1
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Kallos-Balogh P, Vas NF, Toth Z, Szakall S, Szabo P, Garai I, Kepes Z, Forgacs A, Szatmáriné Egeresi L, Magnus D, Balkay L. Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom. PLoS One 2024; 19:e0309540. [PMID: 39446842 PMCID: PMC11500893 DOI: 10.1371/journal.pone.0309540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Previously, we developed an "activity painting" tool for PET image simulation; however, it could simulate heterogeneous patterns only in the air. We aimed to improve this phantom technique to simulate arbitrary lesions in a radioactive background to perform relevant multi-center radiomic analysis. We conducted measurements moving a 22Na point source in a 20-liter background volume filled with 5 kBq/mL activity with an adequately controlled robotic system to prevent the surge of the water. Three different lesion patterns were "activity-painted" in five PET/CT cameras, resulting in 8 different reconstructions. We calculated 46 radiomic indeces (RI) for each lesion and imaging setting, applying absolute and relative discretization. Reproducibility and reliability were determined by the inter-setting coefficient of variation (CV) and the intraclass correlation coefficient (ICC). Hypothesis tests were used to compare RI between lesions. By simulating precisely the same lesions, we confirmed that the reconstructed voxel size and the spatial resolution of different PET cameras were critical for higher order RI. Considering conventional RIs, the SUVpeak and SUVmean proved the most reliable (CV<10%). CVs above 25% are more common for higher order RIs, but we also found that low CVs do not necessarily imply robust parameters but often rather insensitive RIs. Based on the hypothesis test, most RIs could clearly distinguish between the various lesions using absolute resampling. ICC analysis also revealed that most RIs were more reproducible with absolute discretization. The activity painting method in a real radioactive environment proved suitable for precisely detecting the radiomic differences derived from the different camera settings and texture characteristics. We also found that inter-setting CV is not an appropriate metric for analyzing RI parameters' reliability and robustness. Although multicentric cohorts are increasingly common in radiomics analysis, realistic texture phantoms can provide indispensable information on the sensitivity of an RI and how an individual RI parameter measures the texture.
Collapse
Affiliation(s)
- Piroska Kallos-Balogh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Felix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Toth
- Medicopus Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | | | | | - Ildiko Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Scanomed Ltd., Debrecen, Debrecen, Hungary
| | - Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dahlbom Magnus
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Zhang Y, Huang W, Jiao H, Kang L. PET radiomics in lung cancer: advances and translational challenges. EJNMMI Phys 2024; 11:81. [PMID: 39361110 PMCID: PMC11450131 DOI: 10.1186/s40658-024-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Radiomics is an emerging field of medical imaging that aims at improving the accuracy of diagnosis, prognosis, treatment planning and monitoring non-invasively through the automated or semi-automated quantitative analysis of high-dimensional image features. Specifically in the field of nuclear medicine, radiomics utilizes imaging methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) to evaluate biomarkers related to metabolism, blood flow, cellular activity and some biological pathways. Lung cancer ranks among the leading causes of cancer-related deaths globally, and radiomics analysis has shown great potential in guiding individualized therapy, assessing treatment response, and predicting clinical outcomes. In this review, we summarize the current state-of-the-art radiomics progress in lung cancer, highlighting the potential benefits and existing limitations of this approach. The radiomics workflow was introduced first including image acquisition, segmentation, feature extraction, and model building. Then the published literatures were described about radiomics-based prediction models for lung cancer diagnosis, differentiation, prognosis and efficacy evaluation. Finally, we discuss current challenges and provide insights into future directions and potential opportunities for integrating radiomics into routine clinical practice.
Collapse
Affiliation(s)
- Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Hao Jiao
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist, Beijing, 100034, China.
