1
|
Katuromunda M, Ssekatawa K, Niwagaba S. A Preliminary Evaluation of the Antibacterial Activity of Lemon Fruit Juice, Mondia whitei Ethanolic Extract, and Their Combination Against Streptococcus mutans. Infect Drug Resist 2024; 17:4291-4299. [PMID: 39381078 PMCID: PMC11460347 DOI: 10.2147/idr.s474810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024] Open
Abstract
Background Dental caries has gained momentum as one of the main public healthcare concerns worldwide. Although the occurrence of dental caries in Uganda is on the rise, little attention has been paid to promoting oral healthcare in the country. Thus, this study aimed to evaluate the citrus lemon extracts, and Mondia whitei root bark ethanolic extract as candidate alternative therapeutic agents for streptococcus mutans, the causative agent of dental caries. Methods In this study, the citrus lemon juice, pulp citrus lemon juice, and Mondia whitei ethanolic extract were screened for phytochemicals. Furthermore, the anti-Streptococcus mutans activity of the citrus lemon juice, citrus lemon pulp juice, and Mondia whitei ethanolic extract was determined by the agar well diffusion method while the minimum inhibitory concentration and minimum bactericidal concentration were determined by serial broth dilution. Results Phytochemical screening revealed the presence of alkaloids, flavonoids, terpenoids, and tannins in the Mondia whitei ethanolic extract and citrus lemon juices, while glycosides were only detected in lemon extracts. The zones of inhibition of Mondia whitei ethanolic extract, citrus lemon juice, citrus lemon pulp juice, and the cocktail were 13.67 ± 0.33 mm, 18.67 ± 0.33 mm, 18.33 ± 0.67 mm, and 18.00 ± 0.58 mm, respectively. The citrus lemon juice and citrus lemon pulp juice exhibited significantly lower MIC of 0.195 mg/mL, and 0.391mg/mL, respectively. The efficacy of the extract/juices increased with an increase in the concentration. Conclusion The study findings revealed that Mondia whitei ethanolic extract and lemon extracts have potent antibacterial activity against streptococcus mutans, the main causative agent of dental caries; thus, can be further explored to formulate a herbal concoction for the prevention and treatment of oral cavity infections in resources-limited low-income communities.
Collapse
Affiliation(s)
- Markarius Katuromunda
- Department of Pharmacognosy, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Kenneth Ssekatawa
- Department of Science, Technical and Vocational Education, Makerere University, Kampala, Uganda
- Africa Centre of Excellence in Materials Product Development and Nanotechnology (MAPRONANO ACE), Makerere University, Kampala, Uganda
| | - Silivano Niwagaba
- Department of Pharmacognosy, Kampala International University, Western Campus, Bushenyi, Uganda
| |
Collapse
|
2
|
Ghodsi S, Nouri M. Vegan gummy candies with low calorie based on celery ( Apium graveolens) puree and boswellia gum ( Boswellia thurifera). Food Sci Nutr 2024; 12:5785-5798. [PMID: 39139949 PMCID: PMC11317705 DOI: 10.1002/fsn3.4190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/18/2024] [Accepted: 04/13/2024] [Indexed: 08/15/2024] Open
Abstract
Gummy candy is one of the main snacks for children, and conventional samples with high calorie illustrate no nutritional value; therefore, the aim of present research was to develop functional product on priority. Celery (Apium graveolens) puree (25%-50%), boswellia gum (10%-20%), lemon essential oil (0.25%-0.50%), and sugar (10%-20%) in two levels were considered for vegan gummy candy production. Based on central composite design, the 30 types of gummy candies were prepared; afterward, response surface methodology was applied to optimize results determined by texture (hardness, springiness, adhesiveness, gumminess, chewiness, and elasticity characteristics), physicochemical attributes (pH, sugar content, water activity, antioxidant function, and calorie restriction), and also sensory evaluation. In general, elevated concentration of celery puree and boswellia gum-enhanced hardness, chewiness, and also gumminess for treated products. On the other hand, higher sugar with lemon essential oil improved adhesion, springiness, and elasticity features. More boswellia gum, celery, lemon essential oil, and reduction in sugar elevated water activity and also declined pH for treated samples. The celery puree, boswellia gum, and lemon essential oil significantly enhanced antioxidant function of treated gummy candies. According to attained results, sugar had a remarkable influence on acceptability and in treated samples calorie decreased. Based on all investigated factors, optimal formulation was achieved including 25% celery puree, 20% boswellia gum, 0.450% lemon essential oil, and 13.55% sugar. Regarding the results, obtained gummy candy with high nutritional value and low calorie demonstrated the potential to produce extensively in food sector.
