hormonally-induced cancers viz. ovarian, uterine and cervical. This exploration might prove crucial in providing better understanding of breast cancer progression and metastasis and its use as an adjunct in improving disease prognosis and therapeutic outcome.
Collapse
Affiliation(s)
- Aditi Srivastava
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Rumana Ahmad
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Kusum Yadav
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Sahabjada Siddiqui
- Dept. of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Anchal Trivedi
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Aparna Misra
- Dept. of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Sudhir Mehrotra
- Dept. of Biochemistry, University of Lucknow, Lucknow 226007, UP., India.
| | - Bilal Ahmad
- Research Cell, Era University, Sarfarazganj, Hardoi Road, Lucknow 226003, UP., India.
| | - Mohsin Ali Khan
- Dept. of Research & Development, Era University, Lucknow 226003, UP., India.
| |
Collapse
|
4
|
Patwardhan B, Chaturvedi S, Tillu G, Deshpande S, Hegde BM. Danish ban on Ashwagandha: Truth, evidence, ethics, and regulations. J Ayurveda Integr Med 2024; 15:101028. [PMID: 38969606 PMCID: PMC11403136 DOI: 10.1016/j.jaim.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024] Open
Affiliation(s)
- Bhushan Patwardhan
- Ramkumar Rathi Patanjali Yoga Chair, Savitribai Phule Pune University, Pune, India.
| | - Sarika Chaturvedi
- Dr D Y Patil Medical College Hospital & Research Centre, Dr D Y Patil Vidyapeeth, Pune, Maharashtra - 411018, India
| | - Girish Tillu
- Ayush Centre of Excellence, Department of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | | |
Collapse
|
5
|
Chittiboyina AG, Khan IA. Current issues in phytomedicine research - Conundrum on the chemistry of ashwagandha and its biological effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117871. [PMID: 38325672 DOI: 10.1016/j.jep.2024.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Affiliation(s)
| | - Ikhlas A Khan
- National Center for Natural Products Research, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, United States.
| |
Collapse
|
6
|
Smith SJ, Lopresti AL, Fairchild TJ. Exploring the efficacy and safety of a novel standardized ashwagandha ( Withania somnifera) root extract (Witholytin®) in adults experiencing high stress and fatigue in a randomized, double-blind, placebo-controlled trial. J Psychopharmacol 2023; 37:1091-1104. [PMID: 37740662 PMCID: PMC10647917 DOI: 10.1177/02698811231200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
BACKGROUND Stress is a state of homeostasis in the body being challenged, resulting in a systemic response. It has become more prevalent in recent years and affects mental and physical health. AIMS Evaluate the effects of ashwagandha on stress, fatigue, and sex hormones in overweight or mildly obese men and women with self-reported stress and fatigue. METHODS Two-arm, parallel-group, 12-week, randomized, double-blind, placebo-controlled trial on overweight or mildly obese men and women aged 40-75 years, supplementing with 200 mg of an ashwagandha root extract (Witholytin®) twice daily. RESULTS/OUTCOMES Supplementation with ashwagandha was associated with a significant reduction in stress levels based on the Perceived Stress Scale (primary outcome); however, the improvements were not significantly different to the placebo group (p = 0.867). Based on the Chalder Fatigue Scale, there was a statistically significant reduction in fatigue symptoms in the ashwagandha group compared to the placebo group (p = 0.016), and participants taking ashwagandha also experienced a significant increase in heart rate variability (p = 0.003). However, there were no significant between-group differences in other self-report outcome measures. In the men taking ashwagandha, there was a significant increase in the blood concentrations of free testosterone (p = 0.048) and luteinizing hormone (p = 0.002) compared to the placebo group. CONCLUSIONS/INTERPRETATION The results of this study suggest that in overweight middle-to-older age adults experiencing high stress and fatigue, compared to the placebo, ashwagandha did not have a significantly greater impact on perceived stress levels. However, based on secondary outcome measures, it may have anti-fatigue effects. This may be via its impact on the autonomic nervous system. However, further research is required to expand on these current findings.