| |
Collapse
|
4
|
Alsyed E, Smith R, Bartley L, Marshall C, Spezi E. A heterogeneous phantom study for investigating the stability of PET images radiomic features with varying reconstruction settings. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1078536. [PMID: 39380957 PMCID: PMC11459985 DOI: 10.3389/fnume.2023.1078536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/18/2023] [Indexed: 10/10/2024]
Abstract
The purpose of this work was to assess the capability of radiomic features in distinguishing PET image regions with different uptake patterns. Furthermore, we assessed the stability of PET radiomic features with varying image reconstruction settings. An in-house phantom was designed and constructed, consisting of homogenous and heterogenous artificial phantom inserts. Four artificially constructed inserts were placed into a water filled phantom and filled with varying levels of radioactivity to simulate homogeneous and heterogeneous uptake patterns. The phantom was imaged for 80 min. PET images were reconstructed whilst varying reconstruction parameters. The parameters adjusted included, number of ordered subsets, number of iterations, use of time-of-flight and filter cut off. Regions of interest (ROI) were established by segmentation of the phantom inserts from the reconstructed images. In total seventy eight 3D radiomic features for each ROI with unique reconstructed parameters were extracted. The Friedman test was used to determine the statistical power of each radiomic feature in differentiating phantom inserts with different hetero/homogeneous configurations. The Coefficient of Variation (COV) of each feature, with respect to the reconstruction setting was used to determine feature stability. Forty three out of seventy eight radiomic features were found to be stable (COV ≤ 5%) against all reconstruction settings. To provide any utility, stable features are required to differentiate between regions with different hetro/homogeneity. Of the forty three stable features, fifteen (35%) features showed a statistically significant difference between the artificially constructed inserts. Such features included GLCM (Difference average, Difference entropy, Dissimilarity and Inverse difference), GLRL (Long run emphasis, Grey level non uniformity and Run percentage) and NGTDM (Complexity and Strength). The finding of this work suggests that radiomic features are capable of distinguishing between radioactive distribution patterns that demonstrate different levels of heterogeneity. Therefore, radiomic features could serve as an adjuvant diagnostic tool along with traditional imaging. However, the choice of the radiomic features needs to account for variability introduced when different reconstruction settings are used. Standardization of PET image reconstruction settings across sites performing radiomic analysis in multi-centre trials should be considered.
Collapse
Affiliation(s)
- Emad Alsyed
- School of Engineering, Cardiff University, Cardiff, United Kingdom
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rhodri Smith
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Lee Bartley
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Christopher Marshall
- Wales Research and Diagnostic Positron Emission Tomography Imaging Centre (PETIC), Cardiff University, Cardiff, United Kingdom
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Nie K, Xiao Y. Radiomics in clinical trials: perspectives on standardization. Phys Med Biol 2022; 68. [PMID: 36384049 DOI: 10.1088/1361-6560/aca388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The term biomarker is used to describe a biological measure of the disease behavior. The existing imaging biomarkers are associated with the known tissue biological characteristics and follow a well-established roadmap to be implemented in routine clinical practice. Recently, a new quantitative imaging analysis approach named radiomics has emerged. It refers to the extraction of a large number of advanced imaging features with high-throughput computing. Extensive research has demonstrated its value in predicting disease behavior, progression, and response to therapeutic options. However, there are numerous challenges to establishing it as a clinically viable solution, including lack of reproducibility and transparency. The data-driven nature also does not offer insights into the underpinning biology of the observed relationships. As such, additional effort is needed to establish it as a qualified biomarker to inform clinical decisions. Here we review the technical difficulties encountered in the clinical applications of radiomics and current effort in addressing some of these challenges in clinical trial designs. By addressing these challenges, the true potential of radiomics can be unleashed.
Collapse
Affiliation(s)
- Ke Nie
- Rutgers-Cancer Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, Department of Radiation Oncology, New Brunswick, NJ, 08901, United States of America
| | - Ying Xiao
- University of Pennsylvania, Department of Radiation Oncology, 3400 Civic Center Blvd, TRC-2 West Philadelphia, PA 19104, United States of America
| |
Collapse
|
7
|
Duff L, Scarsbrook AF, Mackie SL, Frood R, Bailey M, Morgan AW, Tsoumpas C. A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis. J Nucl Cardiol 2022; 29:3315-3331. [PMID: 35322380 PMCID: PMC9834376 DOI: 10.1007/s12350-022-02927-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. METHODS The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. RESULTS Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. CONCLUSION A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
Collapse
Affiliation(s)
- Lisa Duff
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK.