Collapse
Affiliation(s)
- Saba Ghodsi
- Department of Food Science and TechnologyRoudehen Branch, Islamic Azad UniversityRoudehenIran
| | - Marjan Nouri
- Department of Food Science and TechnologyRoudehen Branch, Islamic Azad UniversityRoudehenIran
| |
Collapse
|
3
|
Hamdi A, Horchani M, Jannet HB, Snoussi M, Noumi E, Bouali N, Kadri A, Polito F, De Feo V, Edziri H. In Vitro Screening of Antimicrobial and Anti-Coagulant Activities, ADME Profiling, and Molecular Docking Study of Citrus limon L. and Citrus paradisi L. Cold-Pressed Volatile Oils. Pharmaceuticals (Basel) 2023; 16:1669. [PMID: 38139796 PMCID: PMC10748103 DOI: 10.3390/ph16121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Citrus, which belongs to the Rutaceae family, is a very widespread genus in the Mediterranean Basin. In Tunisia, various parts of these spontaneous or cultivated plants are used in common dishes or in traditional medicine. The purpose of this work was to investigate C. limon and C. paradisi essential oil (EO). The samples were studied for their chemical composition using SPME/MS, as well as their antibacterial and antifungal activities. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) methods were used to evaluate the anticoagulant potentialities. The obtained results show that both essential oils are rich in monoterpenes hydrocarbons, whereby limonene is the main compound in C. paradisi EO (86.8%) and C. limon EO (60.6%). Moreover, C. paradisi EO contains β-pinene (13.3%), sabinene (2.2%) and α-pinene (2.1%). The antibacterial assay of the essential oils showed important bactericidal and fungicidal effects against all strains tested. In fact, the MICs values of C. limon EO ranged from 0.625 to 2.5 mg/mL against all Gram-positive and Gram-negative bacteria, and from 6.25 to 12.5 mg/mL for Candida spp. strains, while C. paradisi EO was more active against all bacteria with low MICs values ranging from 0.192 to 0.786 mg/mL, and about 1.5 mg/mL against Candida species. Both tested Citrus EOs exhibited interesting anticoagulant activities as compared to heparin. The molecular docking approach was used to study the binding affinity and molecular interactions of all identified compounds with active sites of cytidine deaminase from Klebsiella pneumoniae (PDB: 6K63) and the C (30) carotenoid dehydrosqualene synthase from Staphylococcus aureus (PDB: 2ZCQ). The obtained results show that limonene had the highest binding score of -4.6 kcal.mol-1 with 6K63 enzyme, and -6.7 kcal.mol-1 with 2ZCQ receptor. The ADME profiling of the major constituents confirmed their important pharmacokinetic and drug-like properties. Hence, the obtained results highlight the potential use of both C. limon and C. paradisi essential oils as sources of bioactive compounds with antibacterial, antifungal, and anti-coagulant activities.
Collapse
Affiliation(s)
- Assia Hamdi
- Laboratory of Chemical, Pharmaceutical and Pharmacological Development of Drugs, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia;
| | - Mabrouk Horchani
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity, Medicinal Chemistry and Natural Products (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, Monastir 5019, Tunisia; (M.H.); (H.B.J.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (E.N.); (N.B.)
- Medical and Diagnostic Research Centre, University of Ha’il, Hail 55473, Saudi Arabia
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al Baha University, Al Baha 65527, Saudi Arabia;
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Hayet Edziri
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir 5000, Tunisia;
| |
Collapse
|
4
|
Chatzimitakos T, Athanasiadis V, Kotsou K, Bozinou E, Lalas SI. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus limon Peel. Antioxidants (Basel) 2023; 12:1605. [PMID: 37627600 PMCID: PMC10451340 DOI: 10.3390/antiox12081605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Citrus limon is among the species of the genus Citrus that dominates the world market. It is highly nutritious for humans as it contains twice the amount of the suggested daily intake of ascorbic acid and is also a good source of phenolic compounds, carotenoids, and other bioactive compounds. This study aimed to identify the optimal extraction procedures and parameters to obtain the maximum quantity of bioactive components from lemon peel by-products. Various extraction techniques, including stirring, ultrasound, and pulsed electric field, were evaluated, along with factors such as extraction time, temperature, and solvent composition. The results revealed that simple stirring for 150 min at 20 °C proved to be the most effective and practical method. The ideal solvent mixture consisted of 75% ethanol and 25% water, highlighting the crucial role of solvent composition in maximizing extraction efficiency. Among the extracted compounds were phenolics, ascorbic acid, and carotenoids. Under optimum extraction conditions, the extract was found to contain high total phenolic content (TPC) (51.2 mg of gallic acid equivalents, GAE/g dry weight), total flavonoid content (TFC) (7.1 mg of rutin equivalents, RtE/g dry weight), amounts of ascorbic acid (3.7 mg/g dry weight), and total carotenoids content (TCC) (64.9 μg of β-carotene equivalents, CtE/g). Notably, the extracts demonstrated potent antioxidant properties (128.9 μmol of ascorbic acid equivalents, AAE/g; and 30.3 μmol of AAE/g as evidenced by FRAP and DPPH assays, respectively), making it a promising ingredient for functional foods and cosmetics. The study's implications lie in promoting sustainable practices by converting lemon peel into valuable resources and supporting human health and wellness through the consumption of natural antioxidants.