Collapse
Affiliation(s)
- Stephen J Smith
- Clinical Research Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Adrian L Lopresti
- Clinical Research Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Timothy J Fairchild
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
7
|
Dadge SD, Tiwari N, Husain A, Verma S, Agarwal A, Garg R, Rath SK, Shanker K, Gayen JR. Simultaneous estimation of five biomarkers of neuroprotective herb Ashwagandha NMITLI-118R AF1 in rat plasma and brain using LC-ESI-MS/MS: Application to its pharmacokinetic and stability studies. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123834. [PMID: 37481788 DOI: 10.1016/j.jchromb.2023.123834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Withania Somnifera (WS) is a popular nutritional supplement in the USA, Europe, and Asia, known for its pharmacological effects on neurological disorders. However, the bioanalytical method development, validation, and pharmacokinetics of WS NMITLI-118R AF1 biomarkers Withanolide A (WLD A), Withanone (WNONE), Withanolide B (WLD B), Withaferin A (WF A), and 12 Deoxywithastramonolide (12 DEOXY) in rats have not been comprehensively explored. This study aimed to develop and validate a sensitive and selective LC-ESI-MS/MS method for these biomarkers in male Sprague Dawley rats plasma and brain matrix. Rats were divided into eight groups, each containing five rats. A plant extract of NMITLI-118R AF1 at 50 mg/kg was orally administered to the rats for in-vivo pharmacokinetic investigation. All the analytes had a linear calibration curve (r2 > 0.999), and intra-day and inter-day precision (%) were found in the range of 2.46 - 13.71% and accuracy were within the acceptable range (±15%). The biomarkers of NMITLI-118R AF1 were found stable in in-vitro plasma and simulated gastro-intestinal fluids. The observed (Cmax) and (Tmax) values for the biomarkers in the systemic circulation were WLD A (5.59 ± 0.34 ng/mL, Tmax 1.00 ± 0.00 h), WNONE (6.28 ± 0.41 ng/mL, Tmax 0.95 ± 0.11 h), WLD B (6.45 ± 2.87 ng/mL, Tmax 0.95 ± 0.11 h), WF A (6.50 ± 0.27 ng/mL, Tmax 1.00 ± 0.00 h), and 12 DEOXY (5.68 ± 0.39 ng/mL, Tmax 1.00 ± 0.00 h). In contrast to the old method, our approach exhibits a lower limit of quantification (LLOQ), shorter run time (less than10 min), and enables the detection of WF A and WNONE in fresh rat plasma by other quantitative analysis of mass spectrometry (m/z) [M]+. Shows high sample volumes for both, larger plasma volumes, costlier sample collection techniques dried blood spot (DBS), more expensive solid phase extraction techniques (SPE) and longer analysis time 14 min. Moreover, our method requires a smaller sample volume 10 µL, offers faster analysis time 4 min, and achieves a higher sensitivity 1 ng/mL. This is the first report of a comprehensive study on in-vitro and in-vivo pharmacokinetics of NMITLI-118R AF1 biomarkers, which may aid in further pre-clinical and clinical trial investigations.
Collapse
Affiliation(s)
- Shailesh D Dadge
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neerja Tiwari
- Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Agarwal
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta K Rath
- Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Karuna Shanker
- Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Shepherd A, Brunckhorst O, Ahmed K, Xu Q. Botanicals in health and disease of the testis and male fertility: A scoping review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154398. [PMID: 36049429 DOI: 10.1016/j.phymed.2022.154398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Male factor infertility often results from testicular disorders leading to inadequate sperm quantity and quality. Both beneficial and detrimental effects of botanical products, especially herbal medicines, on testicular functions and male fertility have been reported in the literature. PURPOSE This scoping review aims to map the main clinical evidence on different impacts of botanical entities on the testis and to critically appraise relevant randomized controlled trials (RCTs) published in the recent 5 years, so as to inform the future. METHODS Systematic reviews, meta-analyses and RCT reports on botanical impacts on testicular functions and male fertility were retrieved and synthesized from Pubmed, Web of Science, Scopus, Embase, ProQuest, Cochrane Library and Google Scholar up to 10th May 2022. RCTs published since 2018 were critically appraised against good practice guidelines for RCT and for reporting herbal studies. RESULTS We identified 24 systematic reviews and meta-analyses published since 2005, by authors from Iran (25%), China (21%), USA (12.5%) and 9 other countries. All but two were published in English. Only 3 systematic review protocols were identified, all published in English from China in the recent 3 years. We identified 125 RCTs published in six languages, mainly English (55%) and Chinese (42%). They were published since 1994 from 23 countries on all the six inhabitable continents, with China (46%), Australia (8%), USA (8%), India (7%) and Iran (5%) being the leading contributors. 72% and 28% RCTs published in English were on efficacy (botanicals vs placebo) and comparative effectiveness (a botanical vs other treatments), respectively. In contrast, 98% RCT reports in Chinese were on comparative effectiveness, with merely 2% on efficacy. Among all the 125 RCTs, 57% were studies in patients with semen abnormality and/or male infertility, 22% investigated herbal effects in healthy men, 14% were on patients with male sexual dysfunction and hypogonadism, and 7% were conducted in men with non-sexual disorders. Since 2018, 32 RCTs have been published, in English (69%) or Chinese (31%). Nineteen RCT reports from China, India, Japan and Korea all studied herbal formulae while the 13 RCT reports from Australia, Brazil, Czech and Italy, Iran, Malaysia, Spain, the UK and the USA all exclusively studied extracts of a single species. Putting geo-cultural differences aside, gossypol and extracts of Tripterygium wilfordii Hook. f. were found to be detrimental to the testis and male fertility, while the extracts of Withania somnifera (L.) Dunal and traditional Chinese medicine Qilin Pill, etc., might improve testosterone levels and semen parameters, thus could be therapeutic for male sexual dysfunction and infertility. However, all still require further evaluation in view of recurring weaknesses in quality control of herbal materials, RCT design and reporting. For example, only 9%-23% of the RCTs published since 2018 provided information on voucher samples, chemical profiling, herbal authentication and herbal extraction. CONCLUSION Research on botanicals and the testis has been reported worldwide, demonstrating clear geo-cultural differences in studied plant species, botanical types, study objectives and quality of research design, implementation and reporting. Due to a few recurring weaknesses in the literature, this study is unable to recommend the use of any specific botanicals, however, current evidence does indicate that botanicals can be double-edged swords to the testis and male fertility. To secure better clinical evidence, future studies must faithfully implement existing and emerging good practice guidelines.