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK.
| | - Andrew F Scarsbrook
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Sarah L Mackie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Russell Frood
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Marc Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - Ann W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, USA
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center of Groningen, University of Groningen, 9700 RB, Groningen, Netherlands
| |
Collapse
|
8
|
Valladares A, Beyer T, Papp L, Salomon E, Rausch I. A multi-modality physical phantom for mimicking tumour heterogeneity patterns in PET/CT and PET/MRI. Med Phys 2022; 49:5819-5829. [PMID: 35838056 PMCID: PMC9543355 DOI: 10.1002/mp.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Hybrid imaging (e.g., positron emission tomography [PET]/computed tomography [CT], PET/magnetic resonance imaging [MRI]) helps one to visualize and quantify morphological and physiological tumor characteristics in a single study. The noninvasive characterization of tumor heterogeneity is essential for grading, treatment planning, and following‐up oncological patients. However, conventional (CONV) image‐based parameters, such as tumor diameter, tumor volume, and radiotracer activity uptake, are insufficient to describe tumor heterogeneities. Here, radiomics shows promise for a better characterization of tumors. Nevertheless, the validation of such methods demands imaging objects capable of reflecting heterogeneities in multi‐modality imaging. We propose a phantom to simulate tumor heterogeneity repeatably in PET, CT, and MRI. Methods The phantom consists of three 50‐ml plastic tubes filled partially with acrylic spheres of S1: 1.6 mm, S2: 50%(1.6 mm)/50%(6.3 mm), or S3: 6.3‐mm diameter. The spheres were fixed to the bottom of each tube by a plastic grid, yielding one sphere free homogeneous region and one heterogeneous (S1, S2, or S3) region per tube. A 3‐tube phantom and its replica were filled with a fluorodeoxyglucose (18F) solution for test–retest measurements in a PET/CT Siemens TPTV and a PET/MR Siemens Biograph mMR system. A number of 42 radiomic features (10 first order and 32 texture features) were calculated for each phantom region and imaging modality. Radiomic features stability was evaluated through coefficients of variation (COV) across phantoms and scans for PET, CT, and MRI. Further, the Wilcoxon test was used to assess the capability of stable features to discriminate the simulated phantom regions. Results The different patterns (S1–S3) did present visible heterogeneity in all imaging modalities. However, only for CT and MRI, a clear visual difference was present between the different patterns. Across all phantom regions in PET, CT, and MR images, 10, 16, and 21 features out of 42 evaluated features in total had a COV of 10% or less. In particular, CONV, histogram, and gray‐level run length matrix features showed high repeatability for all the phantom regions and imaging modalities. Several of repeatable texture features allowed the image‐based discrimination of the different phantom regions (p < 0.05). However, depending on the feature, different pattern discrimination capabilities were found for the different imaging modalities. Conclusion The proposed phantom appears suitable for simulating heterogeneities in PET, CT, and MRI. We demonstrate that it is possible to select radiomic features for the readout of the phantom. Most of these features had been shown to be relevant in previous clinical studies.
Collapse
Affiliation(s)
- Alejandra Valladares
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Thomas Beyer
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Salomon
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Gallivanone F, D'Ambrosio D, Carne I, D'Arcangelo M, Montagna P, Giroletti E, Poggi P, Vellani C, Moro L, Castiglioni I. A tri-modal tissue-equivalent anthropomorphic phantom for PET, CT and multi-parametric MRI radiomics. Phys Med 2022; 98:28-39. [PMID: 35489129 DOI: 10.1016/j.ejmp.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Radiomics has emerged as an advanced image processing methodology to define quantitative imaging biomarkers for prognosis and prediction of treatment response and outcome. The development of quantitative imaging biomarkers requires careful analysis to define their accuracy, stability and reproducibility through phantom measurements. Few efforts were devoted to develop realistic anthropomorphic phantoms. In this work, we developed a multimodality image phantom suitable for PET, CT and multiparametric MRI imaging. METHODS A tissue-equivalent gel-based mixture was designed and tested for compatibility with different imaging modalities. Calibration measurements allowed to assess gel composition to simulate PET, CT and MRI contrasts of oncological lesions. The characterized gel mixture was used to create realistic synthetic lesions (e.g. lesions with irregular shape and non-uniform image contrast), to be inserted in a standard anthropomorphic phantom. In order to show phantom usefulness, issues related to accuracy, stability and reproducibility of radiomic biomarkers were addressed as proofs-of-concept. RESULTS The procedure for gel preparation was straightforward and the characterized gel mixture allowed to mime simultaneously oncological lesion contrast in CT, PET and MRI imaging. Proofs-of-concept studies suggested that phantom measurements can be customized for specific clinical situations and radiomic protocols. CONCLUSIONS We developed a strategy to manufacture an anthropomorphic, tissue-equivalent, multimodal phantom to be customized on specific radiomics protocols, for addressing specific methodological issues both in mono and multicentric studies.