Collapse
Affiliation(s)
| | - Vassilis Athanasiadis
- Department of Food Science & Nutrition, University of Thessaly, Terma N. Temponera Str., 43100 Karditsa, Greece; (T.C.); (K.K.); (E.B.); (S.I.L.)
| | | | | | | |
Collapse
|
5
|
Bao Y, Zeng Z, Yao W, Chen X, Jiang M, Sehrish A, Wu B, Powell CA, Chen B, Xu J, Zhang X, Zhang M. A gap-free and haplotype-resolved lemon genome provides insights into flavor synthesis and huanglongbing (HLB) tolerance. HORTICULTURE RESEARCH 2023; 10:uhad020. [PMID: 37035858 PMCID: PMC10076211 DOI: 10.1093/hr/uhad020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 05/15/2023]
Abstract
The lemon (Citrus limon; family Rutaceae) is one of the most important and popular fruits worldwide. Lemon also tolerates huanglongbing (HLB) disease, which is a devastating citrus disease. Here we produced a gap-free and haplotype-resolved chromosome-scale genome assembly of the lemon by combining Pacific Biosciences circular consensus sequencing, Oxford Nanopore 50-kb ultra-long, and high-throughput chromatin conformation capture technologies. The assembly contained nine-pair chromosomes with a contig N50 of 35.6 Mb and zero gaps, while a total of 633.0 Mb genomic sequences were generated. The origination analysis identified 338.5 Mb genomic sequences originating from citron (53.5%), 147.4 Mb from mandarin (23.3%), and 147.1 Mb from pummelo (23.2%). The genome included 30 528 protein-coding genes, and most of the assembled sequences were found to be repetitive sequences. Several significantly expanded gene families were associated with plant-pathogen interactions, plant hormone signal transduction, and the biosynthesis of major active components, such as terpenoids and flavor compounds. Most HLB-tolerant genes were expanded in the lemon genome, such as 2-oxoglutarate (2OG)/Fe(II)-dependent oxygenase and constitutive disease resistance 1, cell wall-related genes, and lignin synthesis genes. Comparative transcriptomic analysis showed that phloem regeneration and lower levels of phloem plugging are the elements that contribute to HLB tolerance in lemon. Our results provide insight into lemon genome evolution, active component biosynthesis, and genes associated with HLB tolerance.
Collapse
Affiliation(s)
| | | | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Xiao Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mengwei Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Akbar Sehrish
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Bo Wu
- School of Computing, Clemson University, 821 McMillan Rd, Clemson, SC 29631, USA
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agric-Biological Resources, Guangxi University, Nanning 530005, China
| | - Jianlong Xu
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | |
Collapse
|
6
|
Ben Hsouna A, Sadaka C, Generalić Mekinić I, Garzoli S, Švarc-Gajić J, Rodrigues F, Morais S, Moreira MM, Ferreira E, Spigno G, Brezo-Borjan T, Akacha BB, Saad RB, Delerue-Matos C, Mnif W. The Chemical Variability, Nutraceutical Value, and Food-Industry and Cosmetic Applications of Citrus Plants: A Critical Review. Antioxidants (Basel) 2023; 12:481. [PMID: 36830039 PMCID: PMC9952696 DOI: 10.3390/antiox12020481] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Citrus fruits occupy an important position in the context of the fruit trade, considering that both fresh fruits and processed products are produced on a large scale. Citrus fruits are recognized as an essential component of the human diet, thanks to their high content of beneficial nutrients such as vitamins, minerals, terpenes, flavonoids, coumarins and dietary fibers. Among these, a wide range of positive biological activities are attributed to terpenes and flavonoids derivatives. In this review, a list of bibliographic reports (from 2015 onwards) on the phytochemical composition, beneficial effects and potential applications of citrus fruits and their by-products is systematically summarized. In detail, information regarding the nutraceutical and medicinal value closely linked to the presence of numerous bioactive metabolites and their growing use in the food industry and food packaging, also considering any technological strategies such as encapsulation to guarantee their stability over time, were evaluated. In addition, since citrus fruit, as well as its by-products, are interesting alternatives for the reformulation of natural cosmetic products, the sector of the cosmetic industry is also explored. More in-depth knowledge of the latest information in this field will contribute to future conscious use of citrus fruits.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| | | | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Jaroslava Švarc-Gajić
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Francisca Rodrigues
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M. Moreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Eduarda Ferreira
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Giorgia Spigno
- DiSTAS, Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Tanja Brezo-Borjan
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P “1177”, Sfax 3018, Tunisia
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| |
Collapse
|
7
|
Maqbool Z, Khalid W, Atiq HT, Koraqi H, Javaid Z, Alhag SK, Al-Shuraym LA, Bader DMD, Almarzuq M, Afifi M, AL-Farga A. Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023; 28:molecules28041636. [PMID: 36838623 PMCID: PMC9960763 DOI: 10.3390/molecules28041636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The current research was conducted to extract the bioactive compounds from citrus waste and assess their role in the development of functional foods to treat different disorders. The scientific name of citrus is Citrus L. and it belongs to the Rutaceae family. It is one of the most important fruit crops that is grown throughout the world. During processing, a large amount of waste is produced from citrus fruits in the form of peel, seeds, and pomace. Every year, the citrus processing industry creates a large amount of waste. The citrus waste is composed of highly bioactive substances and phytochemicals, including essential oils (EOs), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and a range of trace elements. These valuable compounds are used to develop functional foods, including baked products, beverages, meat products, and dairy products. Moreover, these functional foods play an important role in treating various disorders, including anti-aging, anti-mutagenic, antidiabetic, anti-carcinogenic, anti-allergenic, anti-oxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective activity. EOs are complex and contain several naturally occurring bioactive compounds that are frequently used as the best substitutes in the food industry. Citrus essential oils have many uses in the packaging and food safety industries. They can also be used as an alternative preservative to extend the shelf lives of different food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- Correspondence:
