1
|
Zheng K, Lin S, Gao J, Chen S, Su J, Liu Z, Duan S. Novel compound heterozygous MYO15A splicing variants in autosomal recessive non-syndromic hearing loss. BMC Med Genomics 2024; 17:4. [PMID: 38167320 PMCID: PMC10763153 DOI: 10.1186/s12920-023-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jian Gao
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shiguo Chen
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jindi Su
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiqiang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Yang JY, Wang WQ, Han MY, Huang SS, Wang GJ, Su Y, Xu JC, Fu Y, Kang DY, Yang K, Zhang X, Liu X, Gao X, Yuan YY, Dai P. Addition of an affected family member to a previously ascertained autosomal recessive nonsyndromic hearing loss pedigree and systematic phenotype-genotype analysis of splice-site variants in MYO15A. BMC Med Genomics 2022; 15:241. [PMCID: PMC9673454 DOI: 10.1186/s12920-022-01368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in MYO15A are known to cause autosomal recessive nonsyndromic hearing loss (ARNSHL), DFNB3. We have previously reported on one ARNSHL family including two affected siblings and identified MYO15A c.5964+3G > A and c.8375 T > C (p.Val2792Ala) as the possible deafness-causing variants. Eight year follow up identified one new affected individual in this family, who also showed congenital, severe to profound sensorineural hearing loss. By whole exome sequencing, we identified a new splice-site variant c.5531+1G > C (maternal allele), in a compound heterozygote with previously identified missense variant c.8375 T > C (p.Val2792Ala) (paternal allele) in MYO15A as the disease-causing variants. The new affected individual underwent unilateral cochlear implantation at the age of 1 year, and 5 year follow-up showed satisfactory speech and language outcomes. Our results further indicate that MYO15A-associated hearing loss is good candidates for cochlear implantation, which is in accordance with previous report. In light of our findings and review of the literatures, 58 splice-site variants in MYO15A are correlated with a severe deafness phenotype, composed of 46 canonical splice-site variants and 12 non-canonical splice-site variants.
Collapse
Affiliation(s)
- Jin-Yuan Yang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Wei-Qian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ming-Yu Han
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Sha-Sha Huang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Guo-Jian Wang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Yu Su
- Department of Otolaryngology, Head and Neck Surgery, Chinese PLA General Hospital Affiliated Hainan Hospital, Jianglin Road, Sanya, 572013 People’s Republic of China ,Hainan Province Clinical Research Center for Otolaryngologic and Head and Neck Diseases, Jianglin Road, Sanya, 572013 People’s Republic of China
| | - Jin-Cao Xu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Ying Fu
- grid.27255.370000 0004 1761 1174Department of Otorhinolaryngology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035 Shandong People’s Republic of China
| | - Dong-Yang Kang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Kun Yang
- grid.488137.10000 0001 2267 2324Postgraduate Training Base of Jinzhou Medical University, The PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xin Zhang
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Xing Liu
- grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Xue Gao
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China ,grid.488137.10000 0001 2267 2324Department of Otolaryngology, PLA Rocket Force Characteristic Medical Center, 16# XinWai Da Jie, Beijing, 100088 People’s Republic of China
| | - Yong-Yi Yuan
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| | - Pu Dai
- grid.488137.10000 0001 2267 2324College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853 People’s Republic of China ,grid.419897.a0000 0004 0369 313XNational Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, People’s Republic of China ,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Gong R, Jiang F, Moreland ZG, Reynolds MJ, de los Reyes SE, Gurel P, Shams A, Heidings JB, Bowl MR, Bird JE, Alushin GM. Structural basis for tunable control of actin dynamics by myosin-15 in mechanosensory stereocilia. SCIENCE ADVANCES 2022; 8:eabl4733. [PMID: 35857845 PMCID: PMC9299544 DOI: 10.1126/sciadv.abl4733] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 06/03/2022] [Indexed: 05/12/2023]
Abstract