Collapse
Affiliation(s)
- Adam Shepherd
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - Oliver Brunckhorst
- MRC Centre for Transplantation, Guy's Hospital Campus, King's College London, King's Health Partners, London, United Kingdom
| | - Kamran Ahmed
- MRC Centre for Transplantation, Guy's Hospital Campus, King's College London, King's Health Partners, London, United Kingdom; Department of Urology, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates; Department of Epidemiology and Public Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
9
|
Kumar A, Sakhare K, Bhattacharya D, Chattopadhyay R, Parikh P, Narayan KP, Mukherjee A. Communication in non-communicable diseases (NCDs) and role of immunomodulatory nutraceuticals in their management. Front Nutr 2022; 9:966152. [PMID: 36211513 PMCID: PMC9532975 DOI: 10.3389/fnut.2022.966152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
Conveyance of pathogens between organisms causes communicable diseases. On the other hand, a non-communicable disease (NCD) was always thought to have no causative transmissible infective agents. Today, this clear distinction is increasingly getting blurred and NCDs are found to be associated with some transmissible components. The human microbiota carries a congregation of microbes, the majority and the most widely studied being bacteria in the gut. The adult human gut harbors ginormous inhabitant microbes, and the microbiome accommodates 150-fold more genes than the host genome. Microbial communities share a mutually beneficial relationship with the host, especially with respect to host physiology including digestion, immune responses, and metabolism. This review delineates the connection between environmental factors such as infections leading to gut dysbiosis and NCDs and explores the evidence regarding possible causal link between them. We also discuss the evidence regarding the value of appropriate therapeutic immunomodulatory nutritional interventions to reduce the development of such diseases. We behold such immunomodulatory effects have the potential to influence in various NCDs and restore homeostasis. We believe that the beginning of the era of microbiota-oriented personalized treatment modalities is not far away.
Collapse
Affiliation(s)
- Abhiram Kumar
- Esperer Onco Nutrition Pvt. Ltd., Mumbai, India
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Kalyani Sakhare
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | - Dwaipayan Bhattacharya
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
| | | | - Purvish Parikh
- Department of Clinical Haematology, Mahatma Gandhi Medical College and Hospital, Jaipur, India
| | - Kumar P. Narayan
- Department of Biological Sciences, Birla Institute of Technology and Science – Pilani, Hyderabad, India
- *Correspondence: Kumar P. Narayan,
| | | |
Collapse
|
10
|
Al-Nuaimi Z, Al-Baniwes AJ. Evaluation the Protective Effect of Withania somnifera Extract on the Level of Sex Hormone in Morphine Addicted Female Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Morphine is one of the most types of phenanthrene alkaloid opioid used to soothe the acute and chronic pain via narcotic and analgesic medical employment. Increasingly constantly used of opioid in the public and medication practical important knowledge improve that. Morphine show pernicious has effects on numerous tissue for instance ovary, liver and lung morphine side effects instruct for existence of oxidative role due to generation of reactive oxygen species in the affected tissue. Last decades researchers proved that natural substance provides protective role against toxic effect. Thus, withania somnifera consider as antioxidant substance provide protective versus the toxic substance as morphine. The present study wase aimed to evaluate the protective role of withania somnifera extract on the level of sex hormone in morphine addicted female rats. In conclusion, the present study confirmed a truth evidence of a protective roles of withania somnifera against the morphine addiction in female rats.
Collapse
|
11
|
Modi SJ, Tiwari A, Ghule C, Pawar S, Saste G, Jagtap S, Singh R, Deshmukh A, Girme A, Hingorani L. Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules 2022; 27:1476. [PMID: 35268576 PMCID: PMC8912008 DOI: 10.3390/molecules27051476] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022] Open
Abstract
Withania somnifera is a traditional Indian herb described under the 'Rasayana' class in Ayurveda, which gained immense popularity as a dietary supplement in the USA, Europe, Asia, and the Indian domestic market. Despite enormous research on the pharmacological effect of withanosides and withanolides, bioanalytical method development and pharmacokinetics remained challenging and unexplored for these constituents due to isomeric and isobaric characteristics. In current research work, molecular descriptors, pharmacokinetic, and toxicity prediction (ADMET) of these constituents were performed using Molinspiration and admetSAR tools. A rapid, selective, and reproducible bioanalytical method was developed and validated for seven withanosides and withanolides as per USFDA/EMA guidelines, further applied to determine pharmacokinetic parameters of Withania somnifera root extract (WSE) constituents in male Sprague Dawley rats at a dose of 500 mg/kg. Additionally, an ex vivo permeability study was carried out to explore the absorption pattern of withanosides and withanolides from the intestinal lumen. In silico, ADMET revealed oral bioavailability of withanosides and withanolides following Lipinski's rules of five with significant absorption from the gastrointestinal tract and the ability to cross the blood-brain barrier. Upon oral administration of WSE, Cmax was found to be 13.833 ± 3.727, 124.415 ± 64.932, 57.536 ± 7.523, and 7.283 ± 3.341 ng/mL for withanoside IV, withaferin A, 12-Deoxy-withastramonolide, and withanolide A, respectively, with Tmax of 0.750 ± 0.000, 0.250 ± 0.000, 0.291 ± 0.102, and 0.333 ± 0.129 h. Moreover, at a given dose, withanoside V, withanolide B, and withanone were detected in plasma; however, the concentration of these constituents was found below LLOQ. Thus, these four major withanoside and withanolides were quantified in plasma supported by ex vivo permeation data exhibiting a time-dependent absorption of withanosides and withanolides across the intestinal barrier. These composite findings provide insights to design a clinical trial of WSE as a potent nutraceutical.