| | - Hafiz Taimoor Atiq
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan 23546, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Zaryab Javaid
- Department of Pharmacy, University of Central Punjab, Lahore 54590, Pakistan
| | - Sadeq K. Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia
| | - Laila A. Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - D. M. D. Bader
- Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Almarzuq
- Unit of Scientific Research, Applied College, Qassim University, Buraidah 52571, Saudi Arabia
| | - Mohamed Afifi
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
8
|
Sun L, Xu J, Nasrullah, Wang L, Nie Z, Huang X, Sun J, Ke F. Comprehensive studies of biological characteristics, phytochemical profiling, and antioxidant activities of two local citrus varieties in China. Front Nutr 2023; 10:1103041. [PMID: 36761227 PMCID: PMC9905102 DOI: 10.3389/fnut.2023.1103041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Citrus is widely grown all over the world, and citrus fruits have long been recognized for their nutritional and medical value for human health. However, some local citrus varieties with potentially important value are still elusive. In the current study, we elucidated the biological characteristics, phylogenetic and phytochemical profiling, antioxidants and antioxidant activities of the two local citrus varieties, namely Zangju and Tuju. The physiological and phylogenetic analysis showed that Zangju fruit has the characteristics of wrinkled skin, higher acidity, and phylogenetically closest to sour mandarin Citrus sunki, whereas, Tuju is a kind of red orange with vermilion peel, small fruit and high sugar content, and closely clustered with Citrus erythrosa. The phytochemical analysis showed that many nutrition and antioxidant related differentially accumulated metabolites (DAMs) were detected in the peel and pulp of Zangju and Tuju fruits. Furthermore, it was found that the relative abundance of some key flavonoids and phenolic acids, such as tangeritin, sinensetin, diosmetin, nobiletin, and sinapic acid in the peel and pulp of Zangju and Tuju were higher than that in sour range Daidai and satsuma mandarin. Additionally, Zangju pulp and Tuju peel showed the strongest ferric reducing/antioxidant power (FRAP) activity, whereas, Tuju peel and pulp showed the strongest DPPH and ABTS free radical scavenging activities, respectively. Moreover, both the antioxidant activities of peel and pulp were significantly correlated with the contents of total phenols, total flavonoids or ascorbic acid. These results indicate that the two local citrus varieties have certain nutritional and medicinal value and potential beneficial effects on human health. Our findings will also provide an important theoretical basis for further conservation, development and medicinal utilization of Zangju and Tuju.
Collapse
Affiliation(s)
- Lifang Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Nasrullah
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Luoyun Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Zhenpeng Nie
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Xiu Huang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Jianhua Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| | - Fuzhi Ke
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou, China
- National Center for Citrus Variety Improvement, Taizhou, China
| |
Collapse
|
9
|
Cisse S, Bahut M, Marais C, Zemb O, Chicoteau P, Benarbia MEA, Guilet D. Fine characterization and microbiota assessment as keys to understanding the positive effect of standardized natural citrus extract on broiler chickens. J Anim Sci 2023; 101:skad069. [PMID: 36881787 PMCID: PMC10032183 DOI: 10.1093/jas/skad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
The objective of this study was to investigate the effect and composition of a standardized natural citrus extract (SNCE) on both broiler chickens' growth performances and intestinal microbiota. A total of 930 one-day-old males were randomly assigned to three dietary treatments: a control treatment (CTL) in which broiler chickens were fed with a standard diet and two citrus treatments in which broiler chickens were fed with the same standard diet supplemented with 250 ppm and 2,500 ppm of SNCE, respectively. Each dietary treatment was composed of 10 experimental units (pen) of 31 broiler chickens each. Growth performances such as feed consumption, body weight, and feed conversion ratio (FCR) were recorded weekly until day 42. Litter quality was also weekly recorded while mortality was daily recorded. One broiler chicken was randomly selected from each pen (10 chickens/group) and ceca samples were collected for microbiota analysis at day 7 and 42. Chromatographic methods were used to determine molecules that enter into the composition of the SNCE. Results from the characterization of SNCE allowed to identify pectic oligosaccharides (POS) as a major component of the SNCE. In addition, 35 secondary metabolites, including eriocitrin, hesperidin, and naringin, were identified. The experiment performed on broiler chickens showed that the final body weight of broiler chickens fed diets supplemented with SNCE was higher than those fed the CTL diets (P < 0.01). Broiler cecal microbiota was impacted by age (P < 0.01) but not by the dietary supplementation of SNCE. Results indicate that SNCE allowed enhancing chickens' performances without any modulation of the cecal microbiota of broiler chickens. The characterization of SNCE allowed to identify compounds such as eriocitrin, naringin, hesperidin, and POS. Thus, opening new horizons for a better understanding of the observed effect on broiler chickens' growth performances.