The motor protein myosin-15 is necessary for the development and maintenance of mechanosensory stereocilia, and mutations in myosin-15 cause hereditary deafness. In addition to transporting actin regulatory machinery to stereocilia tips, myosin-15 directly nucleates actin filament ("F-actin") assembly, which is disrupted by a progressive hearing loss mutation (p.D1647G, "jordan"). Here, we present cryo-electron microscopy structures of myosin-15 bound to F-actin, providing a framework for interpreting the impacts of deafness mutations on motor activity and actin nucleation. Rigor myosin-15 evokes conformational changes in F-actin yet maintains flexibility in actin's D-loop, which mediates inter-subunit contacts, while the jordan mutant locks the D-loop in a single conformation. Adenosine diphosphate-bound myosin-15 also locks the D-loop, which correspondingly blunts actin-polymerization stimulation. We propose myosin-15 enhances polymerization by bridging actin protomers, regulating nucleation efficiency by modulating actin's structural plasticity in a myosin nucleotide state-dependent manner. This tunable regulation of actin polymerization could be harnessed to precisely control stereocilium height.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Fangfang Jiang
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Zane G. Moreland
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Matthew J. Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | | | - Pinar Gurel
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Arik Shams
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James B. Heidings
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, UK
- UCL Ear Institute, University College London, London, UK
| | - Jonathan E. Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gregory M. Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
4
|
Hearing Features and Cochlear Implantation Outcomes in Patients With PathogenicMYO15AVariants: a Multicenter Observational Study. Ear Hear 2022; 43:1198-1207. [DOI: 10.1097/aud.0000000000001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tu H, Zhang A, Fu X, Xu S, Bai X, Wang H, Gao J. SMPX Deficiency Causes Stereocilia Degeneration and Progressive Hearing Loss in CBA/CaJ Mice. Front Cell Dev Biol 2021; 9:750023. [PMID: 34722533 PMCID: PMC8551870 DOI: 10.3389/fcell.2021.750023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.
Collapse
Affiliation(s)
- Hailong Tu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Aizhen Zhang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Xiaolong Fu
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| | - Shiqi Xu
- University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Xiaohui Bai
- Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Haibo Wang
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China.,Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, China
| | - Jiangang Gao
- School of Life Sciences, Shandong Provincial ENT Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Na G, Choi HJ, Joo SY, Rim JH, Kim JA, Kim HY, Yu S, Jeong Y, Shin GC, Noh HE, Lee HY, Kim DH, Gee HY, Jung J, Choi JY. Heterogeneity of MYO15A variants significantly determine the feasibility of acoustic stimulation with hearing aid and cochlear implant. Hear Res 2021; 404:108227. [PMID: 33784549 DOI: 10.1016/j.heares.2021.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Autosomal recessive nonsyndromic hearing loss 3 (DFNB3) mainly leads to congenital and severe-to-profound hearing impairment, which is caused by variants in MYO15A. However, audiological heterogeneity in patients with DFNB3 hinders precision medicine in hearing rehabilitation. Here, we aimed to elucidate the heterogeneity of the auditory phenotypes of MYO15A variants according to the affected domain and the feasibilities for acoustic stimulation. We conducted whole-exome sequencing for 10 unrelated individuals from seven multiplex families with DFNB3; 11 MYO15A variants, including the novel frameshift c.900delT (p.Pro301Argfs*143) and nonsense c.4879G > T (p.Glu1627*) variants, were identified. In seven probands, residual hearing at low frequencies was significantly higher in the groups with one or two N-terminal frameshift variants in trans conformation compared to that in the group without these variants. This is consistent with the 56 individuals from the previously published reports that carried a varying number of N-terminal truncating variants in MYO15A. In addition, patients with missense variants in the second FERM domain had better hearing at low frequencies than patients without these variants. Subsequently, acoustic stimulation provided by devices such as hearing aids or cochlear implants was feasible in patients with one or two N-terminal truncating variants or a second FERM missense variant. In conclusion, N-terminal or second FERM variants in MYO15A allow the practical use of acoustic stimulation through hearing aids or electroacoustic stimulation for aural rehabilitation.