Collapse
Affiliation(s)
- Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy.
| | - Daniela D'Ambrosio
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | - Irene Carne
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | | | - Paolo Montagna
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Italy.
| | - Elio Giroletti
- Department of Physics, University of Pavia, Pavia, Italy; National Institute for Nuclear Physics (INFN), Pavia, Italy.
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Diagnostic Imaging Unit of Pavia Institute, Italy.
| | - Cecilia Vellani
- Istituti Clinici Scientifici Maugeri IRCCS, Nuclear Medicine Unit of Pavia Institute, Italy.
| | - Luca Moro
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Physics Unit of Pavia Institute, Italy.
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy; Department of Physics "G. Occhialini", University of Milano - Bicocca, Italy.
| |
Collapse
|
10
|
Noise-Based Image Harmonization Significantly Increases Repeatability and Reproducibility of Radiomics Features in PET Images: A Phantom Study. Tomography 2022; 8:1113-1128. [PMID: 35448725 PMCID: PMC9025788 DOI: 10.3390/tomography8020091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/12/2023] Open
Abstract
For multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement. A purpose-built texture pattern phantom was scanned on 10 different PET scanners in 7 institutions with various different image acquisition and reconstruction protocols. An image harmonization technique based on equalizing a contrast-to-noise ratio was employed to generate a "harmonized" alongside a "standard" dataset for a reproducibility study. In addition, a repeatability study was performed with images from a single PET scanner of variable image noise, varying the binning time of the reconstruction. Feature agreement was measured using the intraclass correlation coefficient (ICC). In the repeatability study, 81/93 features had a lower ICC on the images with the highest image noise as compared to the images with the lowest image noise. Using the harmonized dataset significantly improved the feature agreement for five of the six investigated feature classes over the standard dataset. For three feature classes, high feature agreement corresponded with higher sensitivity to the different patterns, suggesting a way to select suitable features for predictive models.
Collapse
|
11
|
Hosseini SA, Shiri I, Hajianfar G, Bahadorzade B, Ghafarian P, Zaidi H, Ay MR. Synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET radiomic features in non-small cell lung cancer: phantom and clinical studies. Med Phys 2022; 49:3783-3796. [PMID: 35338722 PMCID: PMC9322423 DOI: 10.1002/mp.15615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18F‐FDG PET image radiomic features in non‐small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. Methods An in‐house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full‐width at half‐maximum of post‐reconstruction smoothing filter and acquisition parameters, including injected activity and test–retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi‐automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. Results Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty‐five percent and 76% of the features showed a COV ≤ 5% against the test–retest with and without motion in large lesions, respectively. Thirty‐three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p‐value < 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). Conclusions Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non‐reproducibility.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and cyclotron center, Masih Daneshvari hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Rinaldi L, Pezzotta F, Santaniello T, De Marco P, Bianchini L, Origgi D, Cremonesi M, Milani P, Mariani M, Botta F. HeLLePhant: A phantom mimicking non-small cell lung cancer for texture analysis in CT images. Phys Med 2022; 97:13-24. [PMID: 35334407 DOI: 10.1016/j.ejmp.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Phantoms mimicking human tissue heterogeneity and intensity are required to establish radiomic features robustness in Computed Tomography (CT) images. We developed inserts with two different techniques for the radiomic study of Non-Small Cell Lung Cancer (NSCLC) lesions. METHODS We developed two insert prototypes: two 3D-printed made of glycol-modified polyethylene terephthalate (PET-G), and nine with sodium polyacrylate plus iodinated contrast medium. The inserts were put in a handcraft phantom (HeLLePhant). We also analysed four materials of a commercial homogeneous phantom (Catphan® 424) and collected 29 NSCLC patients for comparison. All the CT acquisitions were performed with the same clinical protocol and scanner at 120kVp. The HeLLePhant phantom was scanned ten times in fixed condition at 120kVp and 100kVp for repeatability investigation. We extracted 153 radiomic features using Pyradiomics. To compare the features between phantoms and patients, we computed how many phantom features fell in the range between 10th and 90th percentile of the corresponding patient values. We deemed repeatable the features with a coefficient of variation (CV) less than or equal to 0.10. RESULTS The best similarity with the patients was obtained with the polyacrylate inserts (55.6-90.2%), the worst with Catphan (15.7-19.0%). For the PET-G inserts 35.3% and 36.6% of the features match the patient range. We found high repeatability for all the inserts of the HeLLePhant phantom (74.3-100% at 120kVp, 75.7-97.9% at 100kVp), and observed a texture dependency in repeatability. CONCLUSIONS Our study shows a promising way to construct heterogeneous inserts mimicking a target tissue for radiomic studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Department of Physics, Università degli Studi di Pavia and INFN, via Bassi 6, 27100 Pavia, Italy; Radiation Research Unit, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy.