Collapse
Affiliation(s)
- Sekhou Cisse
- Substances d’origines naturelles et analogues structuraux (SONAS), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers, F-49000 Angers, France
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Muriel Bahut
- Analyse des acides nucléiques (ANAN), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers F-49000 Angers, France
| | - Coralie Marais
- Analyse des acides nucléiques (ANAN), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers F-49000 Angers, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, 31320 Castanet Tolosan, France
| | - Pierre Chicoteau
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Mohammed El Amine Benarbia
- Nor-Feed SAS, 3 rue Amedeo Avogadro, 49070 Beaucouzé, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - David Guilet
- Substances d’origines naturelles et analogues structuraux (SONAS), Structure fédérative de la recherche Qualité et Santé du Végétal, University of Angers, F-49000 Angers, France
- FeedInTech, 42 rue Georges Morel, 49070 Beaucouzé, France
| |
Collapse
|
10
|
Nyagumbo E, Pote W, Shopo B, Nyirenda T, Chagonda I, Mapaya RJ, Maunganidze F, Mavengere WN, Mawere C, Mutasa I, Kademeteme E, Maroyi A, Taderera T, Bhebhe M. Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 128:103232. [PMID: 36161239 PMCID: PMC9489988 DOI: 10.1016/j.pce.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Respiratory diseases have in the recent past become a health concern globally. More than 523 million cases of coronavirus disease (COVID19), a recent respiratory diseases have been reported, leaving more than 6 million deaths worldwide since the start of the pandemic. In Zimbabwe, respiratory infections have largely been managed using traditional (herbal) medicines, due to their low cost and ease of accessibility. This review highlights the plants' toxicological and pharmacological evaluation studies explored. It seeks to document plants that have been traditionally used in Zimbabwe to treat respiratory ailments within and beyond the past four decades. Extensive literature review based on published papers and abstracts retrieved from the online bibliographic databases, books, book chapters, scientific reports and theses available at Universities in Zimbabwe, were used in this study. From the study, there were at least 58 plant families comprising 160 medicinal plants widely distributed throughout the country. The Fabaceae family had the highest number of medicinal plant species, with a total of 21 species. A total of 12 respiratory ailments were reportedly treatable using the identified plants. From a total of 160 plants, colds were reportedly treatable with 56, pneumonia 53, coughs 34, chest pain and related conditions 29, asthma 25, tuberculosis and spots in lungs 22, unspecified respiratory conditions 20, influenza 13, bronchial problems 12, dyspnoea 7, sore throat and infections 5 and sinus clearing 1 plant. The study identified potential medicinal plants that can be utilised in future to manage respiratory infections.
Collapse
Affiliation(s)
- Elliot Nyagumbo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William Pote
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Bridgett Shopo
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| | - Trust Nyirenda
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Ignatius Chagonda
- Department of Agriculture Practice, Faculty of Agriculture, Midlands State University, Gweru, Zimbabwe
| | - Ruvimbo J Mapaya
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Fabian Maunganidze
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William N Mavengere
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Cephas Mawere
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Ian Mutasa
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Emmanuel Kademeteme
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Tafadzwa Taderera
- Department of Biomedical Sciences, Physiology Unit, University of Zimbabwe, P.O. Box MP167, Mt Pleasant, Harare, Zimbabwe
| | - Michael Bhebhe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| |
Collapse
|
11
|
Chemical characterization, antioxidant and cytotoxic activity of hydroalcoholic extract from the albedo and flavedo of Citrus limon var. pompia Camarda. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
AbstractDue to the high nutritional value as well as the appreciated sensory characteristic Citrus crop is one of the most popular fruits over the world. Albedo and flavedo are commonly discarded as waste and could represent an important by-product of food industry. In a circular economy contest we carried out a characterization of albedo and flavedo of Citrus limon var pompia (pompia) followed by the evaluation of antioxidant potential and cytotoxic activity. The chemical analysis showed the presence of several functional ingredients such as the flavanones, naringin, neohesperidin, nereriocitrin and hesperidin while quinic acid resulted the main phenolic acid detected. The flavedo extract exerted a complete inhibition of the cholesterol oxidative process from 25 μg of extract. Pompia extracts showed an inhibition of lipid oxidation in the β-carotene-linoleate system with an activity equivalent to about 0.31% (albedo) and 0.34% (flavedo) of the BHT activity, while the antiradical activity resulted equivalent to that of 62.90% (albedo) and 60.72% (flavedo) of the trolox activity. Finally, all extracts did not show any cytotoxic effect on differentiated Caco-2 cells by the AlamarBlue assay while exhibited, by MTT assay, a significant decrease in colon cancer Caco-2 cell viability.
Collapse
|
12
|
Abd El Wahab WM, Shaapan RM, El-Naggar EMB, Ahmed MM, Owis AI, Ali MI. Anti-Cryptosporidium efficacy of Citrus sinensis peel extract: Histopathological and ultrastructural experimental study. Exp Parasitol 2022; 243:108412. [DOI: 10.1016/j.exppara.2022.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
13
|
Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. NANOMATERIALS 2022; 12:nano12122013. [PMID: 35745352 PMCID: PMC9227472 DOI: 10.3390/nano12122013] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The current work concentrated on the green synthesis of silver nanoparticles (AgNPs) through the use of aqueous Citruslimon zest extract, optimizing the different experimental factors required for the formation and stability of AgNPs. The preparation of nanoparticles was confirmed by the observation of the color change of the mixture of silver nitrate, after the addition of the plant extract, from yellow to a reddish-brown colloidal suspension and was established by detecting the surface plasmon resonance band at 535.5 nm, utilizing UV-Visible analysis. The optimum conditions were found to be 1 mM of silver nitrate concentration, a 1:9 ratio extract of the mixture, and a 4 h incubation period. Fourier transform infrared spectroscopy spectrum indicated that the phytochemicals compounds present in Citrus limon zest extract had a fundamental effect on the production of AgNPs as a bio-reducing agent. The morphology, size, and elemental composition of AgNPs were investigated by zeta potential (ZP), dynamic light scattering (DLS), SEM, EDX, X-ray diffraction (XRD), and transmission electron microscopy (TEM) analysis, which showed crystalline spherical silver nanoparticles. In addition, the antimicrobial and antioxidant properties of this bioactive silver nanoparticle were also investigated. The AgNPs showed excellent antibacterial activity against one Gram-negative pathogens bacteria, Escherichia coli, and one Gram-positive bacteria, Staphylococcus aureus, as well as antifungal activity against Candida albicans. The obtained results indicate that the antioxidant activity of this nanoparticle is significant. This bioactive silver nanoparticle can be used in biomedical and pharmacological fields.