Collapse
Affiliation(s)
- Gina Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Geun Cheol Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Ho Young Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| |
Collapse
|
7
|
Five Novel Mutations in LOXHD1 Gene Were Identified to Cause Autosomal Recessive Nonsyndromic Hearing Loss in Four Chinese Families. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1685974. [PMID: 32149082 PMCID: PMC7049443 DOI: 10.1155/2020/1685974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/17/2020] [Indexed: 01/31/2023]
Abstract
Hearing loss is one of the most common sensory disorders in newborns and is mostly caused by genetic factors. Autosomal recessive nonsyndromic hearing loss (ARNSHL) is usually characterized as a severe-to-profound congenital sensorineural hearing loss and later can cause various degrees of defect in the language and intelligent development of newborns. The mutations in LOXHD1 gene have been shown to cause DFNB77, a type of ARNSHL. To date, there are limited reports about the association between LOXHD1 gene and ARNSHL. In this study, we reported six patients from four Chinese families suffering from severe-to-profound nonsyndromic hearing loss. We performed targeted next generation sequencing in the six affected members and identified five novel pathogenic mutations in LOXHD1 including c.277G>A (p.D93N), c.611-2A>T, c.1255+3A>G, c.2329C>T (p.Q777 ∗ ), and c.5888delG (p.G1963Afs ∗ 136). These mutations were confirmed to be cosegregated with the hearing impairment in the families by Sanger sequencing and were inherited in an autosomal recessive pattern. All of the five mutations were absent in 200 control subjects. There were no symptoms of Fuchs corneal dystrophy in the probands and their blood-related relatives. We concluded that these five novel mutations could be involved in the underlying mechanism resulting in the hearing loss, and this discovery expands the genotypic spectrum of LOXHD1 mutations.
Collapse
|
8
|
Wu CC, Tsai CY, Lin YH, Chen PY, Lin PH, Cheng YF, Wu CM, Lin YH, Lee CY, Erdenechuluun J, Liu TC, Chen PL, Hsu CJ. Genetic Epidemiology and Clinical Features of Hereditary Hearing Impairment in the Taiwanese Population. Genes (Basel) 2019; 10:genes10100772. [PMID: 31581539 PMCID: PMC6826657 DOI: 10.3390/genes10100772] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Hereditary hearing impairment (HHI) is a common but heterogeneous clinical entity caused by mutations in a plethora of deafness genes. Research over the past few decades has shown that the genetic epidemiology of HHI varies significantly across populations. In this study, we used different genetic examination strategies to address the genetic causes of HHI in a large Taiwanese cohort composed of >5000 hearing-impaired families. We also analyzed the clinical features associated with specific genetic mutations. Our results demonstrated that next-generation sequencing-based examination strategies could achieve genetic diagnosis in approximately half of the families. Common deafness-associated genes in the Taiwanese patients assessed, in the order of prevalence, included GJB2, SLC26A4, OTOF, MYO15A, and MTRNR1, which were similar to those found in other populations. However, the Taiwanese patients had some unique mutations in these genes. These findings may have important clinical implications for refining molecular diagnostics, facilitating genetic counseling, and enabling precision medicine for the management of HHI.
Collapse
Affiliation(s)
- Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Yi-Hsin Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pey-Yu Chen
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital Yunlin Branch, Yunlin 64041, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Che-Ming Wu
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Linkou 33302, Taiwan.
| | - Yin-Hung Lin
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
| | - Chee-Yee Lee
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| | - Jargalkhuu Erdenechuluun
- Department of Otolaryngology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
- The EMJJ Otolaryngology Hospital, Ulaanbaatar 14210, Mongolia.
- Department of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar 16060, Mongolia.
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 10055, Taiwan.
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Department of Otolaryngology, Buddhist Tzuchi General Hospital, Taichung Branch, Taichung 42743, Taiwan.