Collapse
Affiliation(s)
- Siddharth J. Modi
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
- New Product Development Department, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India;
| | - Anshuly Tiwari
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Chetana Ghule
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Sandeep Pawar
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Ganesh Saste
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Shubham Jagtap
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Ruchi Singh
- New Product Development Department, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India;
| | - Amol Deshmukh
- Clinical Research and Intellectual Property Rights, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India;
| | - Aboli Girme
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
| | - Lal Hingorani
- Analytical Development and Innovation Center, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India; (S.J.M.); (A.T.); (C.G.); (S.P.); (G.S.); (S.J.); (L.H.)
- New Product Development Department, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India;
- Clinical Research and Intellectual Property Rights, Pharmanza Herbal Pvt. Ltd., Anand 388435, Gujarat, India;
| |
Collapse
|
12
|
Bahmanpour S, Keshavarz M, Koohpeyma F, Badr P, Noori A, Dabbaghmanesh MH, Poordast T, Najib FS, Zare N, Namazi N, Jahromi BN. Preserving effect of Loboob (a traditional multi-herbal formulation) on sperm parameters of male rats with busulfan-induced subfertility. JBRA Assist Reprod 2022; 26:574-582. [PMID: 34995049 PMCID: PMC9635600 DOI: 10.5935/1518-0557.20210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Male infertility secondary to exposure to gonadotoxic agents during reproductive age is a concerning issue. The aim of this experimental study was to determine the effect of Loboob on sperm parameters. METHODS 55 healthy rats were selected, weighted and divided into five groups consisting of 11 rats each. The control group received no medication. Rats in Treatment Group 1 received 10mg/kg Busulfan and rats in Treatment Groups 2, 3, and 4 received 35,70 and 140 mg/kg Loboob respectively in addition to 10mg/kg Busulfan. Finally, the sperm parameters and weights of the rats were compared using the Kolmogorov-Smirnov, non-parametric Kruskal-Wallis, and Dunn-Bonferroni tests. RESULTS All sperm parameters and weights were significantly decreased among rats receiving Busulfan. All dosages of Loboob were effective to enhance the motility of slow spermatozoa, while only in the rats given 70 and 140 mg/kg of Loboob saw improvements in progressively motile sperm percentages (0.024 and 0.01, respectively). Loboob at a dosage of 140mg/kg improved sperm viability. It did not improve normal morphology sperm or decrease immotile sperm counts. Loboob did not affect mean rat weight. CONCLUSIONS Loboob offered a dose-dependent protective effect on several sperm parameters in rats with busulfan-induced subfertility.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Anatomy Department, School of Medicine, Shiraz University of
Medical Sciences, Shiraz, Iran , Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran
| | - Mojtaba Keshavarz
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrine and Metabolism Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Parmis Badr
- Pharmaceutical Sciences Research Center, Shiraz University of
Medical Sciences, Shiraz, Iran , Phytopharmaceutical Technology and Traditional Medicine Incubator,
Shiraz University of Medical Sciences, Shiraz, Iran
| | - Adel Noori
- Student Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | | | - Tahereh Poordast
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Najib
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Najaf Zare
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Biostatistics, School of Medicine, Shiraz University
of Medical Sciences, Shiraz, Iran
| | - Niloofar Namazi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences,
Shiraz, Iran , Department of Obstetrics and Gynecology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz, Iran ,Corresponding author: Bahia Namavar Jahromi Department
of OB-GYN School of Medicine Shiraz University of Medical Sciences Shiraz, Iran.
E-mail:
| |
Collapse
|
13
|
Akbaribazm M, Goodarzi N, Rahimi M. Female infertility and herbal medicine: An overview of the new findings. Food Sci Nutr 2021; 9:5869-5882. [PMID: 34646552 PMCID: PMC8498057 DOI: 10.1002/fsn3.2523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
Infertility is defined as the failure to achieve a successful pregnancy after 12 months' sexual activity that affects 15%-17% of couples in the world and about 50% of them are related to female infertility factors. In this study, using the PRISMA checklist and MeSH keywords, 128 articles were extracted from various databases (PubMed, Cochrane library, WHO, Iranmedex, Science Direct, SID, and Google Scholar search engine) without language and time restrictions, and 128 articles were selected after eliminating duplicate studies. In this review, we present some solid evidence for role of herbal medicine in the treatment of female infertility. The results of this study showed that different parts of some plants are rich in polyphenolic compounds (isoflavones and flavonoids) and other compounds which are beneficial to in reproductive health in women. The compounds in these plants, along with regulating the female endocrine pathways, and improving symptoms of menopause, treat female reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian failure (POF), endometriosis, hyperprolactinemia, and hypothalamic dysfunction; moreover, because of their anticancer, antioxidant, and antidepressant properties, they can be used in traditional medicine or in the pharmaceutical industry as safe compounds in women's health.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Nader Goodarzi
- Department of Basic Sciences and PathobiologyFaculty of Veterinary MedicineRazi UniversityKermanshahIran
| | - Mohsen Rahimi
- Department of Parasitology and MycologySchool of MedicineStudent Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Gopal S, Ajgaonkar A, Kanchi P, Kaundinya A, Thakare V, Chauhan S, Langade D. Effect of an ashwagandha (Withania Somnifera) root extract on climacteric symptoms in women during perimenopause: A randomized, double-blind, placebo-controlled study. J Obstet Gynaecol Res 2021; 47:4414-4425. [PMID: 34553463 DOI: 10.1111/jog.15030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Perimenopause is the period during which many physiological changes mark the transition into the final menstrual period of a woman and these changes are associated with climacteric symptoms. OBJECTIVES This study aimed to assess the efficacy and tolerability of an Ashwagandha root extract on the climacteric symptoms, quality of life (QoL), and hormonal parameters in perimenopausal women. MATERIALS AND METHODS In this 8-week, randomized, double-blind, placebo-controlled study, 100 women with climacteric symptoms were randomly allocated to take either a placebo or 300 mg of an Ashwagandha root extract twice daily. Outcomes were measured using the menopause rating scale (MRS), menopause-specific QoL (MENQoL), hot flash score, and hormonal changes in estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. RESULTS Among 100 participants enrolled, 91 participants completed the study. In comparison with the placebo, ashwagandha supplementation was associated with a statistically significant reduction in total MRS score (p < 0.0001), reflected by significant reductions in the psychological (p = 0.0003), somato-vegetative (p = 0.0152), and urogenital (p < 0.0001) domains. Ashwagandha intake demonstrated a statistically significant reduction in total MENQoL scores (p < 0.0001) and was also associated with a statistically significant increase in serum estradiol (p < 0.0001) and a significant reduction in serum FSH (p < 0.0001) and serum LH (p < 0.05) compared with the placebo. There was no significant between the group differences in the serum testosterone level. CONCLUSION These findings suggest that ashwagandha root extract can be a safe and effective option to relieve mild to moderate climacteric symptoms during perimenopause in women.