Collapse
Affiliation(s)
- Yasmina Khane
- Université de Ghardaia, BP455, Ghardaia 47000, Algeria
- Laboratory of Applied Chemistry (LAC), DGRSDT, Ctr. Univ. Bouchaib Belhadj, Ain Temouchent 46000, Algeria
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Khedidja Benouis
- Laboratory of Process Engineering, Materials and Environment, Department of Energy and Process Engineering, Faculty of Technology, University of Sidi Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
- Correspondence: (Y.K.); (S.A.); (G.M.S.)
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Bisha 67714, Saudi Arabia; (M.M.A.); (A.A.A.)
| | - Djaber Aouf
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Fares Fenniche
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Sofiane Khane
- Department of Energy and Process Engineering, Faculty of Technology, University of Djillali Liabes, Sidi Bel Abbes 22000, Algeria;
| | - Wahiba Chaibi
- Scientific and Technical Research Center in Chemistry and Physics Analysis, Bousmail RP 42415, Algeria;
| | - Abdallah Henni
- Laboratory of Dynamic Interactions and Reactivity of Systems, University of Kasdi Merbah, Ouargla 30000, Algeria; (D.A.); (F.F.); (A.H.)
| | - Hadj Daoud Bouras
- Département de Physique, Ecole Normale Supérieure de Laghouat, RP Rue des Martyrs, Laghouat BP 4033, Algeria;
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey;
| |
Collapse
|
14
|
Pitaya peel extract and lemon seed essential oil as effective sodium nitrite replacement in cured mutton. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Bekkouch O, Dalli M, Harnafi M, Touiss I, Mokhtari I, Assri SE, Harnafi H, Choukri M, Ko SJ, Kim B, Amrani S. Ginger ( Zingiber officinale Roscoe), Lemon ( Citrus limon L.) Juices as Preventive Agents from Chronic Liver Damage Induced by CCl 4: A Biochemical and Histological Study. Antioxidants (Basel) 2022; 11:390. [PMID: 35204272 PMCID: PMC8869411 DOI: 10.3390/antiox11020390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Zingiber officinale Roscoe and Citrus limon L. are well known for their multi-use and for their pharmacological effect in the treatment of many illnesses. This study aims to investigate the chemical composition of the ginger and lemon juice extracts and in addition, to evaluate their antioxidant properties and their hepatoprotective effect against the liver damage of Wistar rats induced by the injection of CCl4 to treated animals. The obtained effects were completed by a histological study for better confirmation of the registered pharmacological effects. The ginger juice extract was found to be rich in 4-gingerol, 6-gingediol, and 6-gingerol, while the lemon juice extract chemical composition was highlighted by the presence of eriodyctiol, rutin, hesperidin, and isorhamnetin. Concerning the antioxidant activity, the ginger, lemon juice extracts, and their formulation showed an important antioxidant potential using TAC (total antioxidant capacity), an antiradical activity against the radical DPPH• (2,2-diphenyl-1-picrylhydrazil), and a ferric reducing power. Finally, the ginger, lemon, and their formulation at different doses were able to prevent CCl4 induced liver damage. Indeed, these different bioactive compounds could be used as alternative agents for the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Oussama Bekkouch
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohamed Harnafi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Ilham Touiss
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Imane Mokhtari
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Soufiane El Assri
- Laboratory of Biochemistry, University Hospital Center Mohammed VI, BP 4806, Oujda 60000, Morocco; (S.E.A.); (M.C.)
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| | - Mohammed Choukri
- Laboratory of Biochemistry, University Hospital Center Mohammed VI, BP 4806, Oujda 60000, Morocco; (S.E.A.); (M.C.)
- Faculty of Medicine and Pharmacy, Mohammed First University, Oujda 60000, Morocco
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Oujda 60000, Morocco; (M.H.); (I.T.); (I.M.); (H.H.); (S.A.)