| |
Collapse
|
9
|
Zhang J, Guan J, Wang H, Yin L, Wang D, Zhao L, Zhou H, Wang Q. Genotype-phenotype correlation analysis of MYO15A variants in autosomal recessive non-syndromic hearing loss. BMC MEDICAL GENETICS 2019; 20:60. [PMID: 30953472 PMCID: PMC6451310 DOI: 10.1186/s12881-019-0790-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Background MYO15A variants are responsible for human non-syndromic autosomal recessive deafness (DFNB3). The majority of MYO15A variants are associated with a congenital severe-to-profound hearing loss phenotype, except for MYO15A variants in exon 2, which cause a milder auditory phenotype, suggesting a genotype-phenotype correlation of MYO15A. However, MYO15A variants not in exon 2 related to a milder phenotype have also been reported, indicating that the genotype-phenotype correlation of MYO15A is complicated. This study aimed to provide more cases of MYO15A variation with diverse phenotypes to analyse this complex correlation. Methods Fifteen Chinese autosomal recessive non-syndromic hearing loss (ARNSHL) individuals with MYO15A variants (8 males and 7 females) from 14 unrelated families, identified by targeted gene capture of 127 known candidate deafness genes, were recruited. Additionally, we conducted a review of the literature to further analyses all reported MYO15A genotype-phenotype relationships worldwide. Results We identified 16 novel variants and 12 reported pathogenic MYO15A variants in 15 patients, two of which presented with a milder phenotype. Interestingly, one of these cases carried two reported pathogenic variants in exon 2, while the other carried two novel variants not in exon 2. Based on our literature review, MYO15A genotype-phenotype correlation analysis showed that almost all domains were reported to be correlated with a milder phenotype. However, variants in the N-terminal domain were more likely to cause a milder phenotype. Using next-generation sequencing (NGS), we also found that the number of known MYO15A variants with milder phenotypes in Southeast Asia has increased in recent years. Conclusion Our work extended the MYO15A variant spectrum, enriched our knowledge of auditory phenotypes, and tried to explore the genotype-phenotype correlation in different populations in order to investigate the cause of the complex MYO15A genotype-phenotype correlation. Electronic supplementary material The online version of this article (10.1186/s12881-019-0790-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.,Department of Otolaryngology of Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jing Guan
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| | - Hongyang Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | | | - Dayong Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Lidong Zhao
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Huifang Zhou
- Department of Otolaryngology of Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiuju Wang
- Chinese PLA Institute of Otolaryngology, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
10
|
Alimardani M, Hosseini SM, Khaniani MS, Haghi MR, Eslahi A, Farjami M, Chezgi J, Derakhshan SM, Mojarrad M. Targeted Mutation Analysis of the SLC26A4, MYO6, PJVK and CDH23 Genes in Iranian Patients with AR Nonsyndromic Hearing Loss. Fetal Pediatr Pathol 2019; 38:93-102. [PMID: 30582396 DOI: 10.1080/15513815.2018.1547336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hearing loss (HL) is the most prevalent sensory disorder. The over 100 genes implicated in autosomal recessive nonsyndromic hearing loss (ARNSHL) makes it difficult to analyze and determine the accurate genetic causes of hearing loss. We sought to de?ne the frequency of seven hearing loss-Causing causing genetic Variants in four genes in an Iranian population with hearing loss. MATERIALS AND METHODS One hundred ARNSHL patients with normal GJB2/GJB6 genes were included, and targeted mutations in SLC26A4, MYO6, PJVK and CDH23 genes were analyzed by ARMS-PCR. The negative and positive results were confirmed by the Sanger sequencing. RESULTS We found only two mutations, one in MYO6 (c.554-1 G > A) gene and another in PJVK (c.547C > T). CONCLUSION c.554-1G > A and c.547C > T mutations are responsible for 1% each of the Iranian ARNSHL patients. These genes are not a frequent cause of ARNSHL in an Iranian population.
Collapse
Affiliation(s)
- Maliheh Alimardani
- a Neurosciences Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Mojtaba Hosseini
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahmoud Shekari Khaniani
- b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,e Ebne Sina Medical Genetic Diagnostic Laboratory , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Mohsen Rajati Haghi
- f Department of Head and Neck Surgery, ENT Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Atieh Eslahi
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mashsa Farjami
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Javad Chezgi
- c Student Research Committee, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Sima Mansoori Derakhshan
- a Neurosciences Research Center , Tabriz University of Medical Science , Tabriz , Iran.,b Department of Medical Genetics , Tabriz University of Medical Sciences , Tabriz , Iran.,e Ebne Sina Medical Genetic Diagnostic Laboratory , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- d Department of Medical Genetics , Mashhad University of Medical Sciences , Mashhad , Iran.,g Medical Genetics Research Center, School of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|