Collapse
Affiliation(s)
- Sriram Gopal
- Department of Obstetrics and Gynaecology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Ashutosh Ajgaonkar
- Department of Obstetrics and Gyanecology, Vedanta Hospital, Thane, India
| | - Padmaja Kanchi
- Community Medicine, Terna Medical College and Hospital, Navi Mumbai, India
| | - Aditi Kaundinya
- Department of Obstetrics and Gynaecology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Vaishali Thakare
- Department of Pharmacology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Sanjaya Chauhan
- Department of Pharmacology, Narayana Hrudayalaya Allied Health Sciences, Bangalore, India
| | - Deepak Langade
- Department of Pharmacology, D Y Patil University School of Medicine, Navi Mumbai, India
| |
Collapse
|
15
|
Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
17
|
Bonilla DA, Moreno Y, Gho C, Petro JL, Odriozola-Martínez A, Kreider RB. Effects of Ashwagandha ( Withania somnifera) on Physical Performance: Systematic Review and Bayesian Meta-Analysis. J Funct Morphol Kinesiol 2021; 6:20. [PMID: 33670194 PMCID: PMC8006238 DOI: 10.3390/jfmk6010020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/07/2023] Open
Abstract
Ashwagandha (Withania somnifera) is considered a potent adaptogen and anti-stress agent that could have some potential to improve physical performance. This preferred reporting items for systematic reviews and meta-analyses (PRISMA)-based comprehensive systematic review and Bayesian meta-analysis aimed to evaluate clinical trials up to 2020 from PubMed, ScienceDirect, and Google Scholar databases regarding the effect of Ashwagandha supplementation on physical performance in healthy individuals. Besides implementing estimation statistics analysis, we developed Bayesian hierarchical models for a pre-specified subgroup meta-analysis on strength/power, cardiorespiratory fitness and fatigue/recovery variables. A total of 13 studies met the requirements of this systematic review, although only 12 were included in the quantitative analysis. A low-to-moderate overall risk of bias of the trials included in this study was detected. All Bayesian hierarchical models converged to a target distribution (Ȓ = 1) for both meta-analytic effect size (μ) and between-study standard deviation (τ). The meta-analytic approaches of the included studies revealed that Ashwagandha supplementation was more efficacious than placebo for improving variables related to physical performance in healthy men and female. In fact, the Bayesian models showed that future interventions might be at least in some way beneficial on the analyzed outcomes considering the 95% credible intervals for the meta-analytic effect size. Several practical applications and future directions are discussed, although more comparable studies are needed in exercise training, and athletic populations are needed to derive a more stable estimate of the true underlying effect.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, San Sebastián, Spain;
| | - Yurany Moreno
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Camila Gho
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110861, Colombia; (Y.M.); (C.G.); (J.L.P.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Adrián Odriozola-Martínez
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia, San Sebastián, Spain;
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Phymo Lab, Physiology and Molecular Laboratory, 08028 Barcelona, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
18
|
Kim SH, Singh KB, Hahm ER, Singh SV. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2021; 14:421-432. [PMID: 33509807 DOI: 10.1158/1940-6207.capr-20-0590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
20
|
Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, Banerjee S, Heinrich M, Wu W, Guo D, Wagner H. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med Res Rev 2021; 41:630-703. [PMID: 33103257 PMCID: PMC7756641 DOI: 10.1002/med.21743] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
Adaptogens comprise a category of herbal medicinal and nutritional products promoting adaptability, resilience, and survival of living organisms in stress. The aim of this review was to summarize the growing knowledge about common adaptogenic plants used in various traditional medical systems (TMS) and conventional medicine and to provide a modern rationale for their use in the treatment of stress-induced and aging-related disorders. Adaptogens have pharmacologically pleiotropic effects on the neuroendocrine-immune system, which explain their traditional use for the treatment of a wide range of conditions. They exhibit a biphasic dose-effect response: at low doses they function as mild stress-mimetics, which activate the adaptive stress-response signaling pathways to cope with severe stress. That is in line with their traditional use for preventing premature aging and to maintain good health and vitality. However, the potential of adaptogens remains poorly explored. Treatment of stress and aging-related diseases require novel approaches. Some combinations of adaptogenic plants provide unique effects due to their synergistic interactions in organisms not obtainable by any ingredient independently. Further progress in this field needs to focus on discovering new combinations of adaptogens based on traditional medical concepts. Robust and rigorous approaches including network pharmacology and systems pharmacology could help in analyzing potential synergistic effects and, more broadly, future uses of adaptogens. In conclusion, the evolution of the adaptogenic concept has led back to basics of TMS and a new level of understanding of holistic approach. It provides a rationale for their use in stress-induced and aging-related diseases.