| |
Collapse
|
16
|
Effect of calcium chloride and 1-methylcyclopropene combined treatment on pectin degradation and textural changes of Eureka lemon during postharvest storage. Curr Res Food Sci 2022; 5:1412-1421. [PMID: 36105889 PMCID: PMC9464902 DOI: 10.1016/j.crfs.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
During post-harvest storage, the cell wall properties are closely associated with the physical, chemical, and biological properties of the fruit. The degradation of pectin in the cell walls and middle lamella is critical to these properties. The effects of calcium chloride (CaCl₂) and 1-methylcyclopropene (1-MCP) combined treatment on the pectin degradation, texture, and peel color of Eureka lemon were investigated during post-harvest storage. The in-situ light microscope analysis, rapid method, and FTIR test were used to investigate the spatial distribution, the pectin content, and its degradation. The results showed a reduction in pectin degradation, by 42 d the CaCl₂ and 1-MCP combined treated fruits presented a 36.7% pectin content loss which was lower than the control which was 48.3%. The treated fruits significantly exhibited enhanced textural properties, delayed weight loss, higher total acids, and improvement of other physicochemical properties in comparison to the control. The treatment deaccelerated the fruit peel color change from green to yellow and also had a better visual appearance on the final day. Overall, the results suggest that the control treatment for pectin degradation can reduce the fruit texture decline and peel color change and maintain a good visual appearance. The influence of pectin degradation on the texture and physicochemical properties of lemon provides a theoretical basis for fruit storage optimization, quality control, and shelf-life extension. Combined CaCl₂ and 1-MCP treatment delayed lemon postharvest degeneration. Treatment suppressed pectin degradation and improved the visual appearance. Treatment greatly delayed softening, reduce decay rate, and extended the shelf life. Methylesterified pectin was localized and visualized by qualitative microscopic analysis.
Collapse
|
17
|
The Anti-Obesity Effects of Lemon Fermented Products in 3T3-L1 Preadipocytes and in a Rat Model with High-Calorie Diet-Induced Obesity. Nutrients 2021; 13:nu13082809. [PMID: 34444969 PMCID: PMC8398352 DOI: 10.3390/nu13082809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/07/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Lemon (Citrus limon) has antioxidant, immunoregulatory, and blood lipid-lowering properties. This study aimed to determine the effect of the lemon fermented product (LFP) which is lemon fermented with Lactobacillus OPC1 to prevent obesity. The inhibition of lipid accumulation in 3T3-L1 adipocytes is examined using a Wistar rat model fed a high-fat diet to verify the anti-obesity efficacy and mechanism of LFP. Here, it was observed that LFP reduced cell proliferation and inhibited the lipid accumulation (8.3%) of 3T3-L1 adipocytes. Additionally, LFP reduced body weight (9.7%) and fat tissue weight (25.7%) of rats; reduced serum TG (17.0%), FFA (17.9%), glucose (29.3%) and ketone body (6.8%); and increased serum HDL-C (17.6%) and lipase activity (17.8%). LFP regulated the mRNA expression of genes related to lipid metabolism (PPARγ, C/EBPα, SREBP-1c, HSL, ATGL, FAS, and AMPK). Therefore, LFP reduces body weight and lipid accumulation by regulating the mRNA expression of genes related to lipid metabolism. Overall, our results implicate LFP as a potential dietary supplement for the prevention of obesity.
Collapse
|
18
|
LC-ESI-QTOF-MS/MS Characterisation of Phenolics in Herbal Tea Infusion and Their Antioxidant Potential. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020073] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ginger (Zingiber officinale R.), lemon (Citrus limon L.) and mint (Mentha sp.) are commonly consumed medicinal plants that have been of interest due to their health benefits and purported antioxidant capacities. This study was conducted on the premise that no previous study has been performed to elucidate the antioxidant and phenolic profile of the ginger, lemon and mint herbal tea infusion (GLMT). The aim of the study was to investigate and characterise the phenolic contents of ginger, lemon, mint and GLMT, as well as determine their antioxidant potential. Mint recorded the highest total phenolic content, TPC (14.35 ± 0.19 mg gallic acid equivalent/g) and 2,2′-azino-bis(3-e-thylbenzothiazoline-6-sulfonic acid), ABTS (24.25 ± 2.18 mg ascorbic acid equivalent/g) antioxidant activity. GLMT recorded the highest antioxidant activity in the reducing power assay, RPA (1.01 ± 0.04 mg ascorbic acid equivalent/g) and hydroxyl radical scavenging assay, •OH-RSA (0.77 ± 0.08 mg ascorbic acid equivalent/g). Correlation analysis showed that phenolic content positively correlated with the antioxidant activity. Venn diagram analysis revealed that mint contained a high proportion of exclusive phenolic compounds. Liquid chromatography coupled with electrospray ionisation and quadrupole time of flight tandem mass spectrometry (LC-ESI-QTOF-MS/MS) characterised a total of 73 phenolic compounds, out of which 11, 31 and 49 were found in ginger, lemon and mint respectively. These characterised phenolic compounds include phenolic acids (24), flavonoids (35), other phenolic compounds (9), lignans (4) and stilbene (1). High-performance liquid chromatography photometric diode array (HPLC-PDA) quantification showed that GLMT does contain a relatively high concentration of phenolic compounds. This study presented the phenolic profile and antioxidant potential of GLMT and its ingredients, which may increase the confidence in developing GLMT into functional food products or nutraceuticals.
Collapse
|
19
|
Singh N, Yarla NS, Siddiqi NJ, de Lourdes Pereira M, Sharma B. Features, Pharmacological Chemistry, Molecular Mechanism and Health Benefits of Lemon. Med Chem 2021; 17:187-202. [DOI: 10.2174/1573406416666200909104050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Background:
Citrus limon, a Mediterranean-grown citrus species of plants belonging to
the Rutaceae family, occupies a place of an impressive range of food and medicinal uses with considerable
value in the economy of the fruit of the country. Citrus fruits are economically important with
large-scale production of both the fresh fruits and industrially processed products. The extracts and
phytochemicals obtained from all parts of C. limon have shown immense therapeutic potential because
of their anticancer, anti-tumor and anti-inflammatory nature, and also serve as an important
ingredient in the formulation of several ethnic herbal medicines. These properties are mediated by the
presence of different phytochemicals, vitamins and nutrients in the citrus fruits.