| | - Federico Pezzotta
- CIMaINa, Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tommaso Santaniello
- CIMaINa, Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Linda Bianchini
- Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Paolo Milani
- CIMaINa, Department of Physics, Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Manuel Mariani
- Department of Physics, Università degli Studi di Pavia and INFN, via Bassi 6, 27100 Pavia, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
13
|
Miwa K, Yamao T, Kamitaka Y. [[Nuclear Medicine] 1. Review of Phantoms for Nuclear Medicine Imaging]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2022; 78:207-212. [PMID: 35185100 DOI: 10.6009/jjrt.780216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| |
Collapse
|
14
|
Xue C, Yuan J, Lo GG, Chang ATY, Poon DMC, Wong OL, Zhou Y, Chu WCW. Radiomics feature reliability assessed by intraclass correlation coefficient: a systematic review. Quant Imaging Med Surg 2021; 11:4431-4460. [PMID: 34603997 DOI: 10.21037/qims-21-86] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability are also raised. This review attempts to update and overview the current status of radiomics reliability research in the ever expanding medical literature from the perspective of a single reliability metric of intraclass correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, were included for review. In these highly heterogeneous studies, feature reliability to image segmentation was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability to image segmentation. Image acquisition was found to introduce much more feature variability than image segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. More future researches on radiomics reliability are warranted.
Collapse
Affiliation(s)
- Cindy Xue
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China.,Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Gladys G Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Amy T Y Chang
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Darren M C Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Yihang Zhou
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
15
|
Oliveira C, Amstutz F, Vuong D, Bogowicz M, Hüllner M, Foerster R, Basler L, Schröder C, Eboulet EI, Pless M, Thierstein S, Peters S, Hillinger S, Tanadini-Lang S, Guckenberger M. Preselection of robust radiomic features does not improve outcome modelling in non-small cell lung cancer based on clinical routine FDG-PET imaging. EJNMMI Res 2021; 11:79. [PMID: 34417899 PMCID: PMC8380219 DOI: 10.1186/s13550-021-00809-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Radiomics is a promising tool for identifying imaging-based biomarkers. Radiomics-based models are often trained on single-institution datasets; however, multi-centre imaging datasets are preferred for external generalizability owing to the influence of inter-institutional scanning differences and acquisition settings. The study aim was to determine the value of preselection of robust radiomic features in routine clinical positron emission tomography (PET) images to predict clinical outcomes in locally advanced non-small cell lung cancer (NSCLC). Methods A total of 1404 primary tumour radiomic features were extracted from pre-treatment [18F]fluorodeoxyglucose (FDG)-PET scans of stage IIIA/N2 or IIIB NSCLC patients using a training cohort (n = 79; prospective Swiss multi-centre randomized phase III trial SAKK 16/00; 16 centres) and an internal validation cohort (n = 31; single centre). Robustness studies investigating delineation variation, attenuation correction and motion were performed (intraclass correlation coefficient threshold > 0.9). Two 12-/24-month event-free survival (EFS) and overall survival (OS) logistic regression models were trained using standardized imaging: (1) with robust features alone and (2) with all available features. Models were then validated using fivefold cross-validation, and validation on a separate single-centre dataset. Model performance was assessed using area under the receiver operating characteristic curve (AUC). Results Robustness studies identified 179 stable features (13%), with 25% stable features for 3D versus 4D acquisition, 31% for attenuation correction and 78% for delineation. Univariable analysis found no significant robust features predicting 12-/24-month EFS and 12-month OS (p value > 0.076). Prognostic models without robust preselection performed well for 12-month EFS in training (AUC = 0.73) and validation (AUC = 0.74). Patient stratification into two risk groups based on 12-month EFS was significant for training (p value = 0.02) and validation cohorts (p value = 0.03). Conclusions A PET-based radiomics model using a standardized, multi-centre dataset to predict EFS in locally advanced NSCLC was successfully established and validated with good performance. Prediction models with robust feature preselection were unsuccessful, indicating the need for a standardized imaging protocol. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00809-3.