Collapse
Affiliation(s)
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Alexander N. Shikov
- Department of technology of dosage formsSaint‐Petersburg State Chemical‐Pharmaceutical UniversitySt. PetersburgRussia
| | - Olga N. Pozharitskaya
- Department of BiotechnologyMurmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS)MurmanskRussia
| | - Kenny Kuchta
- Department of Far Eastern Medicine, Clinic for Gastroenterology and Gastrointestinal OncologyUniversity Medical Center GöttingenGöttingenGermany
| | - Pulok K. Mukherjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Subhadip Banerjee
- Department of Pharmaceutical Technology, School of Natural Product StudiesJadavpur UniversityKolkataIndia
| | - Michael Heinrich
- Research Cluster Biodiversity and Medicines, UCL School of Pharmacy, Centre for Pharmacognosy and PhytotherapyUniversity of LondonLondonUK
| | - Wanying Wu
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - De‐an Guo
- Shanghai Research Center for TCM Modernization, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Hildebert Wagner
- Department of Pharmacy, Center for Pharma ResearchLudwig‐Maximilians‐Universität MünchenMunichGermany
| |
Collapse
|
21
|
Hahm ER, Kim SH, Singh KB, Singh K, Singh SV. A Comprehensive Review and Perspective on Anticancer Mechanisms of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2020; 13:721-734. [PMID: 32727824 DOI: 10.1158/1940-6207.capr-20-0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 07/22/2020] [Indexed: 01/07/2023]
Abstract
Withaferin A (hereafter abbreviated as WA) is a promising anticancer steroidal lactone abundant in a medicinal plant (Withania somnifera) native to Asia. The root/leaf extract of Withania somnifera, which belongs to the Solanaceae family, continues to be included in the Ayurvedic medicine formulations of alternative medicine practice. Numerous chemicals are detectable in the root/leaf extract of Withania somnifera [e.g., withanolides (WA, withanone, withanolide A, etc.), alkaloids, sitoindosides, etc.], but the anticancer effect of this medicinal plant is largely attributed to WA. Anticancer effect of WA was initially reported in the early 70s in the Ehrlich ascites tumor cell model in vitro Since then, numerous preclinical studies have been performed using cellular and animal models of different cancers including breast cancer to determine cancer therapeutic and chemopreventive effects of WA. Chemoprevention, a word first introduced by Dr. Michael B. Sporn, was intended to impede, arrest, or reverse carcinogenesis at its earliest stages with pharmacologic agents. This review succinctly summarizes the published findings on anticancer pharmacology of WA in breast cancer focusing on pharmacokinetic behavior, in vivo efficacy data in preclinical models in a therapeutic and chemoprevention settings, and its known effects on cancer-relevant cellular processes (e.g., growth arrest, apoptosis induction, autophagy, metabolic adaptation, immune function, etc.) and molecular targets (e.g., suppression of oncogenes such as estrogen receptor-α, STAT3, etc.). Potential gaps in knowledge as well as future research directions essential for clinical development of WA for chemoprevention and/or treatment of breast cancer are also discussed.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kamayani Singh
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Kim SH, Hahm ER, Singh KB, Shiva S, Stewart-Ornstein J, Singh SV. RNA-seq reveals novel mechanistic targets of withaferin A in prostate cancer cells. Carcinogenesis 2020; 41:778-789. [PMID: 32002539 PMCID: PMC7351133 DOI: 10.1093/carcin/bgaa009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Withaferin A (WA) is a promising phytochemical exhibiting in vitro and in vivo anticancer activities against prostate and other cancers, but the mechanism of its action is not fully understood. In this study, we performed RNA-seq analysis using 22Rv1 human prostate cancer cell line to identify mechanistic targets of WA. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the differentially expressed genes showed most significant enrichment of genes associated with metabolism. These results were validated using LNCaP and 22Rv1 human prostate cancer cells and Hi-Myc transgenic mice as models. The intracellular levels of acetyl-CoA, total free fatty acids and neutral lipids were decreased significantly following WA treatment in both cells, which was accompanied by downregulation of mRNA (confirmed by quantitative reverse transcription-polymerase chain reaction) and protein levels of key fatty acid synthesis enzymes, including ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A. Ectopic expression of c-Myc, but not constitutively active Akt, conferred a marked protection against WA-mediated suppression of acetyl-CoA carboxylase 1 and fatty acid synthase protein expression, and clonogenic cell survival. WA was a superior inhibitor of cell proliferation and fatty acid synthesis in comparison with known modulators of fatty acid metabolism including cerulenin and etomoxir. Intraperitoneal WA administration to Hi-Myc transgenic mice (0.1 mg/mouse, three times/week for 5 weeks) also resulted in a significant decrease in circulating levels of total free fatty acids and phospholipids, and expression of ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A proteins in the prostate in vivo.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Krishna B Singh