Material and Methods:
The methods involved in the preparation of the present article included the
collection of information from various scientific databases, indexed periodicals, and search engines
such as Medline Scopus google scholar PubMed, PubMed central web of science, and science direct.
Results:
This communication presents an updated account of different pharmacological aspects of C.
limon associated with its anti-oxidative, antiulcer, antihelmintic, insecticidal, anticancer, cytotoxic,
and estrogenic activities. In addition, C. limon extracts possess hepatoprotective, anti-hyperglycemic,
and antimicrobial properties. The present article includes the structure and function of different key
chemical constituents from different parts of C. limon. Also, the possible molecular mechanisms of
actions of bioactive compounds from C. limon are displayed.
Conclusion:
The traditional and ethno-medicinal literature revealed that C. limon is very effective in
different pathologies. Most of these compounds possessing antioxidant properties would be implicated
in offering health benefits by acting as potential nutraceuticals to humans with special reference to
disease management of health and disease.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| | - Nagendra Sastry Yarla
- Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, King Saud University, Faculty of Science, Riyadh, Saudi Arabia
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, India
| |
Collapse
|
20
|
Singh N, Gupta VK, Doharey PK, Srivastava N, Kumar A, Sharma B. A Study on Redox Potential of Phytochemicals and their Impact on DNA. ACTA ACUST UNITED AC 2020. [DOI: 10.14302/issn.2575-7881.jdrr-20-3267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phytochemicals are endowed with antioxidant activities because of the presence of plentiful polyphenols and many other phytochemicals. However, some recent reports have suggested that phytochemicals from certain plant species exhibit DNA damaging properties mainly due to presence of alkaloids. In the present study, pBR322, Salmonella typhi DNA, insect DNA and human DNA were treated with hexanolic extract of Argemone mexicana and Thevesia peruviana leaves to assess their DNA damaging abilities. Another set of experiments was carried out using the methanolic extracts of Citrus lemon leaves to assess their DNA protecting abilities from damage of DNA by extracts of A. mexicana and T. peruviana at 150000 ppm for all DNAs used. The results indicated that the leaves extract of A. mexicanaand T. peruviana demonstrated significant DNA damaging potential at higher concentrations. In contrast, the extracts from C. limonat 15000 ppm showed maximum DNA protective properties for all DNAs used.
Collapse
Affiliation(s)
- Nitika Singh
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Pawan K. Doharey
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Neeharika Srivastava
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Abhishek Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Bechan Sharma
- Department of Biochemistry, Faculty of Science, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| |
Collapse
|
21
|
Li L, Feng R, Feng X, Chen Y, Liu X, Sun W, Zhang L. The development and validation of an HPLC-MS/MS method for the determination of eriocitrin in rat plasma and its application to a pharmacokinetic study. RSC Adv 2020; 10:10552-10558. [PMID: 35492908 PMCID: PMC9050387 DOI: 10.1039/c9ra10925k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Eriocitrin is one of the major active constituents of lemon fruit, and it possesses strong antioxidant, lipid-lowering, anticancer and anti-inflammatory activities and has long been used in food, beverages and wine.
Collapse
Affiliation(s)
- Luya Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Rui Feng
- Department of Pharmacy
- The Fourth Hospital of Hebei Medical University
- Shijiazhuang 050011
- P.R. China
| | - Xue Feng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Xin Liu
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Wenjing Sun
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P.R. China
| |
Collapse
|
22
|
Li L, Feng X, Chen Y, Li S, Sun Y, Zhang L. A comprehensive study of eriocitrin metabolism in vivo and in vitro based on an efficient UHPLC-Q-TOF-MS/MS strategy. RSC Adv 2019; 9:24963-24980. [PMID: 35528661 PMCID: PMC9069865 DOI: 10.1039/c9ra03037a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Eriocitrin, a main flavonoid in lemons, possesses strong antioxidant, lipid-lowering and anticancer activities and has long been used in food, beverages and wine. However, its metabolism in vivo and in vitro is still unclear. In this study, an efficient strategy was developed to detect and identify metabolites of eriocitrin by using ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) based on online data acquisition and multiple data processing techniques. A total of 32 metabolites in vivo and 27 metabolites in vitro were obtained based on the above method. Furthermore, the main metabolic pathways of eriocitrin included reduction, hydrogenation, N-acetylation, ketone formation, oxidation, methylation, sulfate conjugation, glutamine conjugation, glycine conjugation, desaturation and demethylation to carboxylic acid. This study will lay a foundation for further studies on the metabolic mechanisms of eriocitrin. 41 metabolites of eriocitrin in vivo and in vitro was identified based on the efficient UHPLC-Q-TOF-MS/MS strategy.![]()
Collapse
Affiliation(s)
- Luya Li
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Xue Feng
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Yuting Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Shenghao Li
- Department of Pathobiology and Immunology
- Hebei University of Chinese Medicine
- Shijiazhuang 050000
- P. R. China
| | - Yupeng Sun
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang 050017
- P. R. China
| |
Collapse
|