Collapse
Affiliation(s)
- Carol Oliveira
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Division of Radiation Oncology, Cancer Center of Southeastern Ontario, Queen's University, Kingston, ON, Canada.
| | - Florian Amstutz
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Robert Foerster
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lucas Basler
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Christina Schröder
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Eric I Eboulet
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, Bern, Switzerland
| | - Miklos Pless
- Department of Medical Oncology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Sandra Thierstein
- Swiss Group for Clinical Cancer Research (SAKK) Coordinating Center, Bern, Switzerland
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sven Hillinger
- Department of Thoracic Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Crandall JP, Fraum TJ, Lee M, Jiang L, Grigsby P, Wahl RL. Repeatability of 18F-FDG PET Radiomic Features in Cervical Cancer. J Nucl Med 2021; 62:707-715. [PMID: 33008931 PMCID: PMC8844259 DOI: 10.2967/jnumed.120.247999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Knowledge of the intrinsic variability of radiomic features is essential to the proper interpretation of changes in these features over time. The primary aim of this study was to assess the test-retest repeatability of radiomic features extracted from 18F-FDG PET images of cervical tumors. The impact of different image preprocessing methods was also explored. Methods: Patients with cervical cancer underwent baseline and repeat 18F-FDG PET/CT imaging within 7 d. PET images were reconstructed using 2 methods: ordered-subset expectation maximization (PETOSEM) or ordered-subset expectation maximization with point-spread function (PETPSF). Tumors were segmented to produce whole-tumor volumes of interest (VOIWT) and 40% isocontours (VOI40). Voxels were either left at the default size or resampled to 3-mm isotropic voxels. SUV was discretized to a fixed number of bins (32, 64, or 128). Radiomic features were extracted from both VOIs, and repeatability was then assessed using the Lin concordance correlation coefficient (CCC). Results: Eleven patients were enrolled and completed the test-retest PET/CT imaging protocol. Shape, neighborhood gray-level difference matrix, and gray-level cooccurrence matrix features were repeatable, with a mean CCC value of 0.81. Radiomic features extracted from PETOSEM images showed significantly better repeatability than features extracted from PETPSF images (P < 0.001). Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT (P < 0.001). For most features (78.4%), a change in bin number or voxel size resulted in less than a 10% change in feature value. All gray-level emphasis and gray-level run emphasis features showed poor repeatability (CCC values < 0.52) when extracted from VOIWT but were highly repeatable (mean CCC values > 0.96) when extracted from VOI40Conclusion: Shape, gray-level cooccurrence matrix, and neighborhood gray-level difference matrix radiomic features were consistently repeatable, whereas gray-level run length matrix and gray-level zone length matrix features were highly variable. Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT Changes in voxel size or SUV discretization parameters typically resulted in relatively small differences in feature value, though several features were highly sensitive to these changes.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - MinYoung Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Linda Jiang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Perry Grigsby
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| |
Collapse
|
17
|
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, Gallivanone F, Cozzi A, D'Amico NC, Sardanelli F. AI applications to medical images: From machine learning to deep learning. Phys Med 2021; 83:9-24. [PMID: 33662856 DOI: 10.1016/j.ejmp.2021.02.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. METHODS A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. RESULTS We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. CONCLUSIONS Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
Collapse
Affiliation(s)
- Isabella Castiglioni
- Department of Physics, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy; Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Leonardo Rundo
- Department of Radiology, Box 218, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom.
| | - Marina Codari
- Department of Radiology, Stanford University School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
| | - Giovanni Di Leo
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy.
| | - Christian Salvatore
- Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy; DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Matteo Interlenghi
- DeepTrace Technologies S.r.l., Via Conservatorio 17, 20122 Milano, Italy.
| | - Francesca Gallivanone
- Institute of Biomedical Imaging and Physiology, National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy.
| | - Andrea Cozzi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| | - Natascha Claudia D'Amico
- Department of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano S.p.A., Via Saint Bon 20, 20147 Milano, Italy; Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy.
| | - Francesco Sardanelli
- Unit of Radiology, IRCCS Policlinico San Donato, Via Rodolfo Morandi 30, 20097 San Donato Milanese, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133 Milano, Italy.
| |
Collapse
|
18
|
Comelli A, Dahiya N, Stefano A, Vernuccio F, Portoghese M, Cutaia G, Bruno A, Salvaggio G, Yezzi A. Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:782. [PMID: 33680505 PMCID: PMC7932306 DOI: 10.3390/app11020782] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardware availability while still achieving accurate segmentation. We apply these models to a limited set of 85 manual prostate segmentations using the k-fold validation strategy and the Tversky loss function and we compare their results. We find that ENet and UNet are more accurate than ERFNet, with ENet much faster than UNet. Specifically, ENet obtains a dice similarity coefficient of 90.89% and a segmentation time of about 6 s using central processing unit (CPU) hardware to simulate real clinical conditions where graphics processing unit (GPU) is not always available. In conclusion, ENet could be efficiently applied for prostate delineation even in small image training datasets with potential benefit for patient management personalization.