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA,Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,To whom correspondence should be addressed. Tel: +1 412 623 3263; Fax: +1 412 623 7828;
| |
Collapse
|
23
|
Lopresti AL, Drummond PD, Smith SJ. A Randomized, Double-Blind, Placebo-Controlled, Crossover Study Examining the Hormonal and Vitality Effects of Ashwagandha ( Withania somnifera) in Aging, Overweight Males. Am J Mens Health 2020; 13:1557988319835985. [PMID: 30854916 PMCID: PMC6438434 DOI: 10.1177/1557988319835985] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ashwagandha ( Withania somnifera) is a herb commonly used in Ayurvedic medicine to promote youthful vigor, enhance muscle strength and endurance, and improve overall health. In this 16-week, randomized, double-blind, placebo-controlled, crossover study, its effects on fatigue, vigor, and steroid hormones in aging men were investigated. Overweight men aged 40-70 years, with mild fatigue, were given a placebo or an ashwagandha extract (Shoden beads, delivering 21 mg of withanolide glycosides a day) for 8 weeks. Outcome measures included the Profile of Mood States, Short Form (POMS-SF), Aging Males' Symptoms (AMS) questionnaire, and salivary levels of DHEA-S, testosterone, cortisol, and estradiol. Fifty-seven participants were enrolled, with 50 people completing the first 8-week period of the trial and 43 completing all 16 weeks. Improvements in fatigue, vigor, and sexual and psychological well-being were reported over time, with no statistically significant between-group differences. Ashwagandha intake was associated with an 18% greater increase in DHEA-S ( p = .005) and 14.7% greater increase in testosterone ( p = .010) compared to the placebo. There were no significant between-group differences in cortisol and estradiol. In conclusion, the intake of a standardized ashwagandha extract (Shoden beads) for 8 weeks was associated with increased levels of DHEA-S and testosterone, although no significant between-group differences were found in cortisol, estradiol, fatigue, vigor, or sexual well-being. Further studies with larger sample sizes are required to substantiate the current findings.
Collapse
Affiliation(s)
- Adrian L Lopresti
- 1 School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia.,2 Clinical Research Australia, Duncraig, Western Australia, Australia
| | - Peter D Drummond
- 1 School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia
| | - Stephen J Smith
- 1 School of Psychology and Exercise Science, Murdoch University, Perth, Western Australia, Australia.,2 Clinical Research Australia, Duncraig, Western Australia, Australia
| |
Collapse
|
24
|
Kim SH, Singh KB, Hahm ER, Lokeshwar BL, Singh SV. Withania somnifera root extract inhibits fatty acid synthesis in prostate cancer cells. J Tradit Complement Med 2020; 10:188-197. [PMID: 32670813 PMCID: PMC7340880 DOI: 10.1016/j.jtcme.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/07/2023] Open
Abstract
Prior research argues for a role of increased de novo fatty acid synthesis in pathogenesis of prostate adenocarcinoma, which remains a leading cause of cancer-associated mortality in American men. A safe and effective inhibitor of fatty acid synthesis is still a clinically unmet need. Herein, we investigated the effect of ethanol extract of Withania somnifera root (WRE) standardized for one of its components (withaferin A) on fatty acid synthesis using LNCaP and 22Rv1 human prostate cancer cells. Withania somnifera is a medicinal plant used in the Ayurvedic medicine practiced in India. Western blotting and confocal microscopy revealed a statistically significant decrease in protein levels of key fatty acid metabolism enzymes including ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) in WRE-treated cells compared with solvent control. The mRNA levels of ACLY, ACC1, FASN, and CPT1A were also lower in WRE-treated cells in comparison with control. Consequently, WRE treatment resulted in a significant decrease in intracellular levels of acetyl-CoA, total free fatty acids, and neutral lipid droplets in both LNCaP and 22Rv1 cells. WRE exhibited greater potency for fatty acid synthesis inhibition at equimolar concentration than cerulenin and etomoxir. Exposure to WRE results in downregulation of c-Myc and p-Akt(S473) proteins in 22Rv1 cell line. However, overexpression of only c-Myc conferred protection against clonogenic cell survival and lipogenesis inhibition by WRE. In conclusion, these results indicate that WRE is a novel inhibitor of fatty acid synthesis in human prostate cancer cells.
Collapse
Key Words
- ACC1, acetyl-CoA carboxylase 1
- ACLY, ATP citrate lyase
- ANOVA, one-way analysis of variance
- ATP citrate lyase
- Acetyl-CoA carboxylase 1
- CPT1A, carnitine palmitoyltransferase 1A
- CTCF, corrected total cell fluorescence
- Cer, cerulenin
- Chemoprevention
- Eto, etomoxir
- FASN, fatty acid synthase
- Fatty acid synthase
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- Prostate cancer
- Vec, pcDNA3 empty vector transfected cells
- WRE, Withania somnifera root extract
- caAkt, constitutively active Akt
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krishna B. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Corrigendum to "Effects of Withania somnifera on Reproductive System: A Systematic Review of the Available Evidence". BIOMED RESEARCH INTERNATIONAL 2019; 2019:7591541. [PMID: 31871942 PMCID: PMC6906805 DOI: 10.1155/2019/7591541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 11/21/2022]
|
26
|
Bhat IA, Ahmad I, Mir IN, Bhat RAH, P GB, Goswami M, J K S, Sharma R. Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J Steroid Biochem Mol Biol 2019; 185:237-247. [PMID: 30253226 DOI: 10.1016/j.jsbmb.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
The study was undertaken to explore the molecular mechanism of eurycomanone, a major compound of Eurycoma longifolia plant in increasing the reproductive processes in the male fish model. Chitosan-nanoconjugated eurycomanone nanoparticles with a significant particle size [130 nm (CED1); 144.1 nm (CED2)] and stable zeta potentials (+49.1 mV and +30 mV) were synthesized and evaluated against naked eurycomanone (ED1 and ED2). In present study, short-term and long-term experiments were conducted to evaluate the effect of nano-formulation on expression of endocrine-related genes, circulating hormone concentrations (Follicle stimulating hormone, FSH; luteinizing hormone, LH; progesterone, testosterone and 17-β estradiol) and reproductive capacity of male Clarias magur. In short-term experiment, the sampling of tissues was done on hourly basis after injection of eurycomanone either alone or with chitosan and long-term experiment was carried for 21 days and in this the injection was repeated after 7 days and 14 days. Treatments CED1 and CED2 showed controlled and sustained surge of the transcript level of selected genes (except aromatase) and serum hormones (except 17β-estradiol) compared to ED1 and ED2 groups. The transcript levels of aromatase and serum 17β-estradiol hormone showed the declining trend in the chitosan conjugated groups. The gonadosomatic index (GSI), reproductive capacity, intracellular calcium and selenium and cellular structure of testes were improved in CED1 and CED2 groups compared to other treatments. Furthermore, the effect of chitosan conjugated eurycomanone was evaluated in primary testicular cells and an increase in the mRNA expression level of endocrine-related genes was detected. This is the first report of the use of chitosan conjugated eurycomanone and present study elucidates the molecular mechanism of eurycomanone in increasing the reproductive output in animals.
Collapse
Affiliation(s)
- Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Irshad Ahmad
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Ishfaq Nazir Mir
- Department of Fish Nutrition, Biochemistry and Physiology, ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Raja Aadil Hussain Bhat
- Fish Pathology discipline, ICAR-Directorate of Cold Water Fisheries, Rd to Vikas Bhawan, Block Road Area, Bhimtal, Uttarakhand, 263136, India
| | - Gireesh-Babu P
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Mukunda Goswami
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Sundaray J K
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, ICAR- Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
27
|
Allawadhi P, Khurana A, Sayed N, Kumari P, Godugu C. Isoproterenol-induced cardiac ischemia and fibrosis: Plant-based approaches for intervention. Phytother Res 2018; 32:1908-1932. [PMID: 30009418 DOI: 10.1002/ptr.6152] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 06/18/2018] [Indexed: 11/08/2022]
Abstract
Heart is the most active and incumbent organ of the body, which maintains blood flow, but due to various pathological reasons, several acute and chronic cardiac complications arise out of which myocardial infarction is one of the teething problems. Isoproterenol (ISP)-induced myocardial ischemia is a classical model to screen the cardioprotective effects of various pharmacological interventions. Phytochemicals present a novel option for treating various human maladies including those of the heart. A large number of plant products and their active ingredients have been screened for efficacy in ameliorating ISP-induced myocardial ischemia including coriander, curcumin, Momordica, quercetin, and Withania somnifera. These phytochemicals constituents may play key role in preventing disease and help in cardiac remodeling. Reactive oxygen species scavenging, antiinflammatory, and modulation of various molecular pathways such as Nrf2, NFкB, p-21 activated kinase 1 (PAK1), and p-smad2/3 signaling modulation have been implicated behind the claimed protection. In this review, we have provided a focused overview on the utility of ISP-induced cardiotoxicity, myocardial ischemia, and cardiac fibrosis for preclinical research. In addition, we have also surveyed molecular mechanism of various plant-based interventions screened for cardioprotective effect in ISP-induced cardiotoxicity, and their probable mechanistic profile is summarized.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Preeti Kumari
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana State, India
| |
Collapse
|
28
|
Nasimi Doost Azgomi R, Nazemiyeh H, Sadeghi Bazargani H, Fazljou SMB, Nejatbakhsh F, Moini Jazani A, Ahmadi AsrBadr Y, Zomorrodi A. Comparative evaluation of the effects ofWithania somniferawith pentoxifylline on the sperm parameters in idiopathic male infertility: A triple-blind randomised clinical trial. Andrologia 2018; 50:e13041. [DOI: 10.1111/and.13041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- R. Nasimi Doost Azgomi
- Department of Iranian Traditional Medicine; School of Traditional Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - H. Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | - H. Sadeghi Bazargani
- Road Traffic Injury Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - S. M. B. Fazljou
- Department of Iranian Traditional Medicine; School of Traditional Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - F. Nejatbakhsh
- Department of Iranian Traditional Medicine; School of Traditional Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - A. Moini Jazani
- Department of Iranian Traditional Medicine; School of Traditional Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Y. Ahmadi AsrBadr
- Department of Urology; Sina Hospital; Tabriz University of Medical Science; Tabriz Iran
| | - A. Zomorrodi
- Department of Urology; Emam Reza Hospital; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|