1
|
Wei J, Ai Q, Lv P, Fang W, Wang Z, Zhao J, Xu W, Chen L, Dong J, Luo B. Acupoint catgut embedding attenuates oxidative stress and cognitive impairment in chronic cerebral ischemia by inhibiting the Ang II/AT1R/NOX axis. Pflugers Arch 2024; 476:1249-1261. [PMID: 38940824 DOI: 10.1007/s00424-024-02981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.
Collapse
Affiliation(s)
- Jurui Wei
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Qi Ai
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Peier Lv
- Science and Education Section, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Wenyao Fang
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Zixuan Wang
- Department of Anesthesiology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Jiumei Zhao
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Wenqing Xu
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Lin Chen
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Jun Dong
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| | - Bijun Luo
- Department of Respiratory Medicine, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Zhang Z, Chen L, Guo Y, Li D, Zhang J, Liu L, Fan W, Guo T, Qin S, Zhao Y, Xu Z, Chen Z. The neuroprotective and neural circuit mechanisms of acupoint stimulation for cognitive impairment. Chin Med 2023; 18:8. [PMID: 36670425 PMCID: PMC9863122 DOI: 10.1186/s13020-023-00707-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment is a prevalent neurological disorder that burdens families and the healthcare system. Current conventional therapies for cognitive impairment, such as cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, are unable to completely stop or reverse the progression of the disease. Also, these medicines may cause serious problems with the digestive system, cardiovascular system, and sleep. Clinically, stimulation of acupoints has the potential to ameliorate the common symptoms of a variety of cognitive disorders, such as memory deficit, language dysfunction, executive dysfunction, reduced ability to live independently, etc. There are common acupoint stimulation mechanisms for treating various types of cognitive impairment, but few systematic analyses of the underlying mechanisms in this domain have been performed. This study comprehensively reviewed the basic research from the last 20 years and found that acupoint stimulation can effectively improve the spatial learning and memory of animals. The common mechanism may be that acupoint stimulation protects hippocampal neurons by preventing apoptosis and scavenging toxic proteins. Additionally, acupoint stimulation has antioxidant and anti-inflammatory effects, promoting neural regeneration, regulating synaptic plasticity, and normalizing neural circuits by restoring brain functional activity and connectivity. Acupoint stimulation also inhibits the production of amyloid β-peptide and the phosphorylation of Tau protein, suggesting that it may protect neurons by promoting correct protein folding and regulating the degradation of toxic proteins via the autophagy-lysosomal pathway. However, the benefits of acupoint stimulation still need to be further explored in more high-quality studies in the future.
Collapse
Affiliation(s)
- Zichen Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Liuyi Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yi Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Dan Li
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Jingyu Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Ling Liu
- grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Wen Fan
- grid.412879.10000 0004 0374 1074Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka City, 5100293 Japan
| | - Tao Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Siru Qin
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Yadan Zhao
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Zhifang Xu
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Zelin Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| |
Collapse
|
3
|
Zubov AS, Ivleva IS, Pestereva NS, Tiutiunnik TV, Traktirov DS, Karpenko MN. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl) 2022; 239:2787-2798. [PMID: 35545702 DOI: 10.1007/s00213-022-06159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Glibenclamide (GD) is a widely used medical drug; therefore, identifying the mechanisms underlying its pleiotropic effects in the central nervous system is urgent. OBJECTIVES The aim of this work was to determine the ability of GD to modulate serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) transmission and to assess the dose-dependent effect of GD on cognitive function in rats during natural ageing. METHODS In Experiment 1, rats received 10, 25, or 50 μg/kg GD intraperitoneally for 10 days. In Experiment 2, rats received 50 μg/kg GD intraperitoneally for 30 days. Spatial and working memory was assessed in the MWM and Y-maze tests, respectively. In both experiments, the levels of DA and 5-HT, their metabolites, and turnover rate were analysed by HPLC-ED in the rat hippocampus and striatum. RESULTS Changes in DA and 5-HT levels occurred only with a dose of 50 μg/kg GD. Therefore, in the second experiment, we administered a dose of 50 μg/kg GD. At this dose, GD prevented the development of impairments in spatial and working memory. The hippocampal concentrations of DA and DOPAC decreased, and the striatal concentrations of DA, DOPAC, 5-HT, and 5-HIAA increased. CONCLUSION One of the possible mechanisms of the precognitive effect of GD is its ability to modulate monoamine transmission. Thus, in translating our results to humans, GD can be recommended as a prophylactic agent for natural ageing to reduce the risk of developing cognitive impairments.
Collapse
Affiliation(s)
- Alexander S Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Irina S Ivleva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Nina S Pestereva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Tatiana V Tiutiunnik
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Dmitrtii S Traktirov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia.
| | - Marina N Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
4
|
The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plast 2021; 2021:8868447. [PMID: 33505460 PMCID: PMC7815402 DOI: 10.1155/2021/8868447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.
Collapse
|
5
|
Abd el‐Rady NM, Ahmed A, Abdel‐Rady MM, Ismail OI. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol Rep 2021; 8:e14651. [PMID: 33355990 PMCID: PMC7757676 DOI: 10.14814/phy2.14651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a worldwide severe medical and social burden. Liraglutide (LIR) has neuroprotective effects in preclinical animal models. AIM To explore the probable neuroprotective impact of Glucagon-like peptide-1 (GLP-1) on rats' behavior and to elucidate its underlying mechanisms. METHODS A total of 24 male albino rats were assigned to control, LIR (300 µg/kg subcutaneously (s.c.)), AD only (100 mg/kg aluminum chloride (AlCl3 ) orally) and LIR + AD treated groups. Eight radial arm maze was performed. Serum blood glucose, proinflammatory cytokines, oxidative stress markers were measured and hippocampal tissue homogenate neurotransmitters were evaluated. Histopathological and immunofluorescent examinations were performed. RESULTS LIR prevents the impairment of learning and improves both working memory and reference memory through significant reduction of serum tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and interferon-γ (INF-γ) and malondialdehyde (MDA) and through the increase of superoxide dismutase (SOD), dopamine, adrenaline, and noradrenaline. LIR also improves hippocampal histological features of ALCL3 administrated rats and decreases the percentage of neuronal loss. CONCLUSION LIR normalizes ALCL3 -induced dementia. It improves cognitive dysfunction and ameliorates cerebral damage.
Collapse
Affiliation(s)
| | - Amel Ahmed
- Department of Histology and Cell BiologyFaculty of MedicineAssiut UniversityEgypt
| | | | - Omnia I. Ismail
- Department of Human Anatomy and EmbryologyFaculty of MedicineAssiut UniversityAssiutEgypt
| |
Collapse
|
6
|
Lin L, Yu L, Xiang H, Hu X, Yuan X, Zhu H, Li H, Zhang H, Hou T, Cao J, Wu S, Su W, Li M. Effects of Acupuncture on Behavioral Stereotypies and Brain Dopamine System in Mice as a Model of Tourette Syndrome. Front Behav Neurosci 2019; 13:239. [PMID: 31680895 PMCID: PMC6803462 DOI: 10.3389/fnbeh.2019.00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Tourette syndrome (TS), a developmental neurobehavioral disorder, is characterized by involuntary behavioral stereotypies. Clinical studies have confirmed the positive effect of acupuncture on treating TS, but the underlying mechanisms are not fully understood. In the present study, we used behavioral tests, Western blotting, double-immunofluorescence labeling, and fluorescence spectrophotometry to investigate whether acupuncture performed at acupoints "Baihui" (GV20) and "Yintang" (GV29) affected behavioral stereotypies and regulated the dopamine (DA) system in three different brain regions in Balb/c mice injected with 3,3'-iminodipropionitrile (IDPN) as a model for TS. We found that acupuncture alleviated behavioral stereotypies, down-regulated the expression of D1R and D2R in the striatum (STR) and substantia nigra pars compacta (SNpc), and decreased the concentration of DA in the STR, SNpc, and prefrontal cortex (PFC) as well. Moreover, acupuncture reduced the expression of tyrosine hydroxylase (TH) in the SNpc. Conclusively, acupuncture ameliorated behavioral stereotypies by regulating the DA system in the STR, SNpc, and PFC. Our findings provide novel evidence for the therapeutic effect of acupuncture on TS.
Collapse
Affiliation(s)
- Lixue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongchun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaocui Yuan
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tengfei Hou
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Su
- Department of Pediatrics, Wuhan No. 1 Hospital, Wuhan, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|