Collapse
Affiliation(s)
- Albert Comelli
- Ri.MED Foundation, Via Bandiera, 11, 90133 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Navdeep Dahiya
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Federica Vernuccio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, 90127 Palermo, Italy
| | - Marzia Portoghese
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Cutaia
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, 90127 Palermo, Italy
| | - Alberto Bruno
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Salvaggio
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University of Palermo, 90127 Palermo, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 592] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
20
|
Valladares A, Beyer T, Rausch I. Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs. Med Phys 2020; 47:2023-2037. [PMID: 31981214 PMCID: PMC7216968 DOI: 10.1002/mp.14045] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In oncology, lesion characterization is essential for tumor grading, treatment planning, and follow-up of cancer patients. Hybrid imaging systems, such as Single Photon Emission Computed Tomography (SPECT)/CT, Positron Emission Tomography (PET)/CT, or PET/magnetic resonance imaging (MRI), play an essential role for the noninvasive quantification of tumor characteristics. However, most of the existing approaches are challenged by intra- and intertumor heterogeneity. Novel quantitative imaging parameters that can be derived from textural feature analysis (as part of radiomics) are promising complements for improved characterization of tumor heterogeneity, thus, supporting clinically relevant implementations of personalized medicine concepts. Nevertheless, establishing new quantitative parameters for tumor characterization requires the use of standardized imaging objects to test the reliability of results prior to their implementation in patient studies. METHODS In this review, we summarize existing reports on heterogeneous phantoms with a focus on simulating tumor heterogeneity. We discuss the techniques, materials, advantages, and limitations of the existing phantoms for PET, CT, and MR imaging modalities. CONCLUSIONS Finally, we outline the future directions and requirements for the design of cross modality imaging phantoms.
Collapse
Affiliation(s)
- Alejandra Valladares
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| | - Thomas Beyer
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| | - Ivo Rausch
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| |
Collapse
|
21
|
Yang F, Simpson G, Young L, Ford J, Dogan N, Wang L. Impact of contouring variability on oncological PET radiomics features in the lung. Sci Rep 2020; 10:369. [PMID: 31941949 PMCID: PMC6962150 DOI: 10.1038/s41598-019-57171-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
Radiomics features extracted from oncological PET images are currently under intense scrutiny within the context of risk stratification for a variety of cancers. However, the lack of robustness assessment poses problems for their application across institutions and for broader patient populations. The objective of the current study was to examine the extent to which radiomics parameters from oncological PET vary in response to manual contouring variability in lung cancer. Imaging data employed in the study consisted of 26 PET scans with lesions in the lung being created through the use of an anthropomorphic phantom in conjunction with Monte Carlo simulations. From each of the simulated lesions, 25 radiomics features related to the gray-level co-occurrence matrices (GLCOM), gray-level size zone matrices (GLSZM), and gray-level neighborhood difference matrices (GLNDM) were extracted from ground truth contour and from manual contours provided by 10 raters in regard to four intensity discretization schemes with number of gray levels of 32, 64, 128, and 256, respectively. The impact of interrater variability in tumor delineation upon the agreement between raters on radiomics features was examined via interclass correlation and leave-p-out assessment. Only weak and moderate correlations were found between segmentation accuracy as measured by the Dice coefficient and percent feature error from ground truth for the vast majority of the features being examined. GLNDM-based texture parameters emerged as the top performing category of radiomcs features in terms of robustness against contouring variability for discretization schemes engaging number of gray levels of 32, 64, and 128 while GLCOM-based parameters stood out for discretization scheme engaging 256 gray levels. How and to what extent interrater reliability of radiomics features vary in response to the number of raters were largely feature-dependent. It was concluded that impact of contouring variability on PET-based radiomics features is present to varying degrees and could be experienced as a barrier to convey PET-based radiomics research to clinical relevance.
Collapse
Affiliation(s)
- F Yang
- Department of Radiation Oncology, University of Miami, Miami, FL, USA.
| | - G Simpson
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - L Young
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - J Ford
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | - N Dogan
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | - L Wang
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| |
Collapse
|
22
|
Bogowicz M, Vuong D, Huellner MW, Pavic M, Andratschke N, Gabrys HS, Guckenberger M, Tanadini-Lang S. CT radiomics and PET radiomics: ready for clinical implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:355-370. [PMID: 31527578 DOI: 10.23736/s1824-4785.19.03192-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland -
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hubert S Gabrys
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics. Eur J Nucl Med Mol Imaging 2019; 46:2673-2699. [PMID: 31292700 DOI: 10.1007/s00259-019-04414-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The quantitative imaging features (radiomics) that can be obtained from the different modalities of current-generation hybrid imaging can give complementary information with regard to the tumour environment, as they measure different morphologic and functional imaging properties. These multi-parametric image descriptors can be combined with artificial intelligence applications into predictive models. It is now the time for hybrid PET/CT and PET/MRI to take the advantage offered by radiomics to assess the added clinical benefit of using multi-parametric models for the personalized diagnosis and prognosis of different disease phenotypes. OBJECTIVE The aim of the paper is to provide an overview of current challenges and available solutions to translate radiomics into hybrid PET-CT and PET-MRI imaging for a smart and truly multi-parametric decision model.
Collapse
|
24
|
Zwanenburg A. Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 2019; 46:2638-2655. [PMID: 31240330 DOI: 10.1007/s00259-019-04391-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/16/2022]
Abstract
Radiomics in nuclear medicine is rapidly expanding. Reproducibility of radiomics studies in multicentre settings is an important criterion for clinical translation. We therefore performed a meta-analysis to investigate reproducibility of radiomics biomarkers in PET imaging and to obtain quantitative information regarding their sensitivity to variations in various imaging and radiomics-related factors as well as their inherent sensitivity. Additionally, we identify and describe data analysis pitfalls that affect the reproducibility and generalizability of radiomics studies. After a systematic literature search, 42 studies were included in the qualitative synthesis, and data from 21 were used for the quantitative meta-analysis. Data concerning measurement agreement and reliability were collected for 21 of 38 different factors associated with image acquisition, reconstruction, segmentation and radiomics-specific processing steps. Variations in voxel size, segmentation and several reconstruction parameters strongly affected reproducibility, but the level of evidence remained weak. Based on the meta-analysis, we also assessed inherent sensitivity to variations of 110 PET image biomarkers. SUVmean and SUVmax were found to be reliable, whereas image biomarkers based on the neighbourhood grey tone difference matrix and most biomarkers based on the size zone matrix were found to be highly sensitive to variations, and should be used with care in multicentre settings. Lastly, we identify 11 data analysis pitfalls. These pitfalls concern model validation and information leakage during model development, but also relate to reporting and the software used for data analysis. Avoiding such pitfalls is essential for minimizing bias in the results and to enable reproduction and validation of radiomics studies.
Collapse
Affiliation(s)
- Alex Zwanenburg
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Helmholtz-Zentrum Dresden - Rossendorf, Technische Universität Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
25
|
Liu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, Sun K, Li L, Li B, Wang M, Tian J. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019; 9:1303-1322. [PMID: 30867832 PMCID: PMC6401507 DOI: 10.7150/thno.30309] [Citation(s) in RCA: 512] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Medical imaging can assess the tumor and its environment in their entirety, which makes it suitable for monitoring the temporal and spatial characteristics of the tumor. Progress in computational methods, especially in artificial intelligence for medical image process and analysis, has converted these images into quantitative and minable data associated with clinical events in oncology management. This concept was first described as radiomics in 2012. Since then, computer scientists, radiologists, and oncologists have gravitated towards this new tool and exploited advanced methodologies to mine the information behind medical images. On the basis of a great quantity of radiographic images and novel computational technologies, researchers developed and validated radiomic models that may improve the accuracy of diagnoses and therapy response assessments. Here, we review the recent methodological developments in radiomics, including data acquisition, tumor segmentation, feature extraction, and modelling, as well as the rapidly developing deep learning technology. Moreover, we outline the main applications of radiomics in diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalized medicine. Finally, we discuss the challenges in the field of radiomics and the scope and clinical applicability of these methods.
Collapse
Affiliation(s)
- Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Shuo Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Cheng Fang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xuezhi Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Kai Sun
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Longfei Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, 100190, China